/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Copyright (C) 2014-2015, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include "opencl_kernels_core.hpp" #include "opencv2/core/opencl/runtime/opencl_clblas.hpp" #include "opencv2/core/opencl/runtime/opencl_core.hpp" #include "intel_gpu_gemm.inl.hpp" #include "matmul.simd.hpp" #include "matmul.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content namespace cv { /****************************************************************************************\ * GEMM * \****************************************************************************************/ #ifdef HAVE_CLAMDBLAS static bool ocl_gemm_amdblas( InputArray matA, InputArray matB, double alpha, InputArray matC, double beta, OutputArray matD, int flags ) { int type = matA.type(), esz = CV_ELEM_SIZE(type); bool haveC = matC.kind() != cv::_InputArray::NONE; Size sizeA = matA.size(), sizeB = matB.size(), sizeC = haveC ? matC.size() : Size(0, 0); bool atrans = (flags & GEMM_1_T) != 0, btrans = (flags & GEMM_2_T) != 0, ctrans = (flags & GEMM_3_T) != 0; if (atrans) sizeA = Size(sizeA.height, sizeA.width); if (btrans) sizeB = Size(sizeB.height, sizeB.width); if (haveC && ctrans) sizeC = Size(sizeC.height, sizeC.width); Size sizeD(sizeB.width, sizeA.height); CV_Assert( matB.type() == type && (!haveC || matC.type() == type) ); CV_Assert( sizeA.width == sizeB.height && (!haveC || sizeC == sizeD) ); matD.create(sizeD, type); if ( matA.offset() % esz != 0 || matA.step() % esz != 0 || matB.offset() % esz != 0 || matB.step() % esz != 0 || (haveC && (matC.offset() % esz != 0 || matC.step() % esz != 0)) ) return false; UMat A = matA.getUMat(), B = matB.getUMat(), D = matD.getUMat(); if (!ocl::internal::isCLBuffer(A) || !ocl::internal::isCLBuffer(B) || !ocl::internal::isCLBuffer(D)) { return false; } if (haveC) { UMat C = matC.getUMat(); if (!ocl::internal::isCLBuffer(C)) return false; } if (haveC) ctrans ? transpose(matC, D) : matC.copyTo(D); else D.setTo(Scalar::all(0)); int M = sizeD.height, N = sizeD.width, K = sizeA.width; int lda = (int)A.step / esz, ldb = (int)B.step / esz, ldc = (int)D.step / esz; int offa = (int)A.offset / esz, offb = (int)B.offset / esz, offc = (int)D.offset / esz; cl_command_queue clq = (cl_command_queue)ocl::Queue::getDefault().ptr(); clblasTranspose transA = atrans ? clblasTrans : clblasNoTrans; clblasTranspose transB = btrans ? clblasTrans : clblasNoTrans; clblasOrder order = clblasRowMajor; clblasStatus status = clblasSuccess; if (type == CV_32FC1) status = clblasSgemm(order, transA, transB, M, N, K, (cl_float)alpha, (const cl_mem)A.handle(ACCESS_READ), offa, lda, (const cl_mem)B.handle(ACCESS_READ), offb, ldb, (cl_float)beta, (cl_mem)D.handle(ACCESS_RW), offc, ldc, 1, &clq, 0, NULL, NULL); else if (type == CV_64FC1) status = clblasDgemm(order, transA, transB, M, N, K, alpha, (const cl_mem)A.handle(ACCESS_READ), offa, lda, (const cl_mem)B.handle(ACCESS_READ), offb, ldb, beta, (cl_mem)D.handle(ACCESS_RW), offc, ldc, 1, &clq, 0, NULL, NULL); else if (type == CV_32FC2) { cl_float2 alpha_2 = { { (cl_float)alpha, 0 } }; cl_float2 beta_2 = { { (cl_float)beta, 0 } }; status = clblasCgemm(order, transA, transB, M, N, K, alpha_2, (const cl_mem)A.handle(ACCESS_READ), offa, lda, (const cl_mem)B.handle(ACCESS_READ), offb, ldb, beta_2, (cl_mem)D.handle(ACCESS_RW), offc, ldc, 1, &clq, 0, NULL, NULL); } else if (type == CV_64FC2) { cl_double2 alpha_2 = { { alpha, 0 } }; cl_double2 beta_2 = { { beta, 0 } }; status = clblasZgemm(order, transA, transB, M, N, K, alpha_2, (const cl_mem)A.handle(ACCESS_READ), offa, lda, (const cl_mem)B.handle(ACCESS_READ), offb, ldb, beta_2, (cl_mem)D.handle(ACCESS_RW), offc, ldc, 1, &clq, 0, NULL, NULL); } else CV_Error(Error::StsUnsupportedFormat, ""); return status == clblasSuccess; } #endif #ifdef HAVE_OPENCL static bool ocl_gemm( InputArray matA, InputArray matB, double alpha, InputArray matC, double beta, OutputArray matD, int flags ) { int type = matA.type(); int depth = CV_MAT_DEPTH(type); int cn = CV_MAT_CN(type); CV_CheckTypeEQ(type, matB.type(), ""); CV_CheckType(type, type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2, ""); const ocl::Device & dev = ocl::Device::getDefault(); bool doubleSupport = dev.doubleFPConfig() > 0; if (!doubleSupport && depth == CV_64F) return false; bool haveC = matC.kind() != cv::_InputArray::NONE; Size sizeA = matA.size(), sizeB = matB.size(), sizeC = haveC ? matC.size() : Size(0, 0); bool