// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "precomp.hpp" #include "opencv2/objdetect.hpp" // #include "opencv2/calib3d.hpp" #include #include #include namespace cv { class QRDecode { public: void init(Mat src, double eps_vertical_ = 0.19, double eps_horizontal_ = 0.09); void binarization(); bool localization(); bool transformation(); Mat getBinBarcode() { return bin_barcode; } Mat getLocalizationBarcode() { return local_barcode; } Mat getTransformationBarcode() { return transform_barcode; } std::vector getTransformationPoints() { return transformation_points; } Mat getStraightBarcode() { return straight_barcode; } protected: std::vector searchVerticalLines(); std::vector separateHorizontalLines(std::vector list_lines); std::vector pointClustering(std::vector list_lines); void fixationPoints(std::vector &local_point, std::vector &local_len); Point getTransformationPoint(Point left, Point center, double cos_angle_rotation, bool right_rotate = true); Point intersectionLines(Point a1, Point a2, Point b1, Point b2); std::vector getQuadrilateral(std::vector angle_list); double getQuadrilateralArea(Point a, Point b, Point c, Point d); double getCosVectors(Point a, Point b, Point c); Mat barcode, bin_barcode, local_barcode, transform_barcode, straight_barcode; std::vector localization_points, transformation_points; std::vector localization_length; double experimental_area; double eps_vertical, eps_horizontal; std::vector result; std::vector test_lines; uint8_t next_pixel, future_pixel; double length, weight; }; void QRDecode::init(Mat src, double eps_vertical_, double eps_horizontal_) { barcode = src; eps_vertical = eps_vertical_; eps_horizontal = eps_horizontal_; } void QRDecode::binarization() { Mat filter_barcode; GaussianBlur(barcode, filter_barcode, Size(3, 3), 0); threshold(filter_barcode, bin_barcode, 0, 255, THRESH_BINARY + THRESH_OTSU); } bool QRDecode::localization() { cvtColor(bin_barcode, local_barcode, COLOR_GRAY2RGB); Point begin, end; std::vector list_lines_x = searchVerticalLines(); if (list_lines_x.empty()) return false; std::vector list_lines_y = separateHorizontalLines(list_lines_x); if (list_lines_y.empty()) return false; std::vector result_point = pointClustering(list_lines_y); if (result_point.empty()) return false; for (int i = 0; i < 3; i++) { localization_points.push_back( Point(static_cast(result_point[i][0]), static_cast(result_point[i][1] + result_point[i][2]))); localization_length.push_back(result_point[i][2]); } fixationPoints(localization_points, localization_length); if (localization_points.size() != 3) { return false; } return true; } std::vector QRDecode::searchVerticalLines() { result.clear(); int temp_length = 0; for (int x = 0; x < bin_barcode.rows; x++) { for (int y = 0; y < bin_barcode.cols; y++) { if (bin_barcode.at(x, y) > 0) { continue; } // --------------- Search vertical lines --------------- // test_lines.clear(); future_pixel = 255; for (int i = x; i < bin_barcode.rows - 1; i++) { next_pixel = bin_barcode.at(i + 1, y); temp_length++; if (next_pixel == future_pixel) { future_pixel = 255 - future_pixel; test_lines.push_back(temp_length); temp_length = 0; if (test_lines.size() == 5) { break; } } } // --------------- Compute vertical lines --------------- // if (test_lines.size() == 5) { length = 0.0; weight = 0.0; for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; } for (size_t i = 0; i < test_lines.size(); i++) { if (i == 2) { weight += abs((test_lines[i] / length) - 3.0/7.0); } else { weight += abs((test_lines[i] / length) - 1.0/7.0); } } if (weight < eps_vertical) { Vec3d line; line[0] = x; line[1] = y, line[2] = length; result.push_back(line); } } } } return result; } std::vector QRDecode::separateHorizontalLines(std::vector list_lines) { result.clear(); int temp_length = 0; int x, y; for (size_t pnt = 0; pnt < list_lines.size(); pnt++) { x = static_cast(list_lines[pnt][0] + list_lines[pnt][2] / 2); y = static_cast(list_lines[pnt][1]); // --------------- Search horizontal up-lines --------------- // test_lines.clear(); future_pixel = 255; for (int j = y; j < bin_barcode.cols - 1; j++) { next_pixel = bin_barcode.at(x, j + 1); temp_length++; if (next_pixel == future_pixel) { future_pixel = 255 - future_pixel; test_lines.push_back(temp_length); temp_length = 0; if (test_lines.size() == 3) { break; } } } // --------------- Search horizontal down-lines --------------- // future_pixel = 255; for (int j = y; j >= 1; j--) { next_pixel = bin_barcode.at(x, j - 1); temp_length++; if (next_pixel == future_pixel) { future_pixel = 255 - future_pixel; test_lines.push_back(temp_length); temp_length = 0; if (test_lines.size() == 6) { break; } } } // --------------- Compute horizontal lines --------------- // if (test_lines.size() == 6) { length = 0.0; weight = 0.0; for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; } for (size_t i = 0; i < test_lines.size(); i++) { if (i % 3 == 0) { weight += abs((test_lines[i] / length) - 3.0/14.0); } else { weight += abs((test_lines[i] / length) - 1.0/ 7.0); } } } if(weight < eps_horizontal) { result.push_back(list_lines[pnt]); } } return result; } std::vector QRDecode::pointClustering(std::vector list_lines) { std::vector centers; std::vector clusters[3]; double weight_clusters[3] = {0.0, 0.0, 0.0}; Point basis[3], temp_pnt; double temp_norm = 0.0, temp_compute_norm, distance[3]; basis[0] = Point(static_cast(list_lines[0][1]), static_cast(list_lines[0][0])); for (size_t i = 1; i < list_lines.size(); i++) { temp_pnt = Point(static_cast(list_lines[i][1]), static_cast(list_lines[i][0])); temp_compute_norm = norm(basis[0] - temp_pnt); if (temp_norm < temp_compute_norm) { basis[1] = temp_pnt; temp_norm = temp_compute_norm; } } for (size_t i = 1; i < list_lines.size(); i++) { temp_pnt = Point(static_cast(list_lines[i][1]), static_cast(list_lines[i][0])); temp_compute_norm = norm(basis[0] - temp_pnt) + norm(basis[1] - temp_pnt); if (temp_norm < temp_compute_norm) { basis[2] = temp_pnt; temp_norm = temp_compute_norm; } } for (size_t i = 0; i < list_lines.size(); i++) { temp_pnt = Point(static_cast(list_lines[i][1]), static_cast(list_lines[i][0])); distance[0] = norm(basis[0] - temp_pnt); distance[1] = norm(basis[1] - temp_pnt); distance[2] = norm(basis[2] - temp_pnt); if (distance[0] < distance[1] && distance[0] < distance[2]) { clusters[0].push_back(temp_pnt); weight_clusters[0] += list_lines[i][2]; } else if (distance[1] < distance[0] && distance[1] < distance[2]) { clusters[1].push_back(temp_pnt); weight_clusters[1] += list_lines[i][2]; } else { clusters[2].push_back(temp_pnt); weight_clusters[2] += list_lines[i][2]; } } for (int i = 0; i < 3; i++) { basis[i] = Point(0, 0); for (size_t j = 0; j < clusters[i].size(); j++) { basis[i] += clusters[i][j]; } basis[i] = basis[i] / static_cast(clusters[i].size()); weight = weight_clusters[i] / (2 * clusters[i].size()); centers.push_back(Vec3d(basis[i].x, basis[i].y, weight)); } return