/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective icvers. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "fast_nlmeans_denoising_invoker.hpp" #include "fast_nlmeans_multi_denoising_invoker.hpp" #include "fast_nlmeans_denoising_opencl.hpp" template static void fastNlMeansDenoising_( const Mat& src, Mat& dst, const std::vector& h, int templateWindowSize, int searchWindowSize) { int hn = (int)h.size(); double granularity = (double)std::max(1., (double)dst.total()/(1 << 17)); switch (CV_MAT_CN(src.type())) { case 1: parallel_for_(cv::Range(0, src.rows), FastNlMeansDenoisingInvoker( src, dst, templateWindowSize, searchWindowSize, &h[0]), granularity); break; case 2: if (hn == 1) parallel_for_(cv::Range(0, src.rows), FastNlMeansDenoisingInvoker, IT, UIT, D, int>( src, dst, templateWindowSize, searchWindowSize, &h[0]), granularity); else parallel_for_(cv::Range(0, src.rows), FastNlMeansDenoisingInvoker, IT, UIT, D, Vec2i>( src, dst, templateWindowSize, searchWindowSize, &h[0]), granularity); break; case 3: if (hn == 1) parallel_for_(cv::Range(0, src.rows), FastNlMeansDenoisingInvoker, IT, UIT, D, int>( src, dst, templateWindowSize, searchWindowSize, &h[0]), granularity); else parallel_for_(cv::Range(0, src.rows), FastNlMeansDenoisingInvoker, IT, UIT, D, Vec3i>( src, dst, templateWindowSize, searchWindowSize, &h[0]), granularity); break; case 4: if (hn == 1) parallel_for_(cv::Range(0, src.rows), FastNlMeansDenoisingInvoker, IT, UIT, D, int>( src, dst, templateWindowSize, searchWindowSize, &h[0]), granularity); else parallel_for_(cv::Range(0, src.rows), FastNlMeansDenoisingInvoker, IT, UIT, D, Vec4i>( src, dst, templateWindowSize, searchWindowSize, &h[0]), granularity); break; default: CV_Error(Error::StsBadArg, "Unsupported number of channels! Only 1, 2, 3, and 4 are supported"); } } void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h, int templateWindowSize, int searchWindowSize) { CV_INSTRUMENT_REGION(); fastNlMeansDenoising(_src, _dst, std::vector(1, h), templateWindowSize, searchWindowSize); } void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, const std::vector& h, int templateWindowSize, int searchWindowSize, int normType) { CV_INSTRUMENT_REGION(); int hn = (int)h.size(), type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); CV_Assert(!_src.empty()); CV_Assert(hn == 1 || hn == cn); Size src_size = _src.size(); CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) && src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes ocl_fastNlMeansDenoising(_src, _dst, &h[0], hn, templateWindowSize, searchWindowSize, normType)) Mat src = _src.getMat(); _dst.create(src_size, src.type()); Mat dst = _dst.getMat(); switch (normType) { case NORM_L2: switch (depth) { case CV_8U: fastNlMeansDenoising_(src, dst, h, templateWindowSize, searchWindowSize); break; default: CV_Error(Error::StsBadArg, "Unsupported depth! Only CV_8U is supported for NORM_L2"); } break; case NORM_L1: switch (depth) { case CV_8U: fastNlMeansDenoising_(src, dst, h, templateWindowSize, searchWindowSize); break; case CV_16U: fastNlMeansDenoising_(src, dst, h, templateWindowSize, searchWindowSize); break; default: CV_Error(Error::StsBadArg, "Unsupported depth! Only CV_8U and CV_16U are supported for NORM_L1"); } break; default: CV_Error(Error::StsBadArg, "Unsupported norm type! Only NORM_L2 and NORM_L1 are supported"); } } void cv::fastNlMeansDenoisingColored( InputArray _src, OutputArray _dst, float h, float hForColorComponents, int templateWindowSize, int searchWindowSize) { CV_INSTRUMENT_REGION(); int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); Size src_size = _src.size(); if (type != CV_8UC3 && type != CV_8UC4) { CV_Error(Error::StsBadArg, "Type of input image should be CV_8UC3 or CV_8UC4!"); return; } CV_OCL_RUN(_src.dims() <= 2 && (_dst.isUMat() || _src.isUMat()) && src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes ocl_fastNlMeansDenoisingColored(_src, _dst, h, hForColorComponents, templateWindowSize, searchWindowSize)) Mat src = _src.getMat(); _dst.create(src_size, type); Mat dst = _dst.getMat(); Mat src_lab; cvtColor(src, src_lab, COLOR_LBGR2Lab); Mat l(src_size, CV_MAKE_TYPE(depth, 1)); Mat ab(src_size, CV_MAKE_TYPE(depth, 2)); Mat l_ab[] = { l, ab }; int from_to[] = { 0,0, 1,1, 2,2 }; mixChannels(&src_lab, 1, l_ab, 2, from_to, 3); fastNlMeansDenoising(l, l, h, templateWindowSize, searchWindowSize); fastNlMeansDenoising(ab, ab, hForColorComponents, templateWindowSize, searchWindowSize); Mat l_ab_denoised[] = { l, ab }; Mat dst_lab(src_size, CV_MAKE_TYPE(depth, 3)); mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3); cvtColor(dst_lab, dst, COLOR_Lab2LBGR, cn); } static void fastNlMeansDenoisingMultiCheckPreconditions( const std::vector& srcImgs, int imgToDenoiseIndex, int temporalWindowSize, int templateWindowSize, int searchWindowSize) { int src_imgs_size = static_cast(srcImgs.size()); if (src_imgs_size == 0) { CV_Error(Error::StsBadArg, "Input images vector should not be empty!"); } if (temporalWindowSize % 2 == 0 || searchWindowSize % 2 == 0 || templateWindowSize % 2 == 0) { CV_Error(Error::StsBadArg, "All windows sizes should be odd!"); } int temporalWindowHalfSize = temporalWindowSize / 2; if (imgToDenoiseIndex - temporalWindowHalfSize < 0 || imgToDenoiseIndex + temporalWindowHalfSize >= src_imgs_size) { CV_Error(Error::StsBadArg, "imgToDenoiseIndex and temporalWindowSize " "should be chosen corresponding srcImgs size!"); } for (int i = 1; i < src_imgs_size; i++) if (srcImgs[0].size() != srcImgs[i].size() || srcImgs[0].type() != srcImgs[i].type()) { CV_Error(Error::StsBadArg, "Input images should have the same size and type!"); } } template static void fastNlMeansDenoisingMulti_( const std::vector& srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, const std::vector& h, int templateWindowSize, int searchWindowSize) { int hn = (int)h.size(); double granularity = (double)std::max(1., (double)dst.total()/(1 << 16)); switch (srcImgs[0].type()) { case CV_8U: parallel_for_(cv::Range(0, srcImgs[0].rows), FastNlMeansMultiDenoisingInvoker( srcImgs, imgToDenoiseIndex, temporalWindowSize, dst, templateWindowSize, searchWindowSize, &h[0]), granularity); break; case CV_8UC2: if (hn == 1) parallel_for_(cv::Range(0, srcImgs[0].rows), FastNlMeansMultiDenoisingInvoker, IT, UIT, D, int>( srcImgs, imgToDenoiseIndex, temporalWindowSize, dst, templateWindowSize, searchWindowSize, &h[0]), granularity); else parallel_for_(cv::Range(0, srcImgs[0].rows), FastNlMeansMultiDenoisingInvoker, IT, UIT, D, Vec2i>( srcImgs, imgToDenoiseIndex, temporalWindowSize, dst, templateWindowSize, searchWindowSize, &h[0]), granularity); break; case CV_8UC3: if (hn == 1) parallel_for_(cv::Range(0, srcImgs[0].rows), FastNlMeansMultiDenoisingInvoker, IT, UIT, D, int>( srcImgs, imgToDenoiseIndex, temporalWindowSize, dst, templateWindowSize, searchWindowSize, &h[0]), granularity); else parallel_for_(cv::Range(0, srcImgs[0].rows), FastNlMeansMultiDenoisingInvoker, IT, UIT, D, Vec3i>( srcImgs, imgToDenoiseIndex, temporalWindowSize, dst, templateWindowSize, searchWindowSize, &h[0]), granularity); break; case CV_8UC4: if (hn == 1) parallel_for_(cv::Range(0, srcImgs[0].rows), FastNlMeansMultiDenoisingInvoker, IT, UIT, D, int>( srcImgs, imgToDenoiseIndex, temporalWindowSize, dst, templateWindowSize, searchWindowSize, &h[0]), granularity); else