atrans = (flags & GEMM_1_T) != 0, btrans = (flags & GEMM_2_T) != 0, ctrans = (flags & GEMM_3_T) != 0; if (haveC) CV_CheckTypeEQ(type, matC.type(), ""); Size sizeD(((btrans) ? sizeB.height : sizeB.width), ((atrans) ? sizeA.width : sizeA.height)); if (atrans) sizeA = Size(sizeA.height, sizeA.width); if (btrans) sizeB = Size(sizeB.height, sizeB.width); if (haveC && ctrans) sizeC = Size(sizeC.height, sizeC.width); CV_CheckEQ(sizeA.width, sizeB.height, ""); if (haveC) CV_CheckEQ(sizeC, sizeD, ""); UMat A = matA.getUMat(); UMat B = matB.getUMat(); matD.create(sizeD, type); UMat D = matD.getUMat(); bool isPropagatedC2D = false; // D content is updated with C / C.t() if (dev.intelSubgroupsSupport() && (depth == CV_32F) && cn == 1) { if (haveC && beta != 0.0) { ctrans ? transpose(matC, D) : matC.copyTo(D); isPropagatedC2D = true; } else { beta = 0.0; } bool res = intel_gpu_gemm(A, matA.size(), B, matB.size(), D, sizeD, alpha, beta, atrans, btrans, isPropagatedC2D); if (res) return true; // fallback on generic OpenCL code } if (sizeD.width < 8 || sizeD.height < 8) return false; String opts; int wg_size = (int)dev.maxWorkGroupSize(); int sizeDmin = std::min(sizeD.width, sizeD.height); wg_size = std::min(wg_size, sizeDmin * sizeDmin); int block_size = (wg_size / (32*cn) < 32) ? (wg_size / (16*cn) < 16) ? (wg_size / (8*cn) < 8) ? 1 : 8 : 16 : 32; if (atrans) A = A.t(); if (btrans) B = B.t(); if (haveC && !isPropagatedC2D) ctrans ? transpose(matC, D) : matC.copyTo(D); int vectorWidths[] = { 4, 4, 2, 2, 1, 4, cn, -1 }; int kercn = ocl::checkOptimalVectorWidth(vectorWidths, B, D); opts += format(" -D T=%s -D T1=%s -D WT=%s -D cn=%d -D kercn=%d -D LOCAL_SIZE=%d%s%s%s", ocl::typeToStr(type), ocl::typeToStr(depth), ocl::typeToStr(CV_MAKETYPE(depth, kercn)), cn, kercn, block_size, (sizeA.width % block_size !=0) ? " -D NO_MULT" : "", haveC ? " -D HAVE_C" : "", doubleSupport ? " -D DOUBLE_SUPPORT" : ""); ocl::Kernel k("gemm", cv::ocl::core::gemm_oclsrc, opts); if (k.empty()) return false; if (depth == CV_64F) k.args(ocl::KernelArg::ReadOnlyNoSize(A), ocl::KernelArg::ReadOnlyNoSize(B, cn, kercn), ocl::KernelArg::ReadWrite(D, cn, kercn), sizeA.width, alpha, beta); else k.args(ocl::KernelArg::ReadOnlyNoSize(A), ocl::KernelArg::ReadOnlyNoSize(B, cn, kercn), ocl::KernelArg::ReadWrite(D, cn, kercn), sizeA.width, (float)alpha, (float)beta); size_t globalsize[2] = { (size_t)sizeD.width * cn / kercn, (size_t)sizeD.height}; size_t localsize[2] = { (size_t)block_size, (size_t)block_size}; return k.run(2, globalsize, block_size !=1 ? localsize : NULL, false); } #endif namespace hal { void gemm32f(const float* src1, size_t src1_step, const float* src2, size_t src2_step, float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step, int m_a, int n_a, int n_d, int flags) { CV_INSTRUMENT_REGION(); CALL_HAL(gemm32f, cv_hal_gemm32f, src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags) #ifdef CV_GEMM_BASELINE_ONLY CV_CPU_CALL_BASELINE(gemm32f, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags)); #else CV_CPU_DISPATCH(gemm32f, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags), CV_CPU_DISPATCH_MODES_ALL); #endif } void gemm64f(const double* src1, size_t src1_step, const double* src2, size_t src2_step, double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step, int m_a, int n_a, int n_d, int flags) { CV_INSTRUMENT_REGION(); CALL_HAL(gemm64f, cv_hal_gemm64f, src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags) #ifdef CV_GEMM_BASELINE_ONLY CV_CPU_CALL_BASELINE(gemm64f, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags)); #else CV_CPU_DISPATCH(gemm64f, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags), CV_CPU_DISPATCH_MODES_ALL); #endif } void gemm32fc(const float* src1, size_t src1_step, const float* src2, size_t src2_step, float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step, int m_a, int n_a, int n_d, int flags) { CV_INSTRUMENT_REGION(); CALL_HAL(gemm32fc, cv_hal_gemm32fc, src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags) #ifdef CV_GEMM_BASELINE_ONLY CV_CPU_CALL_BASELINE(gemm32fc, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags)); #else CV_CPU_DISPATCH(gemm32fc, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags), CV_CPU_DISPATCH_MODES_ALL); #endif } void gemm64fc(const double* src1, size_t src1_step, const double* src2, size_t src2_step, double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step, int m_a, int n_a, int n_d, int