/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "opencv2/gpu/device/limits_gpu.hpp" #include "opencv2/gpu/device/saturate_cast.hpp" #include "opencv2/gpu/device/vecmath.hpp" #include "opencv2/gpu/device/transform.hpp" #include "internal_shared.hpp" using namespace cv::gpu; using namespace cv::gpu::device; #ifndef CV_PI #define CV_PI 3.1415926535897932384626433832795f #endif ////////////////////////////////////////////////////////////////////////////////////// // Cart <-> Polar namespace cv { namespace gpu { namespace mathfunc { struct Nothing { static __device__ void calc(int, int, float, float, float*, size_t, float) { } }; struct Magnitude { static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float) { dst[y * dst_step + x] = sqrtf(x_data * x_data + y_data * y_data); } }; struct MagnitudeSqr { static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float) { dst[y * dst_step + x] = x_data * x_data + y_data * y_data; } }; struct Atan2 { static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float scale) { dst[y * dst_step + x] = scale * atan2f(y_data, x_data); } }; template __global__ void cartToPolar(const float* xptr, size_t x_step, const float* yptr, size_t y_step, float* mag, size_t mag_step, float* angle, size_t angle_step, float scale, int width, int height) { const int x = blockDim.x * blockIdx.x + threadIdx.x; const int y = blockDim.y * blockIdx.y + threadIdx.y; if (x < width && y < height) { float x_data = xptr[y * x_step + x]; float y_data = yptr[y * y_step + x]; Mag::calc(x, y, x_data, y_data, mag, mag_step, scale); Angle::calc(x, y, x_data, y_data, angle, angle_step, scale); } } struct NonEmptyMag { static __device__ float get(const float* mag, size_t mag_step, int x, int y) { return mag[y * mag_step + x]; } }; struct EmptyMag { static __device__ float get(const float*, size_t, int, int) { return 1.0f; } }; template __global__ void polarToCart(const float* mag, size_t mag_step, const float* angle, size_t angle_step, float scale, float* xptr, size_t x_step, float* yptr, size_t y_step, int width, int height) { const int x = blockDim.x * blockIdx.x + threadIdx.x; const int y = blockDim.y * blockIdx.y + threadIdx.y; if (x < width && y < height) { float mag_data = Mag::get(mag, mag_step, x, y); float angle_data = angle[y * angle_step + x]; float sin_a, cos_a; sincosf(scale * angle_data, &sin_a, &cos_a); xptr[y * x_step + x] = mag_data * cos_a; yptr[y * y_step + x] = mag_data * sin_a; } } template void cartToPolar_caller(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream) { dim3 threads(16, 16, 1); dim3 grid(1, 1, 1); grid.x = divUp(x.cols, threads.x); grid.y = divUp(x.rows, threads.y); const float scale = angleInDegrees ? (float)(180.0f / CV_PI) : 1.f; cartToPolar<<>>( x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(), mag.data, mag.step/mag.elemSize(), angle.data, angle.step/angle.elemSize(), scale, x.cols, x.rows); if (stream == 0) cudaSafeCall( cudaThreadSynchronize() ); } void cartToPolar_gpu(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, bool magSqr, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream) { typedef void (*caller_t)(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream); static const caller_t callers[2][2][2] = { { { cartToPolar_caller, cartToPolar_caller }, { cartToPolar_caller, cartToPolar_caller, } }, { { cartToPolar_caller, cartToPolar_caller }, { cartToPolar_caller, cartToPolar_caller, } } }; callers[mag.data == 0][magSqr][angle.data == 0](x, y, mag, angle, angleInDegrees, stream); } template void polarToCart_caller(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream) { dim3 threads(16, 16, 1); dim3 grid(1, 1, 1); grid.x = divUp(mag.cols, threads.x); grid.y = divUp(mag.rows, threads.y); const float scale = angleInDegrees ? (float)(CV_PI / 180.0f) : 1.0f; polarToCart<<>>(mag.data, mag.step/mag.elemSize(), angle.data, angle.step/angle.elemSize(), scale, x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(), mag.cols, mag.rows); if (stream == 0) cudaSafeCall( cudaThreadSynchronize() ); } void polarToCart_gpu(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream) { typedef void (*caller_t)(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream); static const caller_t callers[2] = { polarToCart_caller, polarToCart_caller }; callers[mag.data == 0](mag, angle, x, y, angleInDegrees, stream); } }}}