/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* // // This implementation is based on Javier Sánchez Pérez implementation. // Original BSD license: // // Copyright (c) 2011, Javier Sánchez Pérez, Enric Meinhardt Llopis // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, this // list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // */ #include "precomp.hpp" #include "opencl_kernels_video.hpp" #include #include #include #include "opencv2/core/opencl/ocl_defs.hpp" using namespace cv; namespace { class OpticalFlowDual_TVL1 : public DualTVL1OpticalFlow { public: OpticalFlowDual_TVL1(); void calc(InputArray I0, InputArray I1, InputOutputArray flow); void collectGarbage(); CV_IMPL_PROPERTY(double, Tau, tau) CV_IMPL_PROPERTY(double, Lambda, lambda) CV_IMPL_PROPERTY(double, Theta, theta) CV_IMPL_PROPERTY(double, Gamma, gamma) CV_IMPL_PROPERTY(int, ScalesNumber, nscales) CV_IMPL_PROPERTY(int, WarpingsNumber, warps) CV_IMPL_PROPERTY(double, Epsilon, epsilon) CV_IMPL_PROPERTY(int, InnerIterations, innerIterations) CV_IMPL_PROPERTY(int, OuterIterations, outerIterations) CV_IMPL_PROPERTY(bool, UseInitialFlow, useInitialFlow) CV_IMPL_PROPERTY(double, ScaleStep, scaleStep) CV_IMPL_PROPERTY(int, MedianFiltering, medianFiltering) protected: double tau; double lambda; double theta; double gamma; int nscales; int warps; double epsilon; int innerIterations; int outerIterations; bool useInitialFlow; double scaleStep; int medianFiltering; private: void procOneScale(const Mat_& I0, const Mat_& I1, Mat_& u1, Mat_& u2, Mat_& u3); bool procOneScale_ocl(const UMat& I0, const UMat& I1, UMat& u1, UMat& u2); bool calc_ocl(InputArray I0, InputArray I1, InputOutputArray flow); struct dataMat { std::vector > I0s; std::vector > I1s; std::vector > u1s; std::vector > u2s; std::vector > u3s; Mat_ I1x_buf; Mat_ I1y_buf; Mat_ flowMap1_buf; Mat_ flowMap2_buf; Mat_ I1w_buf; Mat_ I1wx_buf; Mat_ I1wy_buf; Mat_ grad_buf; Mat_ rho_c_buf; Mat_ v1_buf; Mat_ v2_buf; Mat_ v3_buf; Mat_ p11_buf; Mat_ p12_buf; Mat_ p21_buf; Mat_ p22_buf; Mat_ p31_buf; Mat_ p32_buf; Mat_ div_p1_buf; Mat_ div_p2_buf; Mat_ div_p3_buf; Mat_ u1x_buf; Mat_ u1y_buf; Mat_ u2x_buf; Mat_ u2y_buf; Mat_ u3x_buf; Mat_ u3y_buf; } dm; struct dataUMat { std::vector I0s; std::vector I1s; std::vector u1s; std::vector u2s; UMat I1x_buf; UMat I1y_buf; UMat I1w_buf; UMat I1wx_buf; UMat I1wy_buf; UMat grad_buf; UMat rho_c_buf; UMat p11_buf; UMat p12_buf; UMat p21_buf; UMat p22_buf; UMat diff_buf; UMat norm_buf; } dum; }; namespace cv_ocl_tvl1flow { bool centeredGradient(const UMat &src, UMat &dx, UMat &dy); bool warpBackward(const UMat &I0, const UMat &I1, UMat &I1x, UMat &I1y, UMat &u1, UMat &u2, UMat &I1w, UMat &I1wx, UMat &I1wy, UMat &grad, UMat &rho); bool estimateU(UMat &I1wx, UMat &I1wy, UMat &grad, UMat &rho_c, UMat &p11, UMat &p12, UMat &p21, UMat &p22, UMat &u1, UMat &u2, UMat &error, float l_t, float theta, char calc_error); bool estimateDualVariables(UMat &u1, UMat &u2, UMat &p11, UMat &p12, UMat &p21, UMat &p22, float taut); } bool cv_ocl_tvl1flow::centeredGradient(const UMat &src, UMat &dx, UMat &dy) { size_t globalsize[2] = { src.cols, src.rows }; ocl::Kernel kernel; if (!kernel.create("centeredGradientKernel", cv::ocl::video::optical_flow_tvl1_oclsrc, "")) return false; int idxArg = 0; idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(src));//src mat idxArg = kernel.set(idxArg, (int)(src.cols));//src mat col idxArg = kernel.set(idxArg, (int)(src.rows));//src mat rows idxArg = kernel.set(idxArg, (int)(src.step / src.elemSize()));//src mat step idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dx));//res mat dx idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dy));//res mat dy idxArg = kernel.set(idxArg, (int)(dx.step/dx.elemSize()));//res mat step return kernel.run(2, globalsize, NULL, false); } bool cv_ocl_tvl1flow::warpBackward(const UMat &I0, const UMat &I1, UMat &I1x, UMat &I1y, UMat &u1, UMat &u2, UMat &I1w, UMat &I1wx, UMat &I1wy, UMat &grad, UMat &rho) { size_t globalsize[2] = { I0.cols, I0.rows }; ocl::Kernel kernel; if (!kernel.create("warpBackwardKernel", cv::ocl::video::optical_flow_tvl1_oclsrc, "")) return false; int idxArg = 0; idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(I0));//I0 mat int I0_step = (int)(I0.step / I0.elemSize()); idxArg = kernel.set(idxArg, I0_step);//I0_step idxArg = kernel.set(idxArg, (int)(I0.cols));//I0_col idxArg = kernel.set(idxArg, (int)(I0.rows));//I0_row ocl::Image2D imageI1(I1); ocl::Image2D imageI1x(I1x); ocl::Image2D imageI1y(I1y); idxArg = kernel.set(idxArg, imageI1);//image2d_t tex_I1 idxArg = kernel.set(idxArg, imageI1x);//image2d_t tex_I1x idxArg = kernel.set(idxArg, imageI1y);//image2d_t tex_I1y idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(u1));//const float* u1 idxArg = kernel.set(idxArg, (int)(u1.step / u1.elemSize()));//int u1_step idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(u2));//const float* u2 idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(I1w));///float* I1w idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(I1wx));//float* I1wx idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(I1wy));//float* I1wy idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(grad));//float* grad idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(rho));//float* rho idxArg = kernel.set(idxArg, (int)(I1w.step / I1w.elemSize()));//I1w_step idxArg = kernel.set(idxArg, (int)(u2.step / u2.elemSize()));//u2_step int u1_offset_x = (int)((u1.offset) % (u1.step)); u1_offset_x = (int)(u1_offset_x / u1.elemSize()); idxArg = kernel.set(idxArg, (int)u1_offset_x );//u1_offset_x idxArg = kernel.set(idxArg, (int)(u1.offset/u1.step));//u1_offset_y int u2_offset_x = (int)((u2.offset) % (u2.step)); u2_offset_x = (int) (u2_offset_x / u2.elemSize()); idxArg = kernel.set(idxArg, (int)u2_offset_x);//u2_offset_x idxArg = kernel.set(idxArg, (int)(u2.offset / u2.step));//u2_offset_y return kernel.run(2, globalsize, NULL, false); } bool cv_ocl_tvl1flow::estimateU(UMat &I1wx, UMat &I1wy, UMat &grad, UMat &rho_c, UMat &p11, UMat &p12, UMat &p21, UMat &p22, UMat &u1, UMat &u2, UMat &error, float l_t, float theta, char calc_error) { size_t globalsize[2] = { I1wx.cols, I1wx.rows }; ocl::Kernel kernel; if (!kernel.create("estimateUKernel", cv::ocl::video::optical_flow_tvl1_oclsrc, "")) return false; int idxArg = 0; idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(I1wx)); //const float* I1wx idxArg = kernel.set(idxArg, (int)(I1wx.cols)); //int I1wx_col idxArg = kernel.set(idxArg, (int)(I1wx.rows)); //int I1wx_row idxArg = kernel.set(idxArg, (int)(I1wx.step/I1wx.elemSize())); //int I1wx_step idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(I1wy)); //const float* I1wy idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(grad)); //const float* grad idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(rho_c)); //const float* rho_c idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(p11)); //const float* p11 idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(p12)); //const float* p12 idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(p21)); //const float* p21 idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(p22)); //const float* p22 idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(u1)); //float* u1 idxArg = kernel.set(idxArg, (int)(u1.step / u1.elemSize())); //int u1_step idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(u2)); //float* u2 idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(error)); //float* error idxArg = kernel.set(idxArg, (float)l_t); //float l_t idxArg = kernel.set(idxArg, (float)theta); //float theta idxArg = kernel.set(idxArg, (int)(u2.step / u2.elemSize()));//int u2_step int u1_offset_x = (int)(u1.offset % u1.step); u1_offset_x = (int) (u1_offset_x / u1.elemSize()); idxArg = kernel.set(idxArg, (int)u1_offset_x); //int u1_offset_x idxArg = kernel.set(idxArg, (int)(u1.offset/u1.step)); //int u1_offset_y int u2_offset_x = (int)(u2.offset % u2.step); u2_offset_x = (int)(u2_offset_x / u2.elemSize()); idxArg = kernel.set(idxArg, (int)u2_offset_x ); //int u2_offset_x idxArg = kernel.set(idxArg, (int)(u2.offset / u2.step)); //int u2_offset_y idxArg = kernel.set(idxArg, (char)calc_error); //char calc_error return kernel.run(2, globalsize, NULL, false); } bool cv_ocl_tvl1flow::estimateDualVariables(UMat &u1, UMat &u2, UMat &p11, UMat &p12, UMat &p21, UMat &p22, float taut) { size_t globalsize[2] = { u1.cols, u1.rows }; ocl::Kernel kernel; if (!kernel.create("estimateDualVariablesKernel", cv::ocl::video::optical_flow_tvl1_oclsrc, "")) return false; int idxArg = 0; idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(u1));// const float* u1 idxArg = kernel.set(idxArg, (int)(u1.cols)); //int u1_col idxArg = kernel.set(idxArg, (int)(u1.rows)); //int u1_row idxArg = kernel.set(idxArg, (int)(u1.step/u1.elemSize())); //int u1_step idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(u2)); // const float* u2 idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(p11)); // float* p11 idxArg = kernel.set(idxArg, (int)(p11.step/p11.elemSize())); //int p11_step idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(p12)); // float* p12 idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(p21)); // float* p21 idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(p22)); // float* p22 