/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels.hpp" /* #if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7) #define USE_IPP_CANNY 1 #else #undef USE_IPP_CANNY #endif */ namespace cv { #ifdef USE_IPP_CANNY static bool ippCanny(const Mat& _src, Mat& _dst, float low, float high) { int size = 0, size1 = 0; IppiSize roi = { _src.cols, _src.rows }; ippiFilterSobelNegVertGetBufferSize_8u16s_C1R(roi, ippMskSize3x3, &size); ippiFilterSobelHorizGetBufferSize_8u16s_C1R(roi, ippMskSize3x3, &size1); size = std::max(size, size1); ippiCannyGetSize(roi, &size1); size = std::max(size, size1); AutoBuffer buf(size + 64); uchar* buffer = alignPtr((uchar*)buf, 32); Mat _dx(_src.rows, _src.cols, CV_16S); if( ippiFilterSobelNegVertBorder_8u16s_C1R(_src.data, (int)_src.step, _dx.ptr(), (int)_dx.step, roi, ippMskSize3x3, ippBorderRepl, 0, buffer) < 0 ) return false; Mat _dy(_src.rows, _src.cols, CV_16S); if( ippiFilterSobelHorizBorder_8u16s_C1R(_src.data, (int)_src.step, _dy.ptr(), (int)_dy.step, roi, ippMskSize3x3, ippBorderRepl, 0, buffer) < 0 ) return false; if( ippiCanny_16s8u_C1R(_dx.ptr(), (int)_dx.step, _dy.ptr(), (int)_dy.step, _dst.data, (int)_dst.step, roi, low, high, buffer) < 0 ) return false; return true; } #endif #ifdef HAVE_OPENCL static bool ocl_Canny(InputArray _src, OutputArray _dst, float low_thresh, float high_thresh, int aperture_size, bool L2gradient, int cn, const Size & size) { UMat dx(size, CV_16SC(cn)), dy(size, CV_16SC(cn)); if (L2gradient) { low_thresh = std::min(32767.0f, low_thresh); high_thresh = std::min(32767.0f, high_thresh); if (low_thresh > 0) low_thresh *= low_thresh; if (high_thresh > 0) high_thresh *= high_thresh; } int low = cvFloor(low_thresh), high = cvFloor(high_thresh); Size esize(size.width + 2, size.height + 2); UMat mag; size_t globalsize[2] = { size.width * cn, size.height }, localsize[2] = { 16, 16 }; if (aperture_size == 3 && !_src.isSubmatrix()) { // Sobel calculation ocl::Kernel calcSobelRowPassKernel("calcSobelRowPass", ocl::imgproc::canny_oclsrc); if (calcSobelRowPassKernel.empty()) return false; UMat src = _src.getUMat(), dxBuf(size, CV_16SC(cn)), dyBuf(size, CV_16SC(cn)); calcSobelRowPassKernel.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(dxBuf), ocl::KernelArg::WriteOnlyNoSize(dyBuf)); if (!calcSobelRowPassKernel.run(2, globalsize, localsize, false)) return false; // magnitude calculation ocl::Kernel magnitudeKernel("calcMagnitude_buf", ocl::imgproc::canny_oclsrc, L2gradient ? " -D L2GRAD" : ""); if (magnitudeKernel.empty()) return false; mag = UMat(esize, CV_32SC(cn), Scalar::all(0)); dx.create(size, CV_16SC(cn)); dy.create(size, CV_16SC(cn)); magnitudeKernel.args(ocl::KernelArg::ReadOnlyNoSize(dxBuf), ocl::KernelArg::ReadOnlyNoSize(dyBuf), ocl::KernelArg::WriteOnlyNoSize(dx), ocl::KernelArg::WriteOnlyNoSize(dy), ocl::KernelArg::WriteOnlyNoSize(mag, cn), size.height, size.width); if (!magnitudeKernel.run(2, globalsize, localsize, false)) return false; } else { dx.create(size, CV_16SC(cn)); dy.create(size, CV_16SC(cn)); Sobel(_src, dx, CV_16SC1, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE); Sobel(_src, dy, CV_16SC1, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE); // magnitude calculation ocl::Kernel magnitudeKernel("calcMagnitude", ocl::imgproc::canny_oclsrc, L2gradient ? " -D L2GRAD" : ""); if (magnitudeKernel.empty()) return false; mag = UMat(esize, CV_32SC(cn), Scalar::all(0)); magnitudeKernel.args(ocl::KernelArg::ReadOnlyNoSize(dx), ocl::KernelArg::ReadOnlyNoSize(dy), ocl::KernelArg::WriteOnlyNoSize(mag, cn), size.height, size.width); if (!magnitudeKernel.run(2, globalsize, NULL, false)) return false; } // map calculation ocl::Kernel calcMapKernel("calcMap", ocl::imgproc::canny_oclsrc); if (calcMapKernel.empty()) return false; UMat map(esize, CV_32SC(cn)); calcMapKernel.args(ocl::KernelArg::ReadOnlyNoSize(dx), ocl::KernelArg::ReadOnlyNoSize(dy), ocl::KernelArg::ReadOnlyNoSize(mag), ocl::KernelArg::WriteOnlyNoSize(map, cn), size.height, size.width, low, high); if (!calcMapKernel.run(2, globalsize, localsize, false)) return false; // local hysteresis thresholding ocl::Kernel edgesHysteresisLocalKernel("edgesHysteresisLocal", ocl::imgproc::canny_oclsrc); if (edgesHysteresisLocalKernel.empty()) return false; UMat stack(1, size.area(), CV_16UC2), counter(1, 1, CV_32SC1, Scalar::all(0)); edgesHysteresisLocalKernel.args(ocl::KernelArg::ReadOnlyNoSize(map), ocl::KernelArg::PtrReadWrite(stack), ocl::KernelArg::PtrReadWrite(counter), size.height, size.width); if (!edgesHysteresisLocalKernel.run(2, globalsize, localsize, false)) return false; // global hysteresis thresholding UMat stack2(1, size.area(), CV_16UC2); int count; for ( ; ; ) { ocl::Kernel edgesHysteresisGlobalKernel("edgesHysteresisGlobal", ocl::imgproc::canny_oclsrc); if (edgesHysteresisGlobalKernel.empty()) return false; { Mat _counter = counter.getMat(ACCESS_RW); count = _counter.at(0, 0); if (count == 0) break; _counter.at(0, 0) = 0; } edgesHysteresisGlobalKernel.args(ocl::KernelArg::ReadOnlyNoSize(map), ocl::KernelArg::PtrReadWrite(stack), ocl::KernelArg::PtrReadWrite(stack2), ocl::KernelArg::PtrReadWrite(counter), size.height, size.width, count); #define divUp(total, grain) ((total + grain - 1) / grain) size_t localsize2[2] = { 128, 1 }, globalsize2[2] = { std::min(count, 65535) * 128, divUp(count, 65535) }; #undef divUp if (!edgesHysteresisGlobalKernel.run(2, globalsize2, localsize2, false)) return false; std::swap(stack, stack2); } // get edges ocl::Kernel getEdgesKernel("getEdges", ocl::imgproc::canny_oclsrc); if (getEdgesKernel.empty()) return false; _dst.create(size, CV_8UC(cn)); UMat dst = _dst.getUMat(); getEdgesKernel.args(ocl::KernelArg::ReadOnlyNoSize(map), ocl::KernelArg::WriteOnly(dst)); return getEdgesKernel.run(2, globalsize, NULL, false); } #endif } void cv::Canny( InputArray _src, OutputArray _dst, double low_thresh, double high_thresh, int aperture_size, bool L2gradient ) { const