flags) { CV_INSTRUMENT_REGION(); CALL_HAL(gemm64fc, cv_hal_gemm64fc, src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags) #ifdef CV_GEMM_BASELINE_ONLY CV_CPU_CALL_BASELINE(gemm64fc, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags)); #else CV_CPU_DISPATCH(gemm64fc, (src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags), CV_CPU_DISPATCH_MODES_ALL); #endif } } // namespace hal void gemm(InputArray matA, InputArray matB, double alpha, InputArray matC, double beta, OutputArray _matD, int flags) { #ifdef HAVE_CLAMDBLAS CV_OCL_RUN(ocl::haveAmdBlas() && matA.dims() <= 2 && matB.dims() <= 2 && matC.dims() <= 2 && _matD.isUMat() && matA.cols() > 20 && matA.rows() > 20 && matB.cols() > 20, // since it works incorrect for small sizes ocl_gemm_amdblas(matA, matB, alpha, matC, beta, _matD, flags)) #endif #ifdef HAVE_OPENCL CV_OCL_RUN(_matD.isUMat() && matA.dims() <= 2 && matB.dims() <= 2 && matC.dims() <= 2, ocl_gemm(matA, matB, alpha, matC, beta, _matD, flags)) #endif Mat A = matA.getMat(), B = matB.getMat(), C = beta != 0.0 ? matC.getMat() : Mat(); Size a_size = A.size(), d_size; int len = 0, type = A.type(); CV_Assert_N( type == B.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) ); switch( flags & (GEMM_1_T|GEMM_2_T) ) { case 0: d_size = Size( B.cols, a_size.height ); len = B.rows; CV_Assert( a_size.width == len ); break; case 1: d_size = Size( B.cols, a_size.width ); len = B.rows; CV_Assert( a_size.height == len ); break; case 2: d_size = Size( B.rows, a_size.height ); len = B.cols; CV_Assert( a_size.width == len ); break; case 3: d_size = Size( B.rows, a_size.width ); len = B.cols; CV_Assert( a_size.height == len ); break; } if( !C.empty() ) { CV_Assert_N( C.type() == type, (((flags&GEMM_3_T) == 0 && C.rows == d_size.height && C.cols == d_size.width) || ((flags&GEMM_3_T) != 0 && C.rows == d_size.width && C.cols == d_size.height))); } _matD.create( d_size.height, d_size.width, type ); Mat D = _matD.getMat(); if( (flags & GEMM_3_T) != 0 && C.data == D.data ) { transpose( C, C ); flags &= ~GEMM_3_T; } Mat *DProxyPtr = &D, DProxy; if( D.data == A.data || D.data == B.data ) { DProxy = Mat(d_size.height, d_size.width, D.type()); DProxyPtr = &DProxy; } if( type == CV_32FC1 ) hal::gemm32f(A.ptr(), A.step, B.ptr(), B.step, static_cast(alpha), C.ptr(), C.step, static_cast(beta), DProxyPtr->ptr(), DProxyPtr->step, a_size.height, a_size.width, DProxyPtr->cols, flags); else if( type == CV_64FC1 ) hal::gemm64f(A.ptr(), A.step, B.ptr(), B.step, alpha, C.ptr(), C.step, beta, DProxyPtr->ptr(), DProxyPtr->step, a_size.height, a_size.width, DProxyPtr->cols, flags); else if( type == CV_32FC2 ) hal::gemm32fc(A.ptr(), A.step, B.ptr(), B.step, static_cast(alpha), C.ptr(), C.step, static_cast(beta), DProxyPtr->ptr(), DProxyPtr->step, a_size.height, a_size.width, DProxyPtr->cols, flags); else { CV_Assert( type == CV_64FC2 ); hal::gemm64fc(A.ptr(), A.step, B.ptr(), B.step, alpha, C.ptr(), C.step, beta, D.ptr(), D.step, a_size.height, a_size.width, DProxyPtr->cols, flags); } if(DProxyPtr != &D) DProxyPtr->copyTo(D); } /****************************************************************************************\ * Transform * \****************************************************************************************/ static TransformFunc getTransformFunc(int depth) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(getTransformFunc, (depth), CV_CPU_DISPATCH_MODES_ALL); } static TransformFunc getDiagTransformFunc(int depth) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(getDiagTransformFunc, (depth), CV_CPU_DISPATCH_MODES_ALL); } void transform(InputArray _src, OutputArray _dst, InputArray _mtx) { CV_INSTRUMENT_REGION(); Mat src = _src.getMat(), m = _mtx.getMat(); int depth = src.depth(), scn = src.channels(), dcn = m.rows; CV_Assert( scn == m.cols || scn + 1 == m.cols ); bool isDiag = false; _dst.create( src.size(), CV_MAKETYPE(depth, dcn) ); Mat dst = _dst.getMat(); if (src.data == dst.data) // inplace case { CV_Assert(scn == dcn); src = src.clone(); // TODO Add performance warning } int mtype = depth == CV_32S || depth == CV_64F ? CV_64F : CV_32F; AutoBuffer _mbuf; double* mbuf; if( !m.isContinuous() || m.type() != mtype || m.cols != scn + 1 ) { _mbuf.allocate(dcn*(scn+1)); mbuf = _mbuf.data(); Mat tmp(dcn, scn+1, mtype, mbuf); memset(tmp.ptr(), 0, tmp.total()*tmp.elemSize()); if( m.cols == scn+1 ) m.convertTo(tmp, mtype); else { Mat tmppart = tmp.colRange(0, m.cols); m.convertTo(tmppart, mtype); } m = tmp; } else mbuf = m.ptr(); if( scn == dcn ) { int i, j; double eps = mtype == CV_32F ? FLT_EPSILON : DBL_EPSILON; if( scn == 1 ) { double alpha, beta; if( mtype == CV_32F ) alpha = m.at(0), beta = m.at(1); else alpha = m.at(0), beta = m.at(1); src.convertTo(dst, dst.type(), alpha, beta); return; } for( i = 0, isDiag = true; isDiag && i < scn; i++ ) { for( j = 0; isDiag && j < scn; j++ ) { double v = mtype == CV_32F ? m.at(i, j) : m.at(i, j); if( i != j && fabs(v) > eps ) isDiag = false; } } } TransformFunc func = isDiag ? getDiagTransformFunc(depth): getTransformFunc(depth); CV_Assert( func != 0 ); const Mat* arrays[] = {&src, &dst, 0}; uchar* ptrs[2] = {}; NAryMatIterator it(arrays, ptrs); size_t i, total = it.size; for( i = 0; i < it.nplanes; i++, ++it ) func( ptrs[0], ptrs[1], (uchar*)mbuf, (int)total, scn, dcn ); } /****************************************************************************************\ * Perspective Transform * \****************************************************************************************/ static TransformFunc getPerspectiveTransform(int depth) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(getPerspectiveTransform, (depth), CV_CPU_DISPATCH_MODES_ALL); } void perspectiveTransform(InputArray _src, OutputArray _dst, InputArray _mtx) { CV_INSTRUMENT_REGION(); Mat src = _src.getMat(), m = _mtx.getMat(); int depth = src.depth(), scn = src.channels(), dcn = m.rows-1; CV_Assert( scn + 1 == m.cols ); CV_Assert( depth == CV_32F || depth == CV_64F ); _dst.create( src.size(), CV_MAKETYPE(depth, dcn) ); Mat dst = _dst.getMat(); const int mtype = CV_64F; AutoBuffer _mbuf; double* mbuf = m.ptr(); if( !m.isContinuous() || m.type() != mtype ) { _mbuf.allocate((dcn+1)*(scn+1)); mbuf = _mbuf.data(); Mat tmp(dcn+1, scn+1, mtype, mbuf); m.convertTo(tmp, mtype); m = tmp; } TransformFunc func = getPerspectiveTransform(depth); CV_Assert( func != 0 ); const Mat* arrays[] = {&src, &dst, 0}; uchar* ptrs[2] = {}; NAryMatIterator it(arrays, ptrs); size_t i, total = it.size; for( i = 0; i < it.nplanes; i++, ++it ) func( ptrs[0], ptrs[1], (uchar*)mbuf, (int)total, scn, dcn ); } /****************************************************************************************\ * ScaleAdd * \****************************************************************************************/ #ifdef HAVE_OPENCL static bool ocl_scaleAdd( InputArray _src1, double alpha, InputArray _src2, OutputArray _dst, int type ) { const ocl::Device & d = ocl::Device::getDefault(); bool doubleSupport = d.doubleFPConfig() > 0; Size size = _src1.size(); int depth = CV_MAT_DEPTH(type); if ( (!doubleSupport && depth == CV_64F) || size != _src2.size() ) return false; _dst.create(size, type); int cn = CV_MAT_CN(type), wdepth = std::max(depth, CV_32F); int kercn = ocl::predictOptimalVectorWidthMax(_src1, _src2, _dst), rowsPerWI = d.isIntel() ? 4 : 1; char cvt[2][50]; ocl::Kernel k("KF", ocl::core::arithm_oclsrc, format("-D OP_SCALE_ADD -D BINARY_OP -D dstT=%s -D DEPTH_dst=%d -D workT=%s -D convertToWT1=%s" " -D srcT1=dstT -D srcT2=dstT -D convertToDT=%s -D workT1=%s" " -D wdepth=%d%s -D rowsPerWI=%d", ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)), depth, ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)), ocl::convertTypeStr(depth, wdepth, kercn, cvt[0]), ocl::convertTypeStr(wdepth, depth, kercn, cvt[1]), ocl::typeToStr(wdepth), wdepth, doubleSupport ? " -D DOUBLE_SUPPORT" : "", rowsPerWI)); if (k.empty()) return false; UMat src1 = _src1.getUMat(), src2 = _src2.getUMat(), dst = _dst.getUMat(); ocl::KernelArg src1arg = ocl::KernelArg::ReadOnlyNoSize(src1), src2arg = ocl::KernelArg::ReadOnlyNoSize(src2), dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn); if (wdepth == CV_32F) k.args(src1arg, src2arg, dstarg, (float)alpha); else k.args(src1arg, src2arg, dstarg, alpha); size_t globalsize[2] = { (size_t)dst.cols * cn / kercn, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI }; return k.run(2, globalsize, NULL, false); } #endif static ScaleAddFunc getScaleAddFunc(int depth) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(getScaleAddFunc, (depth), CV_CPU_DISPATCH_MODES_ALL); } void scaleAdd(InputArray _src1, double alpha, InputArray _src2, OutputArray _dst) { CV_INSTRUMENT_REGION(); int type = _src1.