#include #include "opencv2/core/core_c.h" #include #include "autocalib.hpp" #include "motion_estimators.hpp" #include "util.hpp" using namespace std; using namespace cv; ////////////////////////////////////////////////////////////////////////////// CameraParams::CameraParams() : focal(1), R(Mat::eye(3, 3, CV_64F)), t(Mat::zeros(3, 1, CV_64F)) {} CameraParams::CameraParams(const CameraParams &other) { *this = other; } const CameraParams& CameraParams::operator =(const CameraParams &other) { focal = other.focal; R = other.R.clone(); t = other.t.clone(); return *this; } ////////////////////////////////////////////////////////////////////////////// struct IncDistance { IncDistance(vector &dists) : dists(&dists[0]) {} void operator ()(const GraphEdge &edge) { dists[edge.to] = dists[edge.from] + 1; } int* dists; }; struct CalcRotation { CalcRotation(int num_images, const vector &pairwise_matches, vector &cameras) : num_images(num_images), pairwise_matches(&pairwise_matches[0]), cameras(&cameras[0]) {} void operator ()(const GraphEdge &edge) { int pair_idx = edge.from * num_images + edge.to; double f_from = cameras[edge.from].focal; double f_to = cameras[edge.to].focal; Mat K_from = Mat::eye(3, 3, CV_64F); K_from.at(0, 0) = f_from; K_from.at(1, 1) = f_from; Mat K_to = Mat::eye(3, 3, CV_64F); K_to.at(0, 0) = f_to; K_to.at(1, 1) = f_to; Mat R = K_from.inv() * pairwise_matches[pair_idx].H.inv() * K_to; cameras[edge.to].R = cameras[edge.from].R * R; } int num_images; const MatchesInfo* pairwise_matches; CameraParams* cameras; }; void HomographyBasedEstimator::estimate(const vector &images, const vector &/*features*/, const vector &pairwise_matches, vector &cameras) { const int num_images = static_cast(images.size()); // Find focals from pair-wise homographies vector is_focal_estimated(num_images, false); vector focals; for (int i = 0; i < num_images; ++i) { for (int j = 0; j < num_images; ++j) { int pair_idx = i * num_images + j; if (pairwise_matches[pair_idx].H.empty()) continue; double f_to, f_from; bool f_to_ok, f_from_ok; focalsFromHomography(pairwise_matches[pair_idx].H.inv(), f_to, f_from, f_to_ok, f_from_ok); if (f_from_ok) focals.push_back(f_from); if (f_to_ok) focals.push_back(f_to); if (f_from_ok && f_to_ok) { is_focal_estimated[i] = true; is_focal_estimated[j] = true; } } } is_focals_estimated_ = true; for (int i = 0; i < num_images; ++i) is_focals_estimated_ = is_focals_estimated_ && is_focal_estimated[i]; // Find focal median and use it as true focal length nth_element(focals.begin(), focals.end(), focals.begin() + focals.size() / 2); cameras.resize(num_images); for (int i = 0; i < num_images; ++i) cameras[i].focal = focals[focals.size() / 2]; // Restore global motion Graph span_tree; vector span_tree_centers; findMaxSpanningTree(num_images, pairwise_matches, span_tree, span_tree_centers); span_tree.walkBreadthFirst(span_tree_centers[0], CalcRotation(num_images, pairwise_matches, cameras)); } ////////////////////////////////////////////////////////////////////////////// void BundleAdjuster::estimate(const vector &images, const vector &features, const vector &pairwise_matches, vector &cameras) { num_images_ = static_cast(images.size()); images_ = &images[0]; features_ = &features[0]; pairwise_matches_ = &pairwise_matches[0]; // Prepare