idxArg = kernel.set(idxArg, (float)(taut)); //float taut idxArg = kernel.set(idxArg, (int)(u2.step/u2.elemSize())); //int u2_step int u1_offset_x = (int)(u1.offset % u1.step); u1_offset_x = (int)(u1_offset_x / u1.elemSize()); idxArg = kernel.set(idxArg, u1_offset_x); //int u1_offset_x idxArg = kernel.set(idxArg, (int)(u1.offset / u1.step)); //int u1_offset_y int u2_offset_x = (int)(u2.offset % u2.step); u2_offset_x = (int)(u2_offset_x / u2.elemSize()); idxArg = kernel.set(idxArg, u2_offset_x); //int u2_offset_x idxArg = kernel.set(idxArg, (int)(u2.offset / u2.step)); //int u2_offset_y return kernel.run(2, globalsize, NULL, false); } OpticalFlowDual_TVL1::OpticalFlowDual_TVL1() { tau = 0.25; lambda = 0.15; theta = 0.3; nscales = 5; warps = 5; epsilon = 0.01; gamma = 0.; innerIterations = 30; outerIterations = 10; useInitialFlow = false; medianFiltering = 5; scaleStep = 0.8; } void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray _flow) { CV_OCL_RUN(_flow.isUMat() && ocl::Image2D::isFormatSupported(CV_32F, 1, false), calc_ocl(_I0, _I1, _flow)) Mat I0 = _I0.getMat(); Mat I1 = _I1.getMat(); CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 ); CV_Assert( I0.size() == I1.size() ); CV_Assert( I0.type() == I1.type() ); CV_Assert( !useInitialFlow || (_flow.size() == I0.size() && _flow.type() == CV_32FC2) ); CV_Assert( nscales > 0 ); bool use_gamma = gamma != 0; // allocate memory for the pyramid structure dm.I0s.resize(nscales); dm.I1s.resize(nscales); dm.u1s.resize(nscales); dm.u2s.resize(nscales); dm.u3s.resize(nscales); I0.convertTo(dm.I0s[0], dm.I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0); I1.convertTo(dm.I1s[0], dm.I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0); dm.u1s[0].create(I0.size()); dm.u2s[0].create(I0.size()); if (use_gamma) dm.u3s[0].create(I0.size()); if (useInitialFlow) { Mat_ mv[] = { dm.u1s[0], dm.u2s[0] }; split(_flow.getMat(), mv); } dm.I1x_buf.create(I0.size()); dm.I1y_buf.create(I0.size()); dm.flowMap1_buf.create(I0.size()); dm.flowMap2_buf.create(I0.size()); dm.I1w_buf.create(I0.size()); dm.I1wx_buf.create(I0.size()); dm.I1wy_buf.create(I0.size()); dm.grad_buf.create(I0.size()); dm.rho_c_buf.create(I0.size()); dm.v1_buf.create(I0.size()); dm.v2_buf.create(I0.size()); dm.v3_buf.create(I0.size()); dm.p11_buf.create(I0.size()); dm.p12_buf.create(I0.size()); dm.p21_buf.create(I0.size()); dm.p22_buf.create(I0.size()); dm.p31_buf.create(I0.size()); dm.p32_buf.create(I0.size()); dm.div_p1_buf.create(I0.size()); dm.div_p2_buf.create(I0.size()); dm.div_p3_buf.create(I0.size()); dm.u1x_buf.create(I0.size()); dm.u1y_buf.create(I0.size()); dm.u2x_buf.create(I0.size()); dm.u2y_buf.create(I0.size()); dm.u3x_buf.create(I0.size()); dm.u3y_buf.create(I0.size()); // create the scales for (int s = 1; s < nscales; ++s) { resize(dm.I0s[s - 1], dm.I0s[s], Size(), scaleStep, scaleStep); resize(dm.I1s[s - 1], dm.I1s[s], Size(), scaleStep, scaleStep); if (dm.I0s[s].cols < 16 || dm.I0s[s].rows < 16) { nscales = s; break; } if (useInitialFlow) { resize(dm.u1s[s - 1], dm.u1s[s], Size(), scaleStep, scaleStep); resize(dm.u2s[s - 1], dm.u2s[s], Size(), scaleStep, scaleStep); multiply(dm.u1s[s], Scalar::all(scaleStep), dm.u1s[s]); multiply(dm.u2s[s], Scalar::all(scaleStep), dm.u2s[s]); } else { dm.u1s[s].create(dm.I0s[s].size()); dm.u2s[s].create(dm.I0s[s].size()); } if (use_gamma) dm.u3s[s].create(dm.I0s[s].size()); } if (!useInitialFlow) { dm.u1s[nscales - 1].setTo(Scalar::all(0)); dm.u2s[nscales - 1].setTo(Scalar::all(0)); } if (use_gamma) dm.u3s[nscales - 1].setTo(Scalar::all(0)); // pyramidal structure for computing the optical flow for (int s = nscales - 1; s >= 0; --s) { // compute the optical flow at the current scale procOneScale(dm.I0s[s], dm.I1s[s], dm.u1s[s], dm.u2s[s], dm.u3s[s]); // if this was the last scale, finish now if (s == 0) break; // otherwise, upsample the optical flow // zoom the optical flow for the next finer scale resize(dm.u1s[s], dm.u1s[s - 1], dm.I0s[s - 1].size()); resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size()); if (use_gamma) resize(dm.u3s[s], dm.u3s[s - 1], dm.I0s[s - 1].size()); // scale the optical flow with the appropriate zoom factor (don't scale u3!) multiply(dm.u1s[s - 1], Scalar::all(1 / scaleStep), dm.u1s[s - 1]); multiply(dm.u2s[s - 1], Scalar::all(1 / scaleStep), dm.u2s[s - 1]); } Mat uxy[] = { dm.u1s[0], dm.u2s[0] }; merge(uxy, 2, _flow); } bool OpticalFlowDual_TVL1::calc_ocl(InputArray _I0, InputArray _I1, InputOutputArray _flow) { UMat I0 = _I0.getUMat(); UMat I1 = _I1.getUMat(); CV_Assert(I0.type() == CV_8UC1 || I0.type() == CV_32FC1); CV_Assert(I0.size() == I1.size()); CV_Assert(I0.type() == I1.type()); CV_Assert(!useInitialFlow || (_flow.size() == I0.size() && _flow.type() == CV_32FC2)); CV_Assert(nscales > 0); // allocate memory for the pyramid structure dum.I0s.resize(nscales); dum.I1s.resize(nscales); dum.u1s.resize(nscales); dum.u2s.resize(nscales); //I0s_step == I1s_step double alpha = I0.depth() == CV_8U ? 