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); CV_Assert( type == _src2.type() ); CV_OCL_RUN(_src1.dims() <= 2 && _src2.dims() <= 2 && _dst.isUMat(), ocl_scaleAdd(_src1, alpha, _src2, _dst, type)) if( depth < CV_32F ) { addWeighted(_src1, alpha, _src2, 1, 0, _dst, depth); return; } Mat src1 = _src1.getMat(), src2 = _src2.getMat(); CV_Assert(src1.size == src2.size); _dst.create(src1.dims, src1.size, type); Mat dst = _dst.getMat(); float falpha = (float)alpha; void* palpha = depth == CV_32F ? (void*)&falpha : (void*)α ScaleAddFunc func = getScaleAddFunc(depth); CV_Assert(func); if (src1.isContinuous() && src2.isContinuous() && dst.isContinuous()) { size_t len = src1.total()*cn; func(src1.ptr(), src2.ptr(), dst.ptr(), (int)len, palpha); return; } const Mat* arrays[] = {&src1, &src2, &dst, 0}; uchar* ptrs[3] = {}; NAryMatIterator it(arrays, ptrs); size_t i, len = it.size*cn; for( i = 0; i < it.nplanes; i++, ++it ) func( ptrs[0], ptrs[1], ptrs[2], (int)len, palpha ); } /****************************************************************************************\ * Covariation Matrix * \****************************************************************************************/ void calcCovarMatrix( const Mat* data, int nsamples, Mat& covar, Mat& _mean, int flags, int ctype ) { CV_INSTRUMENT_REGION(); CV_Assert_N( data, nsamples > 0 ); Size size = data[0].size(); int sz = size.width * size.height, esz = (int)data[0].elemSize(); int type = data[0].type(); Mat mean; ctype = std::max(std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), _mean.depth()), CV_32F); if( (flags & CV_COVAR_USE_AVG) != 0 ) { CV_Assert( _mean.size() == size ); if( _mean.isContinuous() && _mean.type() == ctype ) mean = _mean.reshape(1, 1); else { _mean.convertTo(mean, ctype); mean = mean.reshape(1, 1); } } Mat _data(nsamples, sz, type); for( int i = 0; i < nsamples; i++ ) { CV_Assert_N( data[i].size() == size, data[i].type() == type ); if( data[i].isContinuous() ) memcpy( _data.ptr(i), data[i].ptr(), sz*esz ); else { Mat dataRow(size.height, size.width, type, _data.ptr(i)); data[i].copyTo(dataRow); } } calcCovarMatrix( _data, covar, mean, (flags & ~(CV_COVAR_ROWS|CV_COVAR_COLS)) | CV_COVAR_ROWS, ctype ); if( (flags & CV_COVAR_USE_AVG) == 0 ) _mean = mean.reshape(1, size.height); } void calcCovarMatrix( InputArray _src, OutputArray _covar, InputOutputArray _mean, int flags, int ctype ) { CV_INSTRUMENT_REGION(); if(_src.kind() == _InputArray::STD_VECTOR_MAT || _src.kind() == _InputArray::STD_ARRAY_MAT) { std::vector src; _src.getMatVector(src); CV_Assert( src.size() > 0 ); Size size = src[0].size(); int type = src[0].type(); ctype = std::max(std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), _mean.depth()), CV_32F); Mat _data(static_cast(src.size()), size.area(), type); int i = 0; for(std::vector::iterator each = src.begin(); each != src.end(); ++each, ++i ) { CV_Assert_N( (*each).size() == size, (*each).type() == type ); Mat dataRow(size.height, size.width, type, _data.ptr(i)); (*each).copyTo(dataRow); } Mat mean; if( (flags & CV_COVAR_USE_AVG) != 0 ) { CV_Assert( _mean.size() == size ); if( mean.type() != ctype ) { mean = _mean.getMat(); _mean.create(mean.size(), ctype); Mat tmp = _mean.getMat(); mean.convertTo(tmp, ctype); mean = tmp; } mean = _mean.getMat().reshape(1, 1); } calcCovarMatrix( _data, _covar, mean, (flags & ~(CV_COVAR_ROWS|CV_COVAR_COLS)) | CV_COVAR_ROWS, ctype ); if( (flags & CV_COVAR_USE_AVG) == 0 ) { mean = mean.reshape(1, size.height); mean.copyTo(_mean); } return; } Mat data = _src.getMat(), mean; CV_Assert( ((flags & CV_COVAR_ROWS) != 0) ^ ((flags & CV_COVAR_COLS) != 0) ); bool takeRows = (flags & CV_COVAR_ROWS) != 0; int type = data.type(); int nsamples = takeRows ? data.rows : data.cols; CV_Assert( nsamples > 0 ); Size size = takeRows ? Size(data.cols, 1) : Size(1, data.rows); if( (flags & CV_COVAR_USE_AVG) != 0 ) { mean = _mean.getMat(); ctype = std::max(std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), mean.depth()), CV_32F); CV_Assert( mean.size() == size ); if( mean.type() != ctype ) { _mean.create(mean.size(), ctype); Mat tmp = _mean.getMat(); mean.convertTo(tmp, ctype); mean = tmp; } } else { ctype = std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), CV_32F); reduce( _src, _mean, takeRows ? 0 : 1, CV_REDUCE_AVG, ctype ); mean = _mean.getMat(); } mulTransposed( data, _covar, ((flags & CV_COVAR_NORMAL) == 0) ^ takeRows, mean, (flags & CV_COVAR_SCALE) != 0 ? 