int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); const Size size = _src.size(); CV_Assert( depth == CV_8U ); _dst.create(size, CV_8U); if (!L2gradient && (aperture_size & CV_CANNY_L2_GRADIENT) == CV_CANNY_L2_GRADIENT) { // backward compatibility aperture_size &= ~CV_CANNY_L2_GRADIENT; L2gradient = true; } if ((aperture_size & 1) == 0 || (aperture_size != -1 && (aperture_size < 3 || aperture_size > 7))) CV_Error(CV_StsBadFlag, ""); if (low_thresh > high_thresh) std::swap(low_thresh, high_thresh); CV_OCL_RUN(_dst.isUMat() && cn == 1, ocl_Canny(_src, _dst, (float)low_thresh, (float)high_thresh, aperture_size, L2gradient, cn, size)) Mat src = _src.getMat(), dst = _dst.getMat(); #ifdef HAVE_TEGRA_OPTIMIZATION if (tegra::canny(src, dst, low_thresh, high_thresh, aperture_size, L2gradient)) return; #endif #ifdef USE_IPP_CANNY if( aperture_size == 3 && !L2gradient && ippCanny(src, dst, (float)low_thresh, (float)high_thresh) ) return; #endif Mat dx(src.rows, src.cols, CV_16SC(cn)); Mat dy(src.rows, src.cols, CV_16SC(cn)); Sobel(src, dx, CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE); Sobel(src, dy, CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE); if (L2gradient) { low_thresh = std::min(32767.0, low_thresh); high_thresh = std::min(32767.0, high_thresh); if (low_thresh > 0) low_thresh *= low_thresh; if (high_thresh > 0) high_thresh *= high_thresh; } int low = cvFloor(low_thresh); int high = cvFloor(high_thresh); ptrdiff_t mapstep = src.cols + 2; AutoBuffer buffer((src.cols+2)*(src.rows+2) + cn * mapstep * 3 * sizeof(int)); int* mag_buf[3]; mag_buf[0] = (int*)(uchar*)buffer; mag_buf[1] = mag_buf[0] + mapstep*cn; mag_buf[2] = mag_buf[1] + mapstep*cn; memset(mag_buf[0], 0, /* cn* */mapstep*sizeof(int)); uchar* map = (uchar*)(mag_buf[2] + mapstep*cn); memset(map, 1, mapstep); memset(map + mapstep*(src.rows + 1), 1, mapstep); int maxsize = std::max(1 << 10, src.cols * src.rows / 10); std::vector stack(maxsize); uchar **stack_top = &stack[0]; uchar **stack_bottom = &stack[0]; /* sector numbers (Top-Left Origin) 1 2 3 * * * * * * 0*******0 * * * * * * 3 2 1 */ #define CANNY_PUSH(d) *(d) = uchar(2), *stack_top++ = (d) #define CANNY_POP(d) (d) = *--stack_top // calculate magnitude and angle of gradient, perform non-maxima suppression. // fill the map with one of the following values: // 0 - the pixel might belong to an edge // 1 - the pixel can not belong to an edge // 2 - the pixel does belong to an edge for (int i = 0; i <= src.rows; i++) { int* _norm = mag_buf[(i > 0) + 1] + 1; if (i < src.rows) { short* _dx = dx.ptr(i); short* _dy = dy.ptr(i); if (!L2gradient) { for (int j = 0; j < src.cols*cn; j++) _norm[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j])); } else { for (int j = 0; j < src.cols*cn; j++) _norm[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j]; } if (cn > 1) { for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn) { int maxIdx = jn; for(int k = 1; k < cn; ++k) if(_norm[jn + k] > _norm[maxIdx]) maxIdx = jn + k; _norm[j] = _norm[maxIdx]; _dx[j] = _dx[maxIdx]; _dy[j] = _dy[maxIdx]; } } _norm[-1] = _norm[src.cols] = 0; } else memset(_norm-1, 0, /* cn* */mapstep*sizeof(int)); // at the very beginning we do not have a complete ring // buffer of 3 magnitude rows for non-maxima suppression if (i == 0) continue; uchar* _map = map + mapstep*i + 1; _map[-1] = _map[src.cols] = 1; int* _mag = mag_buf[1] + 1; // take the central row ptrdiff_t magstep1 = mag_buf[2] - mag_buf[1]; ptrdiff_t magstep2 = mag_buf[0] - mag_buf[1]; const short* _x = dx.ptr(i-1); const short* _y = dy.ptr(i-1); if ((stack_top - stack_bottom) + src.cols > maxsize) { int sz = (int)(stack_top - stack_bottom); maxsize = maxsize * 3/2; stack.resize(maxsize); stack_bottom = &stack[0]; stack_top = stack_bottom + sz; } int prev_flag = 0; for (int j = 0; j < src.cols; j++) { #define CANNY_SHIFT 15 const int TG22 = (int)(0.4142135623730950488016887242097*(1< low) { int xs = _x[j]; int ys = _y[j]; int x = std::abs(xs); int y = std::abs(ys) << CANNY_SHIFT; int tg22x = x * TG22; if (y < tg22x) { if (m > _mag[j-1] && m >= _mag[j+1]) goto __ocv_canny_push; } else { int tg67x = tg22x + (x << (CANNY_SHIFT+1)); if (y > tg67x) { if (m > _mag[j+magstep2] && m >= _mag[j+magstep1]) goto __ocv_canny_push; } else { int s = (xs ^ ys) < 0 ? -1 : 1; if (m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s]) goto __ocv_canny_push; } } } prev_flag = 0; _map[j] = uchar(1); continue; __ocv_canny_push: if (!prev_flag && m > high && _map[j-mapstep] != 2) { CANNY_PUSH(_map + j); prev_flag = 1; } else _map[j] = 0; } // scroll the ring buffer _mag = mag_buf[0]; mag_buf[0] = mag_buf[1]; mag_buf[1] = mag_buf[2]; mag_buf[2] = _mag; } // now track the edges (hysteresis thresholding) while (stack_top > stack_bottom) { uchar* m; if ((stack_top - stack_bottom) + 8 > maxsize) { int sz = (int)(stack_top - stack_bottom); maxsize = maxsize * 3/2; stack.resize(maxsize); stack_bottom = &stack[0]; stack_top = stack_bottom + sz; } CANNY_POP(m); if (!m[-1]) CANNY_PUSH(m - 1); if (!m[1]) CANNY_PUSH(m + 1); if (!m[-mapstep-1]) CANNY_PUSH(m - mapstep - 1); if (!m[-mapstep]) CANNY_PUSH(m - mapstep); if (!m[-mapstep+1]) CANNY_PUSH(m - mapstep + 1); if (!m[mapstep-1]) CANNY_PUSH(m + mapstep - 1); if (!m[mapstep]) CANNY_PUSH(m + mapstep); if (!m[mapstep+1]) CANNY_PUSH(m + mapstep + 1); } // the final pass, form the final image const uchar* pmap = map + mapstep + 1; uchar* pdst = dst.ptr(); for (int i = 0; i < src.rows; i++, pmap += mapstep, pdst += dst.step) { for (int j = 0; j < src.cols; j++) pdst[j] = (uchar)-(pmap[j] >> 1); } } void cvCanny( const CvArr* image, CvArr* edges, double threshold1, double threshold2, int aperture_size ) { cv::Mat src = cv::cvarrToMat(image), dst = cv::cvarrToMat(edges); CV_Assert( src.size == dst.size && src.depth() == CV_8U && dst.type() == CV_8U ); cv::Canny(src, dst, threshold1, threshold2, aperture_size & 255, (aperture_size & CV_CANNY_L2_GRADIENT) != 0); } /* End of file. */