/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "opencv2/ts/ocl_test.hpp" using namespace cv; using namespace std; #define OCL_TUNING_MODE 0 #if OCL_TUNING_MODE #define OCL_TUNING_MODE_ONLY(code) code #else #define OCL_TUNING_MODE_ONLY(code) #endif // image moments class CV_MomentsTest : public cvtest::ArrayTest { public: CV_MomentsTest(bool try_umat); protected: enum { MOMENT_COUNT = 25 }; int prepare_test_case( int test_case_idx ); void prepare_to_validation( int /*test_case_idx*/ ); void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ); double get_success_error_level( int test_case_idx, int i, int j ); void run_func(); bool is_binary; bool try_umat_; }; CV_MomentsTest::CV_MomentsTest(bool try_umat) : try_umat_(try_umat) { test_array[INPUT].push_back(NULL); test_array[OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); is_binary = false; OCL_TUNING_MODE_ONLY(test_case_count = 10); //element_wise_relative_error = false; } void CV_MomentsTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ) { cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high ); int depth = CV_MAT_DEPTH(type); if( depth == CV_16U ) { low = Scalar::all(0); high = Scalar::all(1000); } else if( depth == CV_16S ) { low = Scalar::all(-1000); high = Scalar::all(1000); } else if( depth == CV_32F ) { low = Scalar::all(-1); high = Scalar::all(1); } } void CV_MomentsTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) { RNG& rng = ts->get_rng(); cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); int depth = cvtest::randInt(rng) % 4; depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : depth == 2 ? CV_16S : CV_32F; is_binary = cvtest::randInt(rng) % 2 != 0; OCL_TUNING_MODE_ONLY( depth = CV_8U; is_binary = false; sizes[INPUT][0] = Size(1024,768) ); types[INPUT][0] = CV_MAKETYPE(depth, 1); types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1; sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(MOMENT_COUNT,1); if(CV_MAT_DEPTH(types[INPUT][0])>=CV_32S) sizes[INPUT][0].width = MAX(sizes[INPUT][0].width, 3); cvmat_allowed = true; } double CV_MomentsTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { int depth = test_mat[INPUT][0].depth(); return depth != CV_32F ? FLT_EPSILON*10 : FLT_EPSILON*100; } int CV_MomentsTest::prepare_test_case( int test_case_idx ) { int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); return code; } void CV_MomentsTest::run_func() { CvMoments* m = (CvMoments*)test_mat[OUTPUT][0].ptr(); double* others = (double*)(m + 1); if (try_umat_) { UMat u; test_mat[INPUT][0].clone().copyTo(u); OCL_TUNING_MODE_ONLY( static double ttime = 0; static int ncalls = 0; moments(u, is_binary != 0); double t = (double)getTickCount()); Moments new_m = moments(u, is_binary != 0); OCL_TUNING_MODE_ONLY( ttime += (double)getTickCount() - t; ncalls++; printf("%g\n", ttime/ncalls/u.total())); *m = new_m; } else cvMoments( test_array[INPUT][0], m, is_binary ); others[0] = cvGetNormalizedCentralMoment( m, 2, 0 ); others[1] = cvGetNormalizedCentralMoment( m, 1, 1 ); others[2] = cvGetNormalizedCentralMoment( m, 0, 2 ); others[3] = cvGetNormalizedCentralMoment( m, 3, 0 ); others[4] = cvGetNormalizedCentralMoment( m, 2, 1 ); others[5] = cvGetNormalizedCentralMoment( m, 1, 2 ); others[6] = cvGetNormalizedCentralMoment( m, 0, 3 ); } void CV_MomentsTest::prepare_to_validation( int /*test_case_idx*/ ) { Mat& src = test_mat[INPUT][0]; CvMoments m; double* mdata = test_mat[REF_OUTPUT][0].ptr(); int depth = src.depth(); int cn = src.channels(); int i, y, x, cols = src.cols; double xc = 0., yc = 0.; memset( &m, 0, sizeof(m)); int coi = 0; for( y = 0; y < src.rows; y++ ) { double s0 = 0, s1 = 0, s2 = 0, s3 = 0; uchar* ptr = src.ptr(y); for( x = 0; x < cols; x++ ) { double val; if( depth == CV_8U ) val = ptr[x*cn + coi]; else if( depth == CV_16U ) val = ((ushort*)ptr)[x*cn + coi]; else if( depth == CV_16S ) val = ((short*)ptr)[x*cn + coi]; else val = ((float*)ptr)[x*cn + coi]; if( is_binary ) val = val != 0; s0 += val; s1 += val*x; s2 += val*x*x; s3 += ((val*x)*x)*x; } m.m00 += s0; m.m01 += s0*y; m.m02 += (s0*y)*y; m.m03 += ((s0*y)*y)*y; m.m10 += s1; m.m11 += s1*y; m.m12 += (s1*y)*y; m.m20 += s2; m.m21 += s2*y; m.m30 += s3; } if( m.m00 != 0 ) { xc = m.m10/m.m00, yc = m.m01/m.m00; m.inv_sqrt_m00 = 1./sqrt(fabs(m.m00)); } for( y = 0; y < src.rows; y++ ) { double s0 = 0, s1 = 0, s2 = 0, s3 = 0, y1 = y - yc; uchar* ptr = src.ptr(y); for( x = 0; x < cols; x++ ) { double val, x1 = x - xc; if( depth == CV_8U ) val = ptr[x*cn + coi]; else if( depth == CV_16U ) val = ((ushort*)ptr)[x*cn + coi]; else if( depth == CV_16S ) val = ((short*)ptr)[x*cn + coi]; else val = ((float*)ptr)[x*cn + coi]; if( is_binary ) val = val != 0; s0 += val; s1 += val*x1; s2 += val*x1*x1; s3 += ((val*x1)*x1)*x1; } m.mu02 += s0*y1*y1; m.mu03 += ((s0*y1)*y1)*y1; m.mu11 += s1*y1; m.mu12 += (s1*y1)*y1; m.mu20 += s2; m.mu21 += s2*y1; m.mu30 += s3; } memcpy( mdata, &m, sizeof(m)); mdata += sizeof(m)/sizeof(m.m00); /* calc normalized moments */ { double inv_m00 = m.inv_sqrt_m00*m.inv_sqrt_m00; double s2 = inv_m00*inv_m00; /* 1./(m00 ^ (2/2 + 1)) */ double s3 = s2*m.inv_sqrt_m00; /* 1./(m00 ^ (3/2 + 1)) */ mdata[0] = m.mu20 * s2; mdata[1] = m.mu11 * s2; mdata[2] = m.mu02 * s2; mdata[3] = m.mu30 * s3; mdata[4] = m.mu21 * s3; mdata[5] = m.mu12 * s3; mdata[6] = m.mu03 * s3; } double* a = test_mat[REF_OUTPUT][0].ptr(); double* b = test_mat[OUTPUT][0].ptr(); for( i = 0; i < MOMENT_COUNT; i++ ) { if( fabs(a[i]) < 1e-3 ) a[i] = 0; if( fabs(b[i]) < 1e-3 ) b[i] = 0; } } // Hu invariants class CV_HuMomentsTest : public cvtest::ArrayTest { public: CV_HuMomentsTest(); protected: enum { MOMENT_COUNT = 18, HU_MOMENT_COUNT = 7 }; int prepare_test_case( int test_case_idx ); void prepare_to_validation( int /*test_case_idx*/ ); void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ); double get_success_error_level( int test_case_idx, int i, int j ); void run_func(); }; CV_HuMomentsTest::CV_HuMomentsTest() { test_array[INPUT].push_back(NULL); test_array[OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); } void CV_HuMomentsTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ) { cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high ); low = Scalar::all(-10000); high = Scalar::all(10000); } void CV_HuMomentsTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) { cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1; sizes[INPUT][0] = cvSize(MOMENT_COUNT,1); sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(HU_MOMENT_COUNT,1); } double CV_HuMomentsTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { return FLT_EPSILON; } int CV_HuMomentsTest::prepare_test_case( int test_case_idx ) { int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); if( code > 0 ) { // ... } return code; } void CV_HuMomentsTest::run_func() { cvGetHuMoments( test_mat[INPUT][0].ptr(), test_mat[OUTPUT][0].ptr() ); } void CV_HuMomentsTest::prepare_to_validation( int /*test_case_idx*/ ) { CvMoments* m = test_mat[INPUT][0].ptr(); CvHuMoments* hu = test_mat[REF_OUTPUT][0].ptr(); double inv_m00 = m->inv_sqrt_m00*m->inv_sqrt_m00; double s2 = inv_m00*inv_m00; /* 1./(m00 ^ (2/2 + 1)) */ double s3 = s2*m->inv_sqrt_m00; /* 1./(m00 ^ (3/2 + 1)) */ double nu20 = m->mu20 * s2; double nu11 = m->mu11 * s2; double nu02 = m->mu02 * s2; double nu30 = m->mu30 * s3; double nu21 = m->mu21 * s3; double nu12 = m->mu12 * s3; double nu03 = m->mu03 * s3; #undef sqr #define sqr(a) ((a)*(a)) hu->hu1 = nu20 + nu02; hu->hu2 = sqr(nu20 - nu02) + 4*sqr(nu11); hu->hu3 = sqr(nu30 - 3*nu12) + sqr(3*nu21 - nu03); hu->hu4 = sqr(nu30 + nu12) + sqr(nu21 + nu03); hu->hu5 = (nu30 - 3*nu12)*(nu30 + nu12)*(sqr(nu30 + nu12) - 3*sqr(nu21 + nu03)) + (3*nu21 - nu03)*(nu21 + nu03)*(3*sqr(nu30 + nu12) - sqr(nu21 + nu03)); hu->hu6 = (nu20 - nu02)*(sqr(nu30 + nu12) - sqr(nu21 + nu03)) + 4*nu11*(nu30 + nu12)*(nu21 + nu03); hu->hu7 = (3*nu21 - nu03)*(nu30 + nu12)*(sqr(nu30 + nu12) - 3*sqr(nu21 + nu03)) + (3*nu12 - nu30)*(nu21 + nu03)*(3*sqr(nu30 + nu12) - sqr(nu21 + nu03)); } TEST(Imgproc_Moments, accuracy) { CV_MomentsTest test(false); test.safe_run(); } OCL_TEST(Imgproc_Moments, accuracy) { CV_MomentsTest test(true); test.safe_run(); } TEST(Imgproc_HuMoments, accuracy) { CV_HuMomentsTest test; test.safe_run(); } class CV_SmallContourMomentTest : public cvtest::BaseTest { public: CV_SmallContourMomentTest() {} ~CV_SmallContourMomentTest() {} protected: void run(int) { try { vector points; points.push_back(Point(50, 56)); points.push_back(Point(53, 53)); points.push_back(Point(46, 54)); points.push_back(Point(49, 51)); Moments m = moments(points, false); double area = contourArea(points); CV_Assert( m.m00 == 0 && m.m01 == 0 && m.m10 == 0 && area == 0 ); } catch(...) { ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); } } }; TEST(Imgproc_ContourMoment, small) { CV_SmallContourMomentTest test; test.safe_run(); }