/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "layers_common.hpp" #include "../op_cuda.hpp" #include "../op_inf_engine.hpp" #include "../ie_ngraph.hpp" #include #include #include #ifdef HAVE_CUDA #include "../cuda4dnn/primitives/reshape.hpp" using namespace cv::dnn::cuda4dnn; #endif namespace cv { namespace dnn { class FlattenLayerImpl CV_FINAL : public FlattenLayer { public: FlattenLayerImpl(const LayerParams ¶ms) { _startAxis = params.get("axis", 1); _endAxis = params.get("end_axis", -1); setParamsFrom(params); } virtual bool supportBackend(int backendId) CV_OVERRIDE { return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || ((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && haveInfEngine()); } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const CV_OVERRIDE { CV_Assert(inputs.size() > 0); for (size_t i = 1; i < inputs.size(); i++) { CV_Assert(inputs[i] == inputs[0]); } int numAxes = inputs[0].size(); int startAxis = clamp(_startAxis, numAxes); int endAxis = clamp(_endAxis, numAxes); CV_Assert(startAxis >= 0); CV_Assert(endAxis >= startAxis && endAxis < (int)numAxes); size_t flattenedDimensionSize = total(inputs[0], startAxis, endAxis + 1); MatShape outputShapeVec; for (int i = 0; i < startAxis; i++) { outputShapeVec.push_back(inputs[0][i]); } outputShapeVec.push_back(flattenedDimensionSize); for (size_t i = endAxis + 1; i < numAxes; i++) { outputShapeVec.push_back(inputs[0][i]); } CV_Assert(outputShapeVec.size() <= 4); outputs.resize(inputs.size(), outputShapeVec); return true; } void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE { std::vector inputs; inputs_arr.getMatVector(inputs); int numAxes = inputs[0].dims; _startAxis = clamp(_startAxis, numAxes); _endAxis = clamp(_endAxis, numAxes); } #ifdef HAVE_OPENCL bool forward_ocl(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) { std::vector inpvec; std::vector outputs; inputs_arr.getUMatVector(inpvec); outputs_arr.getUMatVector(outputs); std::vector inputs(inpvec.size()); for (int i = 0; i < inpvec.size(); i++) inputs[i] = &inpvec[i]; for (size_t i = 0; i < inputs.size(); i++) { MatShape outShape = shape(outputs[i]); UMat& output = outputs_arr.getUMatRef(i); output = inputs[i]->reshape(1, (int)outShape.size(), &outShape[0]); } return true; } #endif void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) && outputs_arr.isUMatVector(), forward_ocl(inputs_arr, outputs_arr, internals_arr)) std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); for (size_t i = 0; i < inputs.size(); i++) { MatShape outShape = shape(outputs[i]); if (inputs[i].data != outputs[i].data) { inputs[i].reshape(1, (int)outShape.size(), &outShape[0]).copyTo(outputs[i]); } } } #ifdef HAVE_DNN_IE_NN_BUILDER_2019 virtual Ptr initInfEngine(const std::vector >& inputs) CV_OVERRIDE { InferenceEngine::Builder::Layer ieLayer(name); ieLayer.setName(name); ieLayer.setType("Flatten"); ieLayer.getParameters()["axis"] = (size_t)_startAxis; ieLayer.getParameters()["end_axis"] = _endAxis; // Do not cast to size_t because it might be negative. ieLayer.setInputPorts(std::vector(1)); ieLayer.setOutputPorts(std::vector(1)); return Ptr(new InfEngineBackendNode(ieLayer)); } #endif // HAVE_DNN_IE_NN_BUILDER_2019 #ifdef HAVE_DNN_NGRAPH virtual Ptr initNgraph(const std::vector >& inputs, const std::vector >& nodes) CV_OVERRIDE { auto& ieInpNode = nodes[0].dynamicCast()->node; std::vector dims = ieInpNode->get_shape(); int numAxes = dims.size(); int startAxis = clamp(_startAxis, numAxes); int endAxis = clamp(_endAxis, numAxes); CV_Assert(startAxis >= 0); CV_Assert(endAxis >= startAxis && endAxis < numAxes); int64_t flattenedDimensionSize = std::accumulate(dims.begin() + startAxis, dims.begin() + endAxis + 1, 1, std::multiplies()); std::vector outputShapeVec(dims.begin(), dims.begin() + startAxis); outputShapeVec.push_back(flattenedDimensionSize); outputShapeVec.insert(outputShapeVec.end(), dims.begin() + endAxis + 1, dims.end()); auto shape = std::make_shared(ngraph::element::i64, ngraph::Shape({outputShapeVec.size()}), outputShapeVec.data()); auto reshape = std::make_shared(ieInpNode, shape, true); return Ptr(new InfEngineNgraphNode(reshape)); } #endif // HAVE_DNN_NGRAPH #ifdef HAVE_CUDA Ptr initCUDA( void *context_, const std::vector>& inputs, const std::vector>& outputs ) override { auto context = reinterpret_cast(context_); return make_cuda_node(preferableTarget, std::move(context->stream)); } #endif int _startAxis; int _endAxis; }; Ptr FlattenLayer::create(const LayerParams& params) { return Ptr(new FlattenLayerImpl(params)); } } }