focals and rotations cameras_.create(num_images_ * 4, 1, CV_64F); SVD svd; for (int i = 0; i < num_images_; ++i) { cameras_.at(i * 4, 0) = cameras[i].focal; svd(cameras[i].R, SVD::FULL_UV); Mat R = svd.u * svd.vt; if (determinant(R) < 0) R *= -1; Mat rvec; Rodrigues(R, rvec); CV_Assert(rvec.type() == CV_32F); cameras_.at(i * 4 + 1, 0) = rvec.at(0, 0); cameras_.at(i * 4 + 2, 0) = rvec.at(1, 0); cameras_.at(i * 4 + 3, 0) = rvec.at(2, 0); } // Select only consistent image pairs for futher adjustment edges_.clear(); for (int i = 0; i < num_images_ - 1; ++i) { for (int j = i + 1; j < num_images_; ++j) { const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j]; if (matches_info.confidence > conf_thresh_) edges_.push_back(make_pair(i, j)); } } // Compute number of correspondences total_num_matches_ = 0; for (size_t i = 0; i < edges_.size(); ++i) total_num_matches_ += static_cast(pairwise_matches[edges_[i].first * num_images_ + edges_[i].second].num_inliers); CvLevMarq solver(num_images_ * 4, total_num_matches_ * 3, cvTermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 100, DBL_EPSILON)); CvMat matParams = cameras_; cvCopy(&matParams, solver.param); int count = 0; for(;;) { const CvMat* _param = 0; CvMat* _J = 0; CvMat* _err = 0; bool proceed = solver.update( _param, _J, _err ); cvCopy( _param, &matParams ); if( !proceed || !_err ) break; if( _J ) { calcJacobian(); CvMat matJ = J_; cvCopy( &matJ, _J ); } if (_err) { calcError(err_); LOGLN("Error: " << sqrt(err_.dot(err_))); count++; CvMat matErr = err_; cvCopy( &matErr, _err ); } } LOGLN("BA final error: " << sqrt(err_.dot(err_))); LOGLN("BA iterations done: " << count); // Obtain global motion for (int i = 0; i < num_images_; ++i) { cameras[i].focal = cameras_.at(i * 4, 0); Mat rvec(3, 1, CV_64F); rvec.at(0, 0) = cameras_.at(i * 4 + 1, 0); rvec.at(1, 0) = cameras_.at(i * 4 + 2, 0); rvec.at(2, 0) = cameras_.at(i * 4 + 3, 0); Rodrigues(rvec, cameras[i].R); Mat Mf; cameras[i].R.convertTo(Mf, CV_32F); cameras[i].R = Mf; } // Normalize motion to center image Graph span_tree; vector span_tree_centers; findMaxSpanningTree(num_images_, pairwise_matches, span_tree, span_tree_centers); Mat R_inv = cameras[span_tree_centers[0]].R.inv(); for (int i = 0; i < num_images_; ++i) cameras[i].R = R_inv * cameras[i].R; } void BundleAdjuster::calcError(Mat &err) { err.create(total_num_matches_ * 3, 1, CV_64F); int match_idx = 0; for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx) { int i = edges_[edge_idx].first; int j = edges_[edge_idx].second; double f1 = cameras_.at(i * 4, 0); double f2 = cameras_.at(j * 4, 0); double R1[9], R2[9]; Mat R1_(3, 3, CV_64F, R1), R2_(3, 3, CV_64F, R2); Mat rvec(3, 1, CV_64F); rvec.at(0, 0) = cameras_.at(i * 4 + 1, 0); rvec.at(1, 0) = cameras_.at(i * 4 + 2, 0); rvec.at(2, 0) = cameras_.at(i * 4 + 3, 0); Rodrigues(rvec, R1_); CV_Assert(R1_.type() == CV_64F); rvec.at(0, 0) = cameras_.at(j * 4 + 1, 0); rvec.at(1, 0) = cameras_.at(j * 4 + 2, 0); rvec.at(2, 0) = cameras_.at(j * 4 + 3, 0); Rodrigues(rvec, R2_); CV_Assert(R2_.type() == CV_64F); const ImageFeatures& features1 = features_[i]; const ImageFeatures& features2 = features_[j]; const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j]; for (size_t k = 0; k < matches_info.matches.size(); ++k) { if (!matches_info.inliers_mask[k]) continue; const DMatch& m = matches_info.matches[k]; Point2d kp1 = features1.keypoints[m.queryIdx].pt; kp1.x -= 0.5 * images_[i].cols; kp1.y -= 0.5 * images_[i].rows; Point2d kp2 = features2.keypoints[m.trainIdx].pt; kp2.x -= 0.5 * images_[j].cols; kp2.y -= 0.5 * images_[j].rows; double len1 = sqrt(kp1.x * kp1.x + kp1.y * kp1.y + f1 * f1); double len2 = sqrt(kp2.x * kp2.x + kp2.y * kp2.y + f2 * f2); Point3d p1(kp1.x / len1, kp1.y / len1, f1 / len1); Point3d p2(kp2.x / len2, kp2.y / len2, f2 / len2); Point3d d1(p1.x * R1[0] + p1.y * R1[1] + p1.z * R1[2], p1.x * R1[3] + p1.y * R1[4] + p1.z * R1[5], p1.x * R1[6] + p1.y * R1[7] + p1.z * R1[8]); Point3d d2(p2.x * R2[0] + p2.y * R2[1] + p2.z * R2[2], p2.x * R2[3] + p2.y * R2[4] + p2.z * R2[5], p2.x * R2[6] + p2.y * R2[7] + p2.z * R2[8]); double mult = 1; if (cost_space_ == FOCAL_RAY_SPACE) mult = sqrt(f1 * f2); err.at(3 * match_idx, 0) = mult * (d1.x - d2.x); err.at(3 * match_idx + 1, 0) = mult * (d1.y - d2.y); err.at(3 * match_idx + 2, 0) = mult * (d1.z - d2.z); match_idx++; } } } void calcDeriv(const Mat &err1, const Mat &err2, double h, Mat res) { for (int i = 0; i < err1.rows; ++i) res.at(i, 0) = (err2.at(i, 0) - err1.at(i, 0)) / h; } void BundleAdjuster::calcJacobian() { J_.create(total_num_matches_ * 3, num_images_ * 4, CV_64F); double f, r; const double df = 0.001; // Focal length step const double dr = 0.001; // Angle step for (int i = 0; i < num_images_; ++i) { f = cameras_.at(i * 4, 0); cameras_.at(i * 4, 0) = f - df; calcError(err1_); cameras_.at(i * 4, 0) = f + df; calcError(err2_); calcDeriv(err1_, err2_, 2 * df, J_.col(i * 4)); cameras_.at(i * 4, 0) = f; r = cameras_.at(i * 4 + 1, 0); cameras_.at(i * 4 + 1, 0) = r - dr; calcError(err1_); cameras_.at(i * 4 + 1, 0) = r + dr; calcError(err2_); calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 1)); cameras_.at(i * 4 + 1, 0) = r; r = cameras_.at(i * 4 + 2, 0); cameras_.at(i * 4 + 2, 0) = r - dr; calcError(err1_); cameras_.at(i * 4 + 2, 0) = r + dr; calcError(err2_); calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 2)); cameras_.at(i * 4 + 2, 0) = r; r = cameras_.at(i * 4 + 3, 0); cameras_.at(i * 4 + 3, 0) = r - dr; calcError(err1_); cameras_.at(i * 4 + 3, 0) = r + dr; calcError(err2_); calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 3)); cameras_.at(i * 4 + 3, 0) = r; } } ////////////////////////////////////////////////////////////////////////////// void waveCorrect(vector &rmats) { float data[9]; Mat r0(1, 3, CV_32F, data); Mat r1(1, 3, CV_32F, data + 3); Mat r2(1, 3, CV_32F, data + 6); Mat R(3, 3, CV_32F, data); Mat cov = Mat::zeros(3, 3, CV_32F); for (size_t i = 0; i < rmats.size(); ++i) { Mat r0 = rmats[i].col(0); cov += r0 * r0.t(); } SVD svd; svd(cov, SVD::FULL_UV); svd.vt.row(2).copyTo(r1); if (determinant(svd.vt) < 0) r1 *= -1; Mat avgz = Mat::zeros(3, 1, CV_32F); for (size_t i = 0; i < rmats.size(); ++i) avgz += rmats[i].col(2); r1.cross(avgz.t()).copyTo(r0); normalize(r0, r0); r1.cross(r0).copyTo(r2); if (determinant(R) < 0) R *= -1; for (size_t i = 0; i < rmats.size(); ++i) rmats[i] = R * rmats[i]; } ////////////////////////////////////////////////////////////////////////////// void leaveBiggestComponent(vector &images, vector &features, vector &pairwise_matches, float conf_threshold) { const int num_images = static_cast(images.size()); DjSets comps(num_images); for (int i = 0; i < num_images; ++i) { for (int j = 0; j < num_images; ++j) { if (pairwise_matches[i*num_images + j].confidence < conf_threshold) continue; int comp1 = comps.find(i); int comp2 = comps.find(j); if (comp1 != comp2) comps.merge(comp1, comp2); } } int max_comp = max_element(comps.size.begin(), comps.size.end()) - comps.size.begin(); vector indices; vector indices_removed; for (int i = 0; i < num_images; ++i) if (comps.find(i) == max_comp) indices.push_back(i); else indices_removed.push_back(i); vector images_subset; vector features_subset; vector pairwise_matches_subset; for (size_t i = 0; i < indices.size(); ++i) { images_subset.push_back(images[indices[i]]); features_subset.push_back(features[indices[i]]); for (size_t j = 0; j < indices.size(); ++j) { pairwise_matches_subset.push_back(pairwise_matches[indices[i]*num_images + indices[j]]); pairwise_matches_subset.back().src_img_idx = i; pairwise_matches_subset.back().dst_img_idx = j; } } if (static_cast(images_subset.size()) == num_images) return; LOG("Removed some images, because can't match them: ("); LOG(indices_removed[0]); for (size_t i = 1; i < indices_removed.size(); ++i) LOG(", " << indices_removed[i]); LOGLN(")"); images = images_subset; features = features_subset; pairwise_matches = pairwise_matches_subset; } void findMaxSpanningTree(int num_images, const vector &pairwise_matches, Graph &span_tree, vector ¢ers) { Graph graph(num_images); vector edges; // Construct images graph and remember its edges for (int i = 0; i < num_images; ++i) { for (int j = 0; j < num_images; ++j) { if (pairwise_matches[i * num_images + j].H.empty()) continue; float conf = static_cast(pairwise_matches[i * num_images + j].num_inliers); graph.addEdge(i, j, conf); edges.push_back(GraphEdge(i, j, conf)); } } DjSets comps(num_images); span_tree.create(num_images); vector span_tree_powers(num_images, 0); // Find maximum spanning tree sort(edges.begin(), edges.end(), greater()); for (size_t i = 0; i < edges.size(); ++i) { int comp1 = comps.find(edges[i].from); int comp2 = comps.find(edges[i].to); if (comp1 != comp2) { comps.merge(comp1, comp2); span_tree.addEdge(edges[i].from, edges[i].to, edges[i].weight); span_tree.addEdge(edges[i].to, edges[i].from, edges[i].weight); span_tree_powers[edges[i].from]++; span_tree_powers[edges[i].to]++; } } // Find spanning tree leafs vector span_tree_leafs; for (int i = 0; i < num_images; ++i) if (span_tree_powers[i] == 1) span_tree_leafs.push_back(i); // Find maximum distance from each spanning tree vertex vector max_dists(num_images, 0); vector cur_dists; for (size_t i = 0; i < span_tree_leafs.size(); ++i) { cur_dists.assign(num_images, 0); span_tree.walkBreadthFirst(span_tree_leafs[i], IncDistance(cur_dists)); for (int j = 0; j < num_images; ++j) max_dists[j] = max(max_dists[j], cur_dists[j]); } // Find min-max distance int min_max_dist = max_dists[0]; for (int i = 1; i < num_images; ++i) if (min_max_dist > max_dists[i]) min_max_dist = max_dists[i]; // Find spanning tree centers centers.clear(); for (int i = 0; i < num_images; ++i) if (max_dists[i] == min_max_dist) centers.push_back(i); CV_Assert(centers.size() > 0 && centers.size() <= 2); }