centers; } void QRDecode::fixationPoints(std::vector &local_point, std::vector &local_len) { double cos_angles[3], norm_triangl[3]; norm_triangl[0] = norm(local_point[1] - local_point[2]); norm_triangl[1] = norm(local_point[0] - local_point[2]); norm_triangl[2] = norm(local_point[1] - local_point[0]); cos_angles[0] = (pow(norm_triangl[1], 2) + pow(norm_triangl[2], 2) - pow(norm_triangl[0], 2)) / (2 * norm_triangl[1] * norm_triangl[2]); cos_angles[1] = (pow(norm_triangl[0], 2) + pow(norm_triangl[2], 2) - pow(norm_triangl[1], 2)) / (2 * norm_triangl[0] * norm_triangl[2]); cos_angles[2] = (pow(norm_triangl[0], 2) + pow(norm_triangl[1], 2) - pow(norm_triangl[2], 2)) / (2 * norm_triangl[0] * norm_triangl[1]); int i_min_cos = (cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 : (cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2; Point temp_pnt; double tmp_len; temp_pnt = local_point[0]; tmp_len = local_len[0]; local_point[0] = local_point[i_min_cos]; local_len[0] = local_len[i_min_cos]; local_point[i_min_cos] = temp_pnt; local_len[i_min_cos] = tmp_len; Mat vector_mult(Size(3, 3), CV_32FC1); vector_mult.at(0, 0) = 1; vector_mult.at(1, 0) = 1; vector_mult.at(2, 0) = 1; vector_mult.at(0, 1) = static_cast((local_point[1] - local_point[0]).x); vector_mult.at(1, 1) = static_cast((local_point[1] - local_point[0]).y); vector_mult.at(0, 2) = static_cast((local_point[2] - local_point[0]).x); vector_mult.at(1, 2) = static_cast((local_point[2] - local_point[0]).y); double res_vect_mult = determinant(vector_mult); if (res_vect_mult < 0) { temp_pnt = local_point[1]; tmp_len = local_len[1]; local_point[1] = local_point[2]; local_len[1] = local_len[2]; local_point[2] = temp_pnt; local_len[2] = tmp_len; } } bool QRDecode::transformation() { cvtColor(bin_barcode, transform_barcode, COLOR_GRAY2RGB); if (localization_points.size() != 3) { return false; } Point red = localization_points[0]; Point green = localization_points[1]; Point blue = localization_points[2]; Point adj_b_r_pnt, adj_r_b_pnt, adj_g_r_pnt, adj_r_g_pnt; Point line_r_b_pnt, line_r_g_pnt, norm_r_b_pnt, norm_r_g_pnt; adj_b_r_pnt = getTransformationPoint(blue, red, -1); adj_r_b_pnt = getTransformationPoint(red, blue, -1); adj_g_r_pnt = getTransformationPoint(green, red, -1); adj_r_g_pnt = getTransformationPoint(red, green, -1); line_r_b_pnt = getTransformationPoint(red, blue, -0.91); line_r_g_pnt = getTransformationPoint(red, green, -0.91); norm_r_b_pnt = getTransformationPoint(red, blue, 0.0, true); norm_r_g_pnt = getTransformationPoint(red, green, 0.0, false); transformation_points.push_back(intersectionLines( adj_r_g_pnt, line_r_g_pnt, adj_r_b_pnt, line_r_b_pnt)); transformation_points.push_back(intersectionLines( adj_b_r_pnt, norm_r_g_pnt, adj_r_g_pnt, line_r_g_pnt)); transformation_points.push_back(intersectionLines( norm_r_b_pnt, adj_g_r_pnt, adj_b_r_pnt, norm_r_g_pnt)); transformation_points.push_back(intersectionLines( norm_r_b_pnt, adj_g_r_pnt, adj_r_b_pnt, line_r_b_pnt)); experimental_area = getQuadrilateralArea(transformation_points[0], transformation_points[1], transformation_points[2], transformation_points[3]); std::vector quadrilateral = getQuadrilateral(transformation_points); transformation_points = quadrilateral; int max_length_norm = -1; size_t transform_size = transformation_points.size(); for (size_t i = 0; i < transform_size; i++) { int len_norm = static_cast(norm(transformation_points[i % transform_size] - transformation_points[(i + 1) % transform_size])); if (max_length_norm < len_norm) { max_length_norm = len_norm; } } std::vector perspective_points; perspective_points.push_back(Point(0, 0)); perspective_points.push_back(Point(0, max_length_norm)); perspective_points.push_back(Point(max_length_norm, max_length_norm)); perspective_points.push_back(Point(max_length_norm, 0)); // warpPerspective(bin_barcode, straight_barcode, // findHomography(transformation_points, perspective_points), // Size(max_length_norm, max_length_norm)); return true; } Point QRDecode::getTransformationPoint(Point left, Point center, double cos_angle_rotation, bool right_rotate) { Point temp_pnt, prev_pnt(0, 0), next_pnt, start_pnt(center); double temp_delta, min_delta; int steps = 0; future_pixel = 255; while(true) { min_delta = std::numeric_limits::max(); for (int i = -1; i < 2; i++) { for (int j = -1; j < 2; j++) { if (i == 0 && j == 0) { continue; } temp_pnt = Point(start_pnt.x + i, start_pnt.y + j); temp_delta = abs(getCosVectors(left, center, temp_pnt) - cos_angle_rotation); if (temp_delta < min_delta && prev_pnt != temp_pnt) { next_pnt = temp_pnt; min_delta = temp_delta; } } } prev_pnt = start_pnt; start_pnt = next_pnt; next_pixel = bin_barcode.at(start_pnt.y, start_pnt.x); if (next_pixel == future_pixel) { future_pixel = 255 - future_pixel; steps++; if (steps == 3) { break; } } } if (cos_angle_rotation == 0.0) { Mat vector_mult(Size(3, 3), CV_32FC1); vector_mult.at(0, 0) = 1; vector_mult.at(1, 0) = 1; vector_mult.at(2, 0) = 1; vector_mult.at(0, 1) = static_cast((left - center).x); vector_mult.at(1, 1) = static_cast((left - center).y); vector_mult.at(0, 2) = static_cast((left - start_pnt).x); vector_mult.at(1, 2) = static_cast((left - start_pnt).y); double res_vect_mult = determinant(vector_mult); if (( right_rotate && res_vect_mult < 0) || (!right_rotate && res_vect_mult > 0)) { start_pnt = getTransformationPoint(start_pnt, center, -1); } } return start_pnt; } Point QRDecode::intersectionLines(Point a1, Point a2, Point b1, Point b2) { Point result_square_angle( static_cast( static_cast ((a1.x * a2.y - a1.y * a2.x) * (b1.x - b2.x) - (b1.x * b2.y - b1.y * b2.x) * (a1.x - a2.x)) / ((a1.x - a2.x) * (b1.y - b2.y) - (a1.y - a2.y) * (b1.x - b2.x))), static_cast( static_cast ((a1.x * a2.y - a1.y * a2.x) * (b1.y - b2.y) - (b1.x * b2.y - b1.y * b2.x) * (a1.y - a2.y)) / ((a1.x - a2.x) * (b1.y - b2.y) - (a1.y - a2.y) * (b1.x - b2.x))) ); return result_square_angle; } std::vector QRDecode::getQuadrilateral(std::vector angle_list) { size_t angle_size = angle_list.size(); uint8_t value, mask_value; Mat mask(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1); for (size_t i = 0; i < angle_size; i++) { LineIterator line_iter(bin_barcode, angle_list[ i % angle_size], angle_list[(i + 1) % angle_size]); for(int j = 0; j < line_iter.count; j++, ++line_iter) { value = bin_barcode.at(line_iter.pos()); mask_value = mask.at(line_iter.pos() + Point(1, 1)); if (value == 0 && mask_value == 0) { floodFill(bin_barcode, mask, line_iter.pos(), 255); } } } std::vector locations; Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1)); cv::findNonZero(mask_roi, locations); for (size_t i = 0; i < angle_list.size(); i++) { locations.push_back(angle_list[i]); } std::vector< std::vector > hull(1), approx_hull(1); convexHull(Mat(locations), hull[0]); int hull_size = static_cast(hull[0].size()); Point min_pnt; std::vector min_abc; double min_abs