parallel_for_(cv::Range(0, srcImgs[0].rows), FastNlMeansMultiDenoisingInvoker, IT, UIT, D, Vec4i>( srcImgs, imgToDenoiseIndex, temporalWindowSize, dst, templateWindowSize, searchWindowSize, &h[0]), granularity); break; default: CV_Error(Error::StsBadArg, "Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported"); } } void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize) { CV_INSTRUMENT_REGION(); fastNlMeansDenoisingMulti(_srcImgs, _dst, imgToDenoiseIndex, temporalWindowSize, std::vector(1, h), templateWindowSize, searchWindowSize); } void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst, int imgToDenoiseIndex, int temporalWindowSize, const std::vector& h, int templateWindowSize, int searchWindowSize, int normType) { CV_INSTRUMENT_REGION(); std::vector srcImgs; _srcImgs.getMatVector(srcImgs); fastNlMeansDenoisingMultiCheckPreconditions( srcImgs, imgToDenoiseIndex, temporalWindowSize, templateWindowSize, searchWindowSize); int hn = (int)h.size(); int type = srcImgs[0].type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); CV_Assert(hn == 1 || hn == cn); _dst.create(srcImgs[0].size(), srcImgs[0].type()); Mat dst = _dst.getMat(); switch (normType) { case NORM_L2: switch (depth) { case CV_8U: fastNlMeansDenoisingMulti_(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize, searchWindowSize); break; default: CV_Error(Error::StsBadArg, "Unsupported depth! Only CV_8U is supported for NORM_L2"); } break; case NORM_L1: switch (depth) { case CV_8U: fastNlMeansDenoisingMulti_(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize, searchWindowSize); break; case CV_16U: fastNlMeansDenoisingMulti_(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize, searchWindowSize); break; default: CV_Error(Error::StsBadArg, "Unsupported depth! Only CV_8U and CV_16U are supported for NORM_L1"); } break; default: CV_Error(Error::StsBadArg, "Unsupported norm type! Only NORM_L2 and NORM_L1 are supported"); } } void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputArray _dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hForColorComponents, int templateWindowSize, int searchWindowSize) { CV_INSTRUMENT_REGION(); std::vector srcImgs; _srcImgs.getMatVector(srcImgs); fastNlMeansDenoisingMultiCheckPreconditions( srcImgs, imgToDenoiseIndex, temporalWindowSize, templateWindowSize, searchWindowSize); _dst.create(srcImgs[0].size(), srcImgs[0].type()); Mat dst = _dst.getMat(); int type = srcImgs[0].type(), depth = CV_MAT_DEPTH(type); int src_imgs_size = static_cast(srcImgs.size()); if (type != CV_8UC3) { CV_Error(Error::StsBadArg, "Type of input images should be CV_8UC3!"); return; } int from_to[] = { 0,0, 1,1, 2,2 }; // TODO convert only required images std::vector src_lab(src_imgs_size); std::vector l(src_imgs_size); std::vector ab(src_imgs_size); for (int i = 0; i < src_imgs_size; i++) { src_lab[i] = Mat::zeros(srcImgs[0].size(), type); l[i] = Mat::zeros(srcImgs[0].size(), CV_MAKE_TYPE(depth, 1)); ab[i] = Mat::zeros(srcImgs[0].size(), CV_MAKE_TYPE(depth, 2)); cvtColor(srcImgs[i], src_lab[i], COLOR_LBGR2Lab); Mat l_ab[] = { l[i], ab[i] }; mixChannels(&src_lab[i], 1, l_ab, 2, from_to, 3); } Mat dst_l; Mat dst_ab; fastNlMeansDenoisingMulti( l, dst_l, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize, searchWindowSize); fastNlMeansDenoisingMulti( ab, dst_ab, imgToDenoiseIndex, temporalWindowSize, hForColorComponents, templateWindowSize, searchWindowSize); Mat l_ab_denoised[] = { dst_l, dst_ab }; Mat dst_lab(srcImgs[0].size(), srcImgs[0].type()); mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3); cvtColor(dst_lab, dst, COLOR_Lab2LBGR); }