1./nsamples : 1, ctype ); } /****************************************************************************************\ * Mahalanobis * \****************************************************************************************/ static MahalanobisImplFunc getMahalanobisImplFunc(int depth) { #ifdef CV_MAHALANOBIS_BASELINE_ONLY CV_CPU_CALL_BASELINE(getMahalanobisImplFunc, (depth)); #else CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(getMahalanobisImplFunc, (depth), CV_CPU_DISPATCH_MODES_ALL); #endif } double Mahalanobis(InputArray _v1, InputArray _v2, InputArray _icovar) { CV_INSTRUMENT_REGION(); Mat v1 = _v1.getMat(), v2 = _v2.getMat(), icovar = _icovar.getMat(); int type = v1.type(), depth = v1.depth(); Size sz = v1.size(); int len = sz.width*sz.height*v1.channels(); AutoBuffer buf(len); CV_Assert_N( type == v2.type(), type == icovar.type(), sz == v2.size(), len == icovar.rows && len == icovar.cols ); sz.width *= v1.channels(); if( v1.isContinuous() && v2.isContinuous() ) { sz.width *= sz.height; sz.height = 1; } MahalanobisImplFunc func = getMahalanobisImplFunc(depth); CV_Assert(func); double result = func(v1, v2, icovar, buf.data(), len); return std::sqrt(result); } /****************************************************************************************\ * MulTransposed * \****************************************************************************************/ static MulTransposedFunc getMulTransposedFunc(int stype, int dtype, bool ata) { #ifdef CV_MULTRANSPOSED_BASELINE_ONLY CV_CPU_CALL_BASELINE(getMulTransposedFunc, (stype, dtype, ata)); #else CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(getMulTransposedFunc, (stype, dtype, ata), CV_CPU_DISPATCH_MODES_ALL); #endif } void mulTransposed(InputArray _src, OutputArray _dst, bool ata, InputArray _delta, double scale, int dtype) { CV_INSTRUMENT_REGION(); Mat src = _src.getMat(), delta = _delta.getMat(); const int gemm_level = 100; // boundary above which GEMM is faster. int stype = src.type(); dtype = std::max(std::max(CV_MAT_DEPTH(dtype >= 0 ? dtype : stype), delta.depth()), CV_32F); CV_Assert( src.channels() == 1 ); if( !delta.empty() ) { CV_Assert_N( delta.channels() == 1, (delta.rows == src.rows || delta.rows == 1), (delta.cols == src.cols || delta.cols == 1)); if( delta.type() != dtype ) delta.convertTo(delta, dtype); } int dsize = ata ? src.cols : src.rows; _dst.create( dsize, dsize, dtype ); Mat dst = _dst.getMat(); if( src.data == dst.data || (stype == dtype && (dst.cols >= gemm_level && dst.rows >= gemm_level && src.cols >= gemm_level && src.rows >= gemm_level))) { Mat src2; const Mat* tsrc = &src; if( !delta.empty() ) { if( delta.size() == src.size() ) subtract( src, delta, src2 ); else { repeat(delta, src.rows/delta.rows, src.cols/delta.cols, src2); subtract( src, src2, src2 ); } tsrc = &src2; } gemm( *tsrc, *tsrc, scale, Mat(), 0, dst, ata ? GEMM_1_T : GEMM_2_T ); } else { MulTransposedFunc func = getMulTransposedFunc(stype, dtype, ata); if( !func ) CV_Error( CV_StsUnsupportedFormat, "" ); func( src, dst, delta, scale ); completeSymm( dst, false ); } } /****************************************************************************************\ * Dot Product * \****************************************************************************************/ static double dotProd_8u(const uchar* src1, const uchar* src2, int len) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(dotProd_8u, (src1, src2, len), CV_CPU_DISPATCH_MODES_ALL); } static double dotProd_8s(const schar* src1, const schar* src2, int len) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(dotProd_8s, (src1, src2, len), CV_CPU_DISPATCH_MODES_ALL); } static double dotProd_16u(const ushort* src1, const ushort* src2, int len) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(dotProd_16u, (src1, src2, len), CV_CPU_DISPATCH_MODES_ALL); } static double dotProd_16s(const short* src1, const short* src2, int len) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(dotProd_16s, (src1, src2, len), CV_CPU_DISPATCH_MODES_ALL); } static double dotProd_32s(const int* src1, const int* src2, int len) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(dotProd_32s, (src1, src2, len), CV_CPU_DISPATCH_MODES_ALL); } static double dotProd_32f(const float* src1, const float* src2, int len) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(dotProd_32f, (src1, src2, len), CV_CPU_DISPATCH_MODES_ALL); } static double dotProd_64f(const double* src1, const double* src2, int len) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(dotProd_64f, (src1, src2, len), CV_CPU_DISPATCH_MODES_ALL); } typedef double (*DotProdFunc)(const uchar* src1, const uchar* src2, int