/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Wu Zailong, bullet@yeah.net // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #if defined (DOUBLE_SUPPORT) #ifdef cl_khr_fp64 #pragma OPENCL EXTENSION cl_khr_fp64:enable #elif defined (cl_amd_fp64) #pragma OPENCL EXTENSION cl_amd_fp64:enable #endif #endif #ifdef INTER_NEAREST #define convertToWT #endif #ifdef BORDER_CONSTANT #define EXTRAPOLATE(v2, v) v = scalar; #elif defined BORDER_REPLICATE #define EXTRAPOLATE(v2, v) \ { \ v2 = max(min(v2, (int2)(src_cols - 1, src_rows - 1)), zero); \ v = convertToWT(src[mad24(v2.y, src_step, v2.x + src_offset)]); \ } #elif defined BORDER_WRAP #define EXTRAPOLATE(v2, v) \ { \ if (v2.x < 0) \ v2.x -= ((v2.x - src_cols + 1) / src_cols) * src_cols; \ if (v2.x >= src_cols) \ v2.x %= src_cols; \ \ if (v2.y < 0) \ v2.y -= ((v2.y - src_rows + 1) / src_rows) * src_rows; \ if( v2.y >= src_rows ) \ v2.y %= src_rows; \ v = convertToWT(src[mad24(v2.y, src_step, v2.x + src_offset)]); \ } #elif defined(BORDER_REFLECT) || defined(BORDER_REFLECT_101) #ifdef BORDER_REFLECT #define DELTA int delta = 0 #else #define DELTA int delta = 1 #endif #define EXTRAPOLATE(v2, v) \ { \ DELTA; \ if (src_cols == 1) \ v2.x = 0; \ else \ do \ { \ if( v2.x < 0 ) \ v2.x = -v2.x - 1 + delta; \ else \ v2.x = src_cols - 1 - (v2.x - src_cols) - delta; \ } \ while (v2.x >= src_cols || v2.x < 0); \ \ if (src_rows == 1) \ v2.y = 0; \ else \ do \ { \ if( v2.y < 0 ) \ v2.y = -v2.y - 1 + delta; \ else \ v2.y = src_rows - 1 - (v2.y - src_rows) - delta; \ } \ while (v2.y >= src_rows || v2.y < 0); \ v = convertToWT(src[mad24(v2.y, src_step, v2.x + src_offset)]); \ } #else #error No extrapolation method #endif #define NEED_EXTRAPOLATION(gx, gy) (gx >= src_cols || gy >= src_rows || gx < 0 || gy < 0) #ifdef INTER_NEAREST __kernel void remap_2_32FC1(__global const T * restrict src, __global T * dst, __global float * map1, __global float * map2, int src_offset, int dst_offset, int map1_offset, int map2_offset, int src_step, int dst_step, int map1_step, int map2_step, int src_cols, int src_rows, int dst_cols, int dst_rows, T scalar) { int x = get_global_id(0); int y = get_global_id(1); if (x < dst_cols && y < dst_rows) { int dstIdx = mad24(y, dst_step, x + dst_offset); int map1Idx = mad24(y, map1_step, x + map1_offset); int map2Idx = mad24(y, map2_step, x + map2_offset); int gx = convert_int_sat_rte(map1[map1Idx]); int gy = convert_int_sat_rte(map2[map2Idx]); if (NEED_EXTRAPOLATION(gx, gy)) { int2 gxy = (int2)(gx, gy), zero = (int2)(0); EXTRAPOLATE(gxy, dst[dstIdx]); } else { int srcIdx = mad24(gy, src_step, gx + src_offset); dst[dstIdx] = src[srcIdx]; } } } __kernel void remap_32FC2(__global const T * restrict src, __global T * dst, __global float2 * map1, int src_offset, int dst_offset, int map1_offset, int src_step, int dst_step, int map1_step, int src_cols, int src_rows, int dst_cols, int dst_rows, T scalar) { int x = get_global_id(0); int y = get_global_id(1); if (x < dst_cols && y < dst_rows) { int dstIdx = mad24(y, dst_step, x + dst_offset); int map1Idx = mad24(y, map1_step, x + map1_offset); int2 gxy = convert_int2_sat_rte(map1[map1Idx]); int gx = gxy.x, gy = gxy.y; if (NEED_EXTRAPOLATION(gx, gy)) { int2 zero = (int2)(0); EXTRAPOLATE(gxy, dst[dstIdx]); } else { int srcIdx = mad24(gy, src_step, gx + src_offset); dst[dstIdx] = src[srcIdx]; } } } __kernel void remap_16SC2(__global const T * restrict src, __global T * dst, __global short2 * map1, int src_offset, int dst_offset, int map1_offset, int src_step, int dst_step, int map1_step, int src_cols, int src_rows, int dst_cols, int dst_rows, T scalar) { int x = get_global_id(0); int y = get_global_id(1); if (x < dst_cols && y < dst_rows) { int dstIdx = mad24(y, dst_step, x + dst_offset); int map1Idx = mad24(y, map1_step, x + map1_offset); int2 gxy = convert_int2(map1[map1Idx]); int gx = gxy.x, gy = gxy.y; if (NEED_EXTRAPOLATION(gx, gy)) { int2 zero = (int2)(0); EXTRAPOLATE(gxy, dst[dstIdx]); } else { int srcIdx = mad24(gy, src_step, gx + src_offset); dst[dstIdx] = src[srcIdx]; } } } #elif INTER_LINEAR __kernel void remap_2_32FC1(__global T const * restrict src, __global T * dst, __global float * map1, __global float * map2, int src_offset, int dst_offset, int map1_offset, int map2_offset, int src_step, int dst_step, int map1_step, int map2_step, int src_cols, int src_rows, int dst_cols, int dst_rows, T nVal) { int x = get_global_id(0); int y = get_global_id(1); if (x < dst_cols && y < dst_rows) { int dstIdx = mad24(y, dst_step, x + dst_offset); int map1Idx = mad24(y, map1_step, x + map1_offset); int map2Idx = mad24(y, map2_step, x + map2_offset); float2 map_data = (float2)(map1[map1Idx], map2[map2Idx]); int2 map_dataA = convert_int2_sat_rtn(map_data); int2 map_dataB = (int2)(map_dataA.x + 1, map_dataA.y); int2 map_dataC = (int2)(map_dataA.x, map_dataA.y + 1); int2 map_dataD = (int2)(map_dataA.x + 1, map_dataA.y +1); int2 zero = (int2)(0); float2 _u = map_data - convert_float2(map_dataA); WT2 u = convertToWT2(convert_int2_rte(convertToWT2(_u) * (WT2)32)) / (WT2)32; WT scalar = convertToWT(nVal); WT a = scalar, b = scalar, c = scalar, d = scalar; if (!NEED_EXTRAPOLATION(map_dataA.x, map_dataA.y)) a = convertToWT(src[mad24(map_dataA.y, src_step, map_dataA.x + src_offset)]); else EXTRAPOLATE(map_dataA, a); if (!NEED_EXTRAPOLATION(map_dataB.x, map_dataB.y)) b = convertToWT(src[mad24(map_dataB.y, src_step, map_dataB.x + src_offset)]); else EXTRAPOLATE(map_dataB, b); if (!NEED_EXTRAPOLATION(map_dataC.x, map_dataC.y)) c = convertToWT(src[mad24(map_dataC.y, src_step, map_dataC.x + src_offset)]); else EXTRAPOLATE(map_dataC, c); if (!NEED_EXTRAPOLATION(map_dataD.x, map_dataD.y)) d = convertToWT(src[mad24(map_dataD.y, src_step, map_dataD.x + src_offset)]); else EXTRAPOLATE(map_dataD, d); WT dst_data = a * (WT)(1 - u.x) * (WT)(1 - u.y) + b * (WT)(u.x) * (WT)(1 - u.y) + c * (WT)(1 - u.x) * (WT)(u.y) + d * (WT)(u.x) * (WT)(u.y); dst[dstIdx] = convertToT(dst_data); } } __kernel void remap_32FC2(__global T const * restrict src, __global T * dst, __global float2 * map1, int src_offset, int dst_offset, int map1_offset, int src_step, int dst_step, int map1_step, int src_cols, int src_rows, int dst_cols, int dst_rows, T nVal) { int x = get_global_id(0); int y = get_global_id(1); if (x < dst_cols && y < dst_rows) { int dstIdx = mad24(y, dst_step, x + dst_offset); int map1Idx = mad24(y, map1_step, x + map1_offset); float2 map_data = map1[map1Idx]; int2 map_dataA = convert_int2_sat_rtn(map_data); int2 map_dataB = (int2)(map_dataA.x + 1, map_dataA.y); int2 map_dataC = (int2)(map_dataA.x, map_dataA.y + 1); int2 map_dataD = (int2)(map_dataA.x + 1, map_dataA.y + 1); int2 zero = (int2)(0); float2 _u = map_data - convert_float2(map_dataA); WT2 u = convertToWT2(convert_int2_rte(convertToWT2(_u) * (WT2)32)) / (WT2)32; WT scalar = convertToWT(nVal); WT a = scalar, b = scalar, c = scalar, d = scalar; if (!NEED_EXTRAPOLATION(map_dataA.x, map_dataA.y)) a = convertToWT(src[mad24(map_dataA.y, src_step, map_dataA.x + src_offset)]); else EXTRAPOLATE(map_dataA, a); if (!NEED_EXTRAPOLATION(map_dataB.x, map_dataB.y)) b = convertToWT(src[mad24(map_dataB.y, src_step, map_dataB.x + src_offset)]); else EXTRAPOLATE(map_dataB, b); if (!NEED_EXTRAPOLATION(map_dataC.x, map_dataC.y)) c = convertToWT(src[mad24(map_dataC.y, src_step, map_dataC.x + src_offset)]); else EXTRAPOLATE(map_dataC, c); if (!NEED_EXTRAPOLATION(map_dataD.x, map_dataD.y)) d = convertToWT(src[mad24(map_dataD.y, src_step, map_dataD.x + src_offset)]); else EXTRAPOLATE(map_dataD, d); WT dst_data = a * (WT)(1 - u.x) * (WT)(1 - u.y) + b * (WT)(u.x) * (WT)(1 - u.y) + c * (WT)(1 - u.x) * (WT)(u.y) + d * (WT)(u.x) * (WT)(u.y); dst[dstIdx] = convertToT(dst_data); } } #endif