1.0 : 255.0; I0.convertTo(dum.I0s[0], CV_32F, alpha); I1.convertTo(dum.I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0); dum.u1s[0].create(I0.size(), CV_32FC1); dum.u2s[0].create(I0.size(), CV_32FC1); if (useInitialFlow) { std::vector umv; umv.push_back(dum.u1s[0]); umv.push_back(dum.u2s[0]); cv::split(_flow,umv); } dum.I1x_buf.create(I0.size(), CV_32FC1); dum.I1y_buf.create(I0.size(), CV_32FC1); dum.I1w_buf.create(I0.size(), CV_32FC1); dum.I1wx_buf.create(I0.size(), CV_32FC1); dum.I1wy_buf.create(I0.size(), CV_32FC1); dum.grad_buf.create(I0.size(), CV_32FC1); dum.rho_c_buf.create(I0.size(), CV_32FC1); dum.p11_buf.create(I0.size(), CV_32FC1); dum.p12_buf.create(I0.size(), CV_32FC1); dum.p21_buf.create(I0.size(), CV_32FC1); dum.p22_buf.create(I0.size(), CV_32FC1); dum.diff_buf.create(I0.size(), CV_32FC1); // create the scales for (int s = 1; s < nscales; ++s) { resize(dum.I0s[s - 1], dum.I0s[s], Size(), scaleStep, scaleStep); resize(dum.I1s[s - 1], dum.I1s[s], Size(), scaleStep, scaleStep); if (dum.I0s[s].cols < 16 || dum.I0s[s].rows < 16) { nscales = s; break; } if (useInitialFlow) { resize(dum.u1s[s - 1], dum.u1s[s], Size(), scaleStep, scaleStep); resize(dum.u2s[s - 1], dum.u2s[s], Size(), scaleStep, scaleStep); //scale by scale factor multiply(dum.u1s[s], Scalar::all(scaleStep), dum.u1s[s]); multiply(dum.u2s[s], Scalar::all(scaleStep), dum.u2s[s]); } } // pyramidal structure for computing the optical flow for (int s = nscales - 1; s >= 0; --s) { // compute the optical flow at the current scale if (!OpticalFlowDual_TVL1::procOneScale_ocl(dum.I0s[s], dum.I1s[s], dum.u1s[s], dum.u2s[s])) return false; // if this was the last scale, finish now if (s == 0) break; // zoom the optical flow for the next finer scale resize(dum.u1s[s], dum.u1s[s - 1], dum.I0s[s - 1].size()); resize(dum.u2s[s], dum.u2s[s - 1], dum.I0s[s - 1].size()); // scale the optical flow with the appropriate zoom factor multiply(dum.u1s[s - 1], Scalar::all(1 / scaleStep), dum.u1s[s - 1]); multiply(dum.u2s[s - 1], Scalar::all(1 / scaleStep), dum.u2s[s - 1]); } std::vector uxy; uxy.push_back(dum.u1s[0]); uxy.push_back(dum.u2s[0]); merge(uxy, _flow); return true; } //////////////////////////////////////////////////////////// // buildFlowMap struct BuildFlowMapBody : ParallelLoopBody { void operator() (const Range& range) const; Mat_ u1; Mat_ u2; mutable Mat_ map1; mutable Mat_ map2; }; void BuildFlowMapBody::operator() (const Range& range) const { for (int y = range.start; y < range.end; ++y) { const float* u1Row = u1[y]; const float* u2Row = u2[y]; float* map1Row = map1[y]; float* map2Row = map2[y]; for (int x = 0; x < u1.cols; ++x) { map1Row[x] = x + u1Row[x]; map2Row[x] = y + u2Row[x]; } } } void buildFlowMap(const Mat_& u1, const Mat_& u2, Mat_& map1, Mat_& map2) { CV_DbgAssert( u2.size() == u1.size() ); CV_DbgAssert( map1.size() == u1.size() ); CV_DbgAssert( map2.size() == u1.size() ); BuildFlowMapBody body; body.u1 = u1; body.u2 = u2; body.map1 = map1; body.map2 = map2; parallel_for_(Range(0, u1.rows), body); } //////////////////////////////////////////////////////////// // centeredGradient struct CenteredGradientBody : ParallelLoopBody { void operator() (const Range& range) const; Mat_ src; mutable Mat_ dx; mutable Mat_ dy; }; void CenteredGradientBody::operator() (const Range& range) const { const int last_col = src.cols - 1; for (int y = range.start; y < range.end; ++y) { const float* srcPrevRow = src[y - 1]; const float* srcCurRow = src[y]; const float* srcNextRow = src[y + 1]; float* dxRow = dx[y]; float* dyRow = dy[y]; for (int x = 1; x < last_col; ++x) { dxRow[x] = 0.5f * (srcCurRow[x + 1] - srcCurRow[x - 1]); dyRow[x] = 0.5f * (srcNextRow[x] - srcPrevRow[x]); } } } void centeredGradient(const Mat_& src, Mat_& dx, Mat_& dy) { CV_DbgAssert( src.rows > 2 && src.cols > 2 ); CV_DbgAssert( dx.size() == src.size() ); CV_DbgAssert( dy.size() == src.size() ); const int last_row = src.rows - 1; const int last_col = src.cols - 1; // compute the gradient on the center body of the image { CenteredGradientBody body; body.src = src; body.dx = dx; body.dy = dy; parallel_for_(Range(1, last_row), body); } // compute the gradient on the first and last rows for (int x = 1; x < last_col; ++x) { dx(0, x) = 0.5f * (src(0, x + 1) - src(0, x - 1)); dy(0, x) = 0.5f * (src(1, x) - src(0, x)); dx(last_row, x) = 0.5f * (src(last_row, x + 1) - src(last_row, x - 1)); dy(last_row, x) = 0.5f * (src(last_row, x) - src(last_row - 1, x)); } // compute the gradient on the first and last columns for (int y = 1; y < last_row; ++y) { dx(y, 0) = 0.5f * (src(y, 1) - src(y, 0)); dy(y, 0) = 0.5f * (src(y + 1, 0) - src(y - 1, 0)); dx(y, last_col) = 0.5f * (src(y, last_col) - src(y, last_col - 1)); dy(y, last_col) = 0.5f * (src(y + 1, last_col) - src(y - 1, last_col)); } // compute the gradient at the four corners dx(0, 0) = 0.5f * (src(0, 1) - src(0, 0)); dy(0, 0) = 0.5f * (src(1, 0) - src(0, 0)); dx(0, last_col) = 0.5f * (src(0, last_col) - src(0, last_col - 1)); dy(0, last_col) = 0.5f * (src(1, last_col) - src(0, last_col)); dx(last_row, 0) = 0.5f * (src(last_row, 1) - src(last_row, 0)); dy(last_row, 0) = 0.5f * (src(last_row, 0) - src(last_row - 1, 0)); dx(last_row, last_col) = 0.5f * (src(last_row, last_col) - src(last_row, last_col - 1)); dy(last_row, last_col) = 0.5f * (src(last_row, last_col) - src(last_row - 1, last_col)); } //////////////////////////////////////////////////////////// // forwardGradient struct ForwardGradientBody : ParallelLoopBody { void operator() (const Range& range) const; Mat_ src; mutable Mat_ dx; mutable Mat_ dy; }; void ForwardGradientBody::operator() (const Range& range) const { const int last_col = src.cols - 1; for (int y = range.start; y < range.end; ++y) { const float* srcCurRow = src[y]; const float* srcNextRow = src[y + 1]; float* dxRow = dx[y]; float* dyRow = dy[y]; for (int x = 0; x < last_col; ++x) { dxRow[x] = srcCurRow[x + 1] - srcCurRow[x]; dyRow[x] = srcNextRow[x] - srcCurRow[x]; } } } void forwardGradient(const Mat_& src, Mat_& dx, Mat_& dy) { CV_DbgAssert( src.rows > 2 && src.cols > 2 ); CV_DbgAssert( dx.size() == src.size() ); CV_DbgAssert( dy.size() == src.size() ); const int last_row = src.rows - 1; const int last_col = src.cols - 1; // compute the gradient on the central body of the image { ForwardGradientBody body; body.src = src; body.dx = dx; body.dy = dy; parallel_for_(Range(0, last_row), body); } // compute the gradient on the last row for (int x = 0; x < last_col; ++x) { dx(last_row, x) = src(last_row, x + 1) - src(last_row, x); dy(last_row, x) = 0.0f; } // compute the gradient on the last column for (int y = 0; y < last_row; ++y) { dx(y, last_col) = 0.0f; dy(y, last_col) = src(y + 1, last_col) - src(y, last_col); } dx(last_row, last_col) = 0.0f; dy(last_row, last_col) = 0.0f; } //////////////////////////////////////////////////////////// // divergence struct DivergenceBody : ParallelLoopBody { void operator() (const Range& range) const; Mat_ v1; Mat_ v2; mutable Mat_ div; }; void DivergenceBody::operator() (const Range& range) const { for (int y = range.start; y < range.end; ++y) { const float* v1Row = v1[y]; const float* v2PrevRow = v2[y - 1]; const float* v2CurRow = v2[y]; float* divRow = div[y]; for(int x = 1; x < v1.cols; ++x) { const float v1x = v1Row[x] - v1Row[x - 1]; const float v2y = v2CurRow[x] - v2PrevRow[x]; divRow[x] = v1x + v2y; } } } void divergence(const Mat_& v1, const Mat_& v2, Mat_& div) { CV_DbgAssert( v1.rows > 2 && v1.cols > 2 ); CV_DbgAssert( v2.size() == v1.size() ); CV_DbgAssert( div.size() == v1.size() ); { DivergenceBody body; body.v1 = v1; body.v2 = v2; body.div = div; parallel_for_(Range(1, v1.rows), body); } // compute the divergence on the first row for(int x = 1; x < v1.cols; ++x) div(0, x) = v1(0, x) - v1(0, x - 1) + v2(0, x); // compute the divergence on the first column for (int y = 1; y < v1.rows; ++y) div(y, 0) = v1(y, 0) + v2(y, 0) - v2(y - 1, 0); div(0, 0) = v1(0, 0) + v2(0, 0); } //////////////////////////////////////////////////////////// // calcGradRho struct CalcGradRhoBody : ParallelLoopBody { void operator() (const Range& range) const; Mat_ I0; Mat_ I1w; Mat_ I1wx; Mat_ I1wy; Mat_ u1; Mat_ u2; mutable Mat_ grad; mutable Mat_ rho_c; }; void CalcGradRhoBody::operator() (const Range& range) const { for (int y = range.start; y < range.end; ++y) { const float* I0Row = I0[y]; const float* I1wRow = I1w[y]; const float* I1wxRow = I1wx[y]; const float* I1wyRow = I1wy[y]; const float* u1Row = u1[y]; const float* u2Row = u2[y]; float* gradRow = grad[y]; float* rhoRow = rho_c[y]; for (int x = 0; x < I0.cols; ++x) { const float Ix2 = I1wxRow[x] * I1wxRow[x]; const float Iy2 = I1wyRow[x] * I1wyRow[x]; // store the |Grad(I1)|^2 gradRow[x] = Ix2 + Iy2; // compute the constant part of the rho function rhoRow[x] = (I1wRow[x] - I1wxRow[x] * u1Row[x] - I1wyRow[x] * u2Row[x] - I0Row[x]); } } } void calcGradRho(const Mat_& I0, const Mat_& I1w, const Mat_& I1wx, const Mat_& I1wy, const Mat_& u1, const Mat_& u2, Mat_& grad, Mat_& rho_c) { CV_DbgAssert( I1w.size() == I0.size() ); CV_DbgAssert( I1wx.size() == I0.size() ); CV_DbgAssert( I1wy.size() == I0.size() ); CV_DbgAssert( u1.size() == I0.size() ); CV_DbgAssert( u2.size() == I0.size() ); CV_DbgAssert( grad.size() == I0.size() ); CV_DbgAssert( rho_c.size() == I0.size() ); CalcGradRhoBody body; body.I0 = I0; body.I1w = I1w; body.I1wx = I1wx; body.I1wy = I1wy; body.u1 = u1; body.u2 = u2; body.grad = grad; body.rho_c = rho_c; parallel_for_(Range(0, I0.rows), body); } //////////////////////////////////////////////////////////// // estimateV struct EstimateVBody : ParallelLoopBody { void operator() (const Range& range) const; Mat_ I1wx; Mat_ I1wy; Mat_ u1; Mat_ u2; Mat_ u3; Mat_ grad; Mat_ rho_c; mutable Mat_ v1; mutable Mat_ v2; mutable Mat_ v3; float l_t; float gamma; }; void EstimateVBody::operator() (const Range& range) const { bool use_gamma = gamma != 0; for (int y = range.start; y < range.end; ++y) { const float* I1wxRow = I1wx[y]; const float* I1wyRow = I1wy[y]; const float* u1Row = u1[y]; const float* u2Row = u2[y]; const float* u3Row = use_gamma?u3[y]:NULL; const float* gradRow = grad[y]; const float* rhoRow = rho_c[y]; float* v1Row = v1[y]; float* v2Row = v2[y]; float* v3Row = use_gamma ? v3[y]:NULL; for (int x = 0; x < I1wx.cols; ++x) { const float rho = use_gamma ? rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]) + gamma * u3Row[x] : rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]); float d1 = 0.0f; float d2 = 0.0f; float d3 = 0.0f; if (rho < -l_t * gradRow[x]) { d1 = l_t * I1wxRow[x]; d2 = l_t * I1wyRow[x]; if (use_gamma) d3 = l_t * gamma; } else if (rho > l_t * gradRow[x]) { d1 = -l_t * I1wxRow[x]; d2 = -l_t * I1wyRow[x]; if (use_gamma) d3 = -l_t * gamma; } else if (gradRow[x] > std::numeric_limits::epsilon()) { float fi = -rho / gradRow[x]; d1 = fi * I1wxRow[x]; d2 = fi * I1wyRow[x]; if (use_gamma) d3 = fi * gamma; } v1Row[x] = u1Row[x] + d1; v2Row[x] = u2Row[x] + d2; if (use_gamma) v3Row[x] = u3Row[x] + d3; } } } void estimateV(const Mat_& I1wx, const Mat_& I1wy, const Mat_& u1, const Mat_& u2, const Mat_& u3, const Mat_& grad, const Mat_& rho_c, Mat_& v1, Mat_& v2, Mat_& v3, float l_t, float gamma) { CV_DbgAssert( I1wy.size() == I1wx.size() ); CV_DbgAssert( u1.size() == I1wx.size() ); CV_DbgAssert( u2.size() == I1wx.size() ); CV_DbgAssert( grad.size() == I1wx.size() ); CV_DbgAssert( rho_c.size() == I1wx.size() ); CV_DbgAssert( v1.size() == I1wx.size() ); CV_DbgAssert( v2.size() == I1wx.size() ); EstimateVBody body; bool use_gamma = gamma != 0; body.I1wx = I1wx; body.I1wy = I1wy; body.u1 = u1; body.u2 = u2; if (use_gamma) body.u3 = u3; body.grad = grad; body.rho_c = rho_c; body.v1 = v1; body.v2 = v2; if (use_gamma) body.v3 = v3; body.l_t = l_t; body.gamma = gamma; parallel_for_(Range(0, I1wx.rows), body); } //////////////////////////////////////////////////////////// // estimateU float estimateU(const Mat_& v1, const Mat_& v2, const Mat_& v3, const Mat_& div_p1, const Mat_& div_p2, const Mat_& div_p3, Mat_& u1, Mat_& u2, Mat_& u3, float theta, float gamma) { CV_DbgAssert( v2.size() == v1.size() ); CV_DbgAssert( div_p1.size() == v1.size() ); CV_DbgAssert( div_p2.size() == v1.size() ); CV_DbgAssert( u1.size() == v1.size() ); CV_DbgAssert( u2.size() == v1.size() ); float error = 0.0f; bool use_gamma = gamma != 0; for (int y = 0; y < v1.rows; ++y) { const float* v1Row = v1[y]; const float* v2Row = v2[y]; const float* v3Row = use_gamma?v3[y]:NULL; const float* divP1Row = div_p1[y]; const float* divP2Row = div_p2[y]; const float* divP3Row = use_gamma?div_p3[y]:NULL; float* u1Row = u1[y]; float* u2Row = u2[y]; float* u3Row = use_gamma?u3[y]:NULL; for (int x = 0; x < v1.cols; ++x) { const float u1k = u1Row[x]; const float u2k = u2Row[x]; const float u3k = use_gamma?u3Row[x]:0; u1Row[x] = v1Row[x] + theta * divP1Row[x]; u2Row[x] = v2Row[x] + theta * divP2Row[x]; if (use_gamma) u3Row[x] = v3Row[x] + theta * divP3Row[x]; error += use_gamma?(u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k) + (u3Row[x] - u3k) * (u3Row[x] - u3k): (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k); } } return error; } //////////////////////////////////////////////////////////// // estimateDualVariables struct EstimateDualVariablesBody : ParallelLoopBody { void operator() (const Range& range) const; Mat_ u1x; Mat_ u1y; Mat_ u2x; Mat_ u2y; Mat_ u3x; Mat_ u3y; mutable Mat_ p11; mutable Mat_ p12; mutable Mat_ p21; mutable Mat_ p22; mutable Mat_ p31; mutable Mat_ p32; float taut; bool use_gamma; }; void EstimateDualVariablesBody::operator() (const Range& range) const { for (int y = range.start; y < range.end; ++y) { const float* u1xRow = u1x[y]; const float* u1yRow = u1y[y]; const float* u2xRow = u2x[y]; const float* u2yRow = u2y[y]; const float* u3xRow = u3x[y]; const float* u3yRow = u3y[y]; float* p11Row = p11[y]; float* p12Row = p12[y]; float* p21Row = p21[y]; float* p22Row = p22[y]; float* p31Row = p31[y]; float* p32Row = p32[y]; for (int x = 0; x < u1x.cols; ++x) { const float g1 = static_cast(hypot(u1xRow[x], u1yRow[x])); const float g2 = static_cast(hypot(u2xRow[x], u2yRow[x])); const float g3 = static_cast(hypot(u3xRow[x], u3yRow[x])); const float ng1 = 1.0f + taut * g1; const float ng2 = 1.0f + taut * g2; const float ng3 = 1.0f + taut * g3; p11Row[x] = (p11Row[x] + taut * u1xRow[x]) / ng1; p12Row[x] = (p12Row[x] + taut * u1yRow[x]) / ng1; p21Row[x] = (p21Row[x] + taut * u2xRow[x]) / ng2; p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2; if (use_gamma) p31Row[x] = (p31Row[x] + taut * u3xRow[x]) / ng3; if (use_gamma) p32Row[x] = (p32Row[x] + taut * u3yRow[x]) / ng3; } } } void estimateDualVariables(const Mat_& u1x, const Mat_& u1y, const Mat_& u2x, const Mat_& u2y, const Mat_& u3x, const Mat_& u3y, Mat_& p11, Mat_& p12, Mat_& p21, Mat_& p22, Mat_& p31, Mat_& p32, float taut, bool use_gamma) { CV_DbgAssert( u1y.size() == u1x.size() ); CV_DbgAssert( u2x.size() == u1x.size() ); CV_DbgAssert( u3x.size() == u1x.size() ); CV_DbgAssert( u2y.size() == u1x.size() ); CV_DbgAssert( u3y.size() == u1x.size() ); CV_DbgAssert( p11.size() == u1x.size() ); CV_DbgAssert( p12.size() == u1x.size() ); CV_DbgAssert( p21.size() == u1x.size() ); CV_DbgAssert( p22.size() == u1x.size() ); CV_DbgAssert( p31.size() == u1x.size() ); CV_DbgAssert( p32.size() == u1x.size() ); EstimateDualVariablesBody body; body.u1x = u1x; body.u1y = u1y; body.u2x = u2x; body.u2y = u2y; body.u3x = u3x; body.u3y = u3y; body.p11 = p11; body.p12 = p12; body.p21 = p21; body.p22 = p22; body.p31 = p31; body.p32 = p32; body.taut = taut; body.use_gamma = use_gamma; parallel_for_(Range(0, u1x.rows), body); } bool OpticalFlowDual_TVL1::procOneScale_ocl(const UMat& I0, const UMat& I1, UMat& u1, UMat& u2) { using namespace cv_ocl_tvl1flow; const double scaledEpsilon = epsilon * epsilon * I0.size().area(); CV_DbgAssert(I1.size() == I0.size()); CV_DbgAssert(I1.type() == I0.type()); CV_DbgAssert(u1.empty() || u1.size() == I0.size()); CV_DbgAssert(u2.size() == u1.size()); if (u1.empty()) { u1.create(I0.size(), CV_32FC1); u1.setTo(Scalar::all(0)); u2.create(I0.size(), CV_32FC1); u2.setTo(Scalar::all(0)); } UMat I1x = dum.I1x_buf(Rect(0, 0, I0.cols, I0.rows)); UMat I1y = dum.I1y_buf(Rect(0, 0, I0.cols, I0.rows)); if (!centeredGradient(I1, I1x, I1y)) return false; UMat I1w = dum.I1w_buf(Rect(0, 0, I0.cols, I0.rows)); UMat I1wx = dum.I1wx_buf(Rect(0, 0, I0.cols, I0.rows)); UMat I1wy = dum.I1wy_buf(Rect(0, 0, I0.cols, I0.rows)); UMat grad = dum.grad_buf(Rect(0, 0, I0.cols, I0.rows)); UMat rho_c = dum.rho_c_buf(Rect(0, 0, I0.cols, I0.rows)); UMat p11 = dum.p11_buf(Rect(0, 0, I0.cols, I0.rows)); UMat p12 = dum.p12_buf(Rect(0, 0, I0.cols, I0.rows)); UMat p21 = dum.p21_buf(Rect(0, 0, I0.cols, I0.rows)); UMat p22 = dum.p22_buf(Rect(0, 0, I0.cols, I0.rows)); p11.setTo(Scalar::all(0)); p12.setTo(Scalar::all(0)); p21.setTo(Scalar::all(0)); p22.setTo(Scalar::all(0)); UMat diff = dum.diff_buf(Rect(0, 0, I0.cols, I0.rows)); const float l_t = static_cast(lambda * theta); const float taut = static_cast(tau / theta); int n; for (int warpings = 0; warpings < warps; ++warpings) { if (!warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c)) return false; double error = std::numeric_limits::max(); double prev_error = 0; for (int n_outer = 0; error > scaledEpsilon && n_outer < outerIterations; ++n_outer) { if (medianFiltering > 1) { cv::medianBlur(u1, u1, medianFiltering); cv::medianBlur(u2, u2, medianFiltering); } for (int n_inner = 0; error > scaledEpsilon && n_inner < innerIterations; ++n_inner) { // some tweaks to make sum operation less frequently n = n_inner + n_outer*innerIterations; char calc_error = (n & 0x1) && (prev_error < scaledEpsilon); if (!estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, u1, u2, diff, l_t, static_cast(theta), calc_error)) return false; if (calc_error) { error = cv::sum(diff)[0]; prev_error = error; } else { error = std::numeric_limits::max(); prev_error -= scaledEpsilon; } if (!estimateDualVariables(u1, u2, p11, p12, p21, p22, taut)) return false; } } } return true; } void OpticalFlowDual_TVL1::procOneScale(const Mat_& I0, const Mat_& I1, Mat_& u1, Mat_& u2, Mat_& u3) { const float scaledEpsilon = static_cast(epsilon * epsilon * I0.size().area()); CV_DbgAssert( I1.size() == I0.size() ); CV_DbgAssert( I1.type() == I0.type() ); CV_DbgAssert( u1.size() == I0.size() ); CV_DbgAssert( u2.size() == u1.size() ); Mat_ I1x = dm.I1x_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ I1y = dm.I1y_buf(Rect(0, 0, I0.cols, I0.rows)); centeredGradient(I1, I1x, I1y); Mat_ flowMap1 = dm.flowMap1_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ flowMap2 = dm.flowMap2_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ I1w = dm.I1w_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ I1wx = dm.I1wx_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ I1wy = dm.I1wy_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ grad = dm.grad_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ rho_c = dm.rho_c_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ v1 = dm.v1_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ v2 = dm.v2_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ v3 = dm.v3_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ p11 = dm.p11_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ p21 = dm.p21_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ p31 = dm.p31_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ p32 = dm.p32_buf(Rect(0, 0, I0.cols, I0.rows)); p11.setTo(Scalar::all(0)); p12.setTo(Scalar::all(0)); p21.setTo(Scalar::all(0)); p22.setTo(Scalar::all(0)); bool use_gamma = gamma != 0.; if (use_gamma) p31.setTo(Scalar::all(0)); if (use_gamma) p32.setTo(Scalar::all(0)); Mat_ div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ div_p3 = dm.div_p3_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ u1x = dm.u1x_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ u1y = dm.u1y_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ u2x = dm.u2x_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ u2y = dm.u2y_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ u3x = dm.u3x_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ u3y = dm.u3y_buf(Rect(0, 0, I0.cols, I0.rows)); const float l_t = static_cast(lambda * theta); const float taut = static_cast(tau / theta); for (int warpings = 0; warpings < warps; ++warpings) { // compute the warping of the target image and its derivatives buildFlowMap(u1, u2, flowMap1, flowMap2); remap(I1, I1w, flowMap1, flowMap2, INTER_CUBIC); remap(I1x, I1wx, flowMap1, flowMap2, INTER_CUBIC); remap(I1y, I1wy, flowMap1, flowMap2, INTER_CUBIC); //calculate I1(x+u0) and its gradient calcGradRho(I0, I1w, I1wx, I1wy, u1, u2, grad, rho_c); float error = std::numeric_limits::max(); for (int n_outer = 0; error > scaledEpsilon && n_outer < outerIterations; ++n_outer) { if (medianFiltering > 1) { cv::medianBlur(u1, u1, medianFiltering); cv::medianBlur(u2, u2, medianFiltering); } for (int n_inner = 0; error > scaledEpsilon && n_inner < innerIterations; ++n_inner) { // estimate the values of the variable (v1, v2) (thresholding operator TH) estimateV(I1wx, I1wy, u1, u2, u3, grad, rho_c, v1, v2, v3, l_t, static_cast(gamma)); // compute the divergence of the dual variable (p1, p2, p3) divergence(p11, p12, div_p1); divergence(p21, p22, div_p2); if (use_gamma) divergence(p31, p32, div_p3); // estimate the values of the optical flow (u1, u2) error = estimateU(v1, v2, v3, div_p1, div_p2, div_p3, u1, u2, u3, static_cast(theta), static_cast(gamma)); // compute the gradient of the optical flow (Du1, Du2) forwardGradient(u1, u1x, u1y); forwardGradient(u2, u2x, u2y); if (use_gamma) forwardGradient(u3, u3x, u3y); // estimate the values of the dual variable (p1, p2, p3) estimateDualVariables(u1x, u1y, u2x, u2y, u3x, u3y, p11, p12, p21, p22, p31, p32, taut, use_gamma); } } } } void OpticalFlowDual_TVL1::collectGarbage() { //dataMat structure dm dm.I0s.clear(); dm.I1s.clear(); dm.u1s.clear(); dm.u2s.clear(); dm.I1x_buf.release(); dm.I1y_buf.release(); dm.flowMap1_buf.release(); dm.flowMap2_buf.release(); dm.I1w_buf.release(); dm.I1wx_buf.release(); dm.I1wy_buf.release(); dm.grad_buf.release(); dm.rho_c_buf.release(); dm.v1_buf.release(); dm.v2_buf.release(); dm.p11_buf.release(); dm.p12_buf.release(); dm.p21_buf.release(); dm.p22_buf.release(); dm.div_p1_buf.release(); dm.div_p2_buf.release(); dm.u1x_buf.release(); dm.u1y_buf.release(); dm.u2x_buf.release(); dm.u2y_buf.release(); //dataUMat structure dum dum.I0s.clear(); dum.I1s.clear(); dum.u1s.clear(); dum.u2s.clear(); dum.I1x_buf.release(); dum.I1y_buf.release(); dum.I1w_buf.release(); dum.I1wx_buf.release(); dum.I1wy_buf.release(); dum.grad_buf.release(); dum.rho_c_buf.release(); dum.p11_buf.release(); dum.p12_buf.release(); dum.p21_buf.release(); dum.p22_buf.release(); dum.diff_buf.release(); dum.norm_buf.release(); } } // namespace Ptr cv::createOptFlow_DualTVL1() { return makePtr(); }