len); static DotProdFunc getDotProdFunc(int depth) { static DotProdFunc dotProdTab[] = { (DotProdFunc)GET_OPTIMIZED(dotProd_8u), (DotProdFunc)GET_OPTIMIZED(dotProd_8s), (DotProdFunc)dotProd_16u, (DotProdFunc)dotProd_16s, (DotProdFunc)dotProd_32s, (DotProdFunc)GET_OPTIMIZED(dotProd_32f), (DotProdFunc)dotProd_64f, 0 }; return dotProdTab[depth]; } double Mat::dot(InputArray _mat) const { CV_INSTRUMENT_REGION(); Mat mat = _mat.getMat(); int cn = channels(); DotProdFunc func = getDotProdFunc(depth()); CV_Assert_N( mat.type() == type(), mat.size == size, func != 0 ); if( isContinuous() && mat.isContinuous() ) { size_t len = total()*cn; if( len == (size_t)(int)len ) return func(data, mat.data, (int)len); } const Mat* arrays[] = {this, &mat, 0}; uchar* ptrs[2] = {}; NAryMatIterator it(arrays, ptrs); int len = (int)(it.size*cn); double r = 0; for( size_t i = 0; i < it.nplanes; i++, ++it ) r += func( ptrs[0], ptrs[1], len ); return r; } #ifdef HAVE_OPENCL static bool ocl_dot( InputArray _src1, InputArray _src2, double & res ) { UMat src1 = _src1.getUMat().reshape(1), src2 = _src2.getUMat().reshape(1); int type = src1.type(), depth = CV_MAT_DEPTH(type), kercn = ocl::predictOptimalVectorWidth(src1, src2); bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0; if ( !doubleSupport && depth == CV_64F ) return false; int dbsize = ocl::Device::getDefault().maxComputeUnits(); size_t wgs = ocl::Device::getDefault().maxWorkGroupSize(); int ddepth = std::max(CV_32F, depth); int wgs2_aligned = 1; while (wgs2_aligned < (int)wgs) wgs2_aligned <<= 1; wgs2_aligned >>= 1; char cvt[40]; ocl::Kernel k("reduce", ocl::core::reduce_oclsrc, format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstTK=%s -D ddepth=%d -D convertToDT=%s -D OP_DOT " "-D WGS=%d -D WGS2_ALIGNED=%d%s%s%s -D kercn=%d", ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)), ocl::typeToStr(depth), ocl::typeToStr(ddepth), ocl::typeToStr(CV_MAKE_TYPE(ddepth, kercn)), ddepth, ocl::convertTypeStr(depth, ddepth, kercn, cvt), (int)wgs, wgs2_aligned, doubleSupport ? " -D DOUBLE_SUPPORT" : "", _src1.isContinuous() ? " -D HAVE_SRC_CONT" : "", _src2.isContinuous() ? " -D HAVE_SRC2_CONT" : "", kercn)); if (k.empty()) return false; UMat db(1, dbsize, ddepth); ocl::KernelArg src1arg = ocl::KernelArg::ReadOnlyNoSize(src1), src2arg = ocl::KernelArg::ReadOnlyNoSize(src2), dbarg = ocl::KernelArg::PtrWriteOnly(db); k.args(src1arg, src1.cols, (int)src1.total(), dbsize, dbarg, src2arg); size_t globalsize = dbsize * wgs; if (k.run(1, &globalsize, &wgs, true)) { res = sum(db.getMat(ACCESS_READ))[0]; return true; } return false; } #endif double UMat::dot(InputArray m) const { CV_INSTRUMENT_REGION(); CV_Assert(m.sameSize(*this) && m.type() == type()); #ifdef HAVE_OPENCL double r = 0; CV_OCL_RUN_(dims <= 2, ocl_dot(*this, m, r), r) #endif return getMat(ACCESS_READ).dot(m); } } // namespace cv:: #ifndef OPENCV_EXCLUDE_C_API /****************************************************************************************\ * Earlier API * \****************************************************************************************/ CV_IMPL void cvGEMM( const CvArr* Aarr, const CvArr* Barr, double alpha, const CvArr* Carr, double beta, CvArr* Darr, int flags ) { cv::Mat A = cv::cvarrToMat(Aarr), B = cv::cvarrToMat(Barr); cv::Mat C, D = cv::cvarrToMat(Darr); if( Carr ) C = cv::cvarrToMat(Carr); CV_Assert_N( (D.rows == ((flags & CV_GEMM_A_T) == 0 ? A.rows : A.cols)), (D.cols == ((flags & CV_GEMM_B_T) == 0 ? B.cols : B.rows)), D.type() == A.type() ); gemm( A, B, alpha, C, beta, D, flags ); } CV_IMPL void cvTransform( const CvArr* srcarr, CvArr* dstarr, const CvMat* transmat, const CvMat* shiftvec ) { cv::Mat m = cv::cvarrToMat(transmat), src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); if( shiftvec ) { cv::Mat v = cv::cvarrToMat(shiftvec).reshape(1,m.rows), _m(m.rows, m.cols + 1, m.type()), m1 = _m.colRange(0,m.cols), v1 = _m.col(m.cols); m.convertTo(m1, m1.type()); v.convertTo(v1, v1.type()); m = _m; } CV_Assert_N( dst.depth() == src.depth(), dst.channels() == m.rows ); cv::transform( src, dst, m ); } CV_IMPL void cvPerspectiveTransform( const CvArr* srcarr, CvArr* dstarr, const CvMat* mat ) { cv::Mat m = cv::cvarrToMat(mat), src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); CV_Assert_N( dst.type() == src.type(), dst.channels() == m.rows-1 ); cv::perspectiveTransform( src, dst, m ); } CV_IMPL void cvScaleAdd( const CvArr* srcarr1, CvScalar scale, const CvArr* srcarr2, CvArr* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert_N( src1.size == dst.size, src1.type() == dst.type() ); cv::scaleAdd( src1, scale.val[0], cv::cvarrToMat(srcarr2), dst ); } CV_IMPL void cvCalcCovarMatrix( const CvArr** vecarr, int count, CvArr* covarr, CvArr* avgarr, int flags ) { cv::Mat cov0 = cv::cvarrToMat(covarr), cov = cov0, mean0, mean; CV_Assert_N( vecarr != 0, count >= 1 ); if( avgarr ) mean = mean0 = cv::cvarrToMat(avgarr); if( (flags & CV_COVAR_COLS) != 0 || (flags & CV_COVAR_ROWS) != 0 ) { cv::Mat data = cv::cvarrToMat(vecarr[0]); cv::calcCovarMatrix( data, cov, mean, flags, cov.type() ); } else { std::vector data(count); for( int i = 0; i < count; i++ ) data[i] = cv::cvarrToMat(vecarr[i]); cv::calcCovarMatrix( &data[0], count, cov, mean, flags, cov.type() ); } if( mean.data != mean0.data && mean0.data ) mean.convertTo(mean0, mean0.type()); if( cov.data != cov0.data ) cov.convertTo(cov0, cov0.type()); } CV_IMPL double cvMahalanobis( const CvArr* srcAarr, const CvArr* srcBarr, const CvArr* matarr ) { return cv::Mahalanobis(cv::cvarrToMat(srcAarr), cv::cvarrToMat(srcBarr), cv::cvarrToMat(matarr)); } CV_IMPL void cvMulTransposed( const CvArr* srcarr, CvArr* dstarr, int order, const CvArr* deltaarr, double scale ) { cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0, delta; if( deltaarr ) delta = cv::cvarrToMat(deltaarr); cv::mulTransposed( src, dst, order != 0, delta, scale, dst.type()); if( dst.data != dst0.data ) dst.convertTo(dst0, dst0.type()); } CV_IMPL double cvDotProduct( const CvArr* srcAarr, const CvArr* srcBarr ) { return cv::cvarrToMat(srcAarr).dot(cv::cvarrToMat(srcBarr)); } CV_IMPL void cvCalcPCA( const CvArr* data_arr, CvArr* avg_arr, CvArr* eigenvals, CvArr* eigenvects, int flags ) { cv::Mat data = cv::cvarrToMat(data_arr), mean0 = cv::cvarrToMat(avg_arr); cv::Mat evals0 = cv::cvarrToMat(eigenvals), evects0 = cv::cvarrToMat(eigenvects); cv::Mat mean = mean0, evals = evals0, evects = evects0; cv::PCA pca; pca.mean = mean; pca.eigenvalues = evals; pca.eigenvectors = evects; pca(data, (flags & CV_PCA_USE_AVG) ? mean : cv::Mat(), flags, !evals.empty() ? evals.rows + evals.cols - 1 : 0); if( pca.mean.size() == mean.size() ) pca.mean.convertTo( mean, mean.type() ); else { cv::Mat temp; pca.mean.convertTo( temp, mean.type() ); transpose( temp, mean ); } evals = pca.eigenvalues; evects = pca.eigenvectors; int ecount0 = evals0.cols + evals0.rows - 1; int ecount = evals.cols + evals.rows - 1; CV_Assert_N( (evals0.cols == 1 || evals0.rows == 1), ecount0 <= ecount, evects0.cols == evects.cols, evects0.rows == ecount0 ); cv::Mat temp = evals0; if( evals.rows == 1 ) evals.colRange(0, ecount0).convertTo(temp, evals0.type()); else evals.rowRange(0, ecount0).convertTo(temp, evals0.type()); if( temp.data != evals0.data ) transpose(temp, evals0); evects.rowRange(0, ecount0).convertTo( evects0, evects0.type() ); // otherwise some datatype's or size's were incorrect, so the output arrays have been reallocated CV_Assert( mean0.data == mean.data ); } CV_IMPL void cvProjectPCA( const CvArr* data_arr, const CvArr* avg_arr, const CvArr* eigenvects, CvArr* result_arr ) { cv::Mat data = cv::cvarrToMat(data_arr), mean = cv::cvarrToMat(avg_arr); cv::Mat evects = cv::cvarrToMat(eigenvects), dst0 = cv::cvarrToMat(result_arr), dst = dst0; cv::PCA pca; pca.mean = mean; int n; if( mean.rows == 1 ) { CV_Assert_N(dst.cols <= evects.rows, dst.rows == data.rows); n = dst.cols; } else { CV_Assert_N(dst.rows <= evects.rows, dst.cols == data.cols); n = dst.rows; } pca.eigenvectors = evects.rowRange(0, n); cv::Mat result = pca.project(data); if( result.cols != dst.cols ) result = result.reshape(1, 1); result.convertTo(dst, dst.type()); CV_Assert(dst0.data == dst.data); } CV_IMPL void cvBackProjectPCA( const CvArr* proj_arr, const CvArr* avg_arr, const CvArr* eigenvects, CvArr* result_arr ) { cv::Mat data = cv::cvarrToMat(proj_arr), mean = cv::cvarrToMat(avg_arr); cv::Mat evects = cv::cvarrToMat(eigenvects), dst0 = cv::cvarrToMat(result_arr), dst = dst0; cv::PCA pca; pca.mean = mean; int n; if( mean.rows == 1 ) { CV_Assert_N(data.cols <= evects.rows, dst.rows == data.rows); n = data.cols; } else { CV_Assert_N(data.rows <= evects.rows, dst.cols == data.cols); n = data.rows; } pca.eigenvectors = evects.rowRange(0, n); cv::Mat result = pca.backProject(data); result.convertTo(dst, dst.type()); CV_Assert(dst0.data == dst.data); } #endif // OPENCV_EXCLUDE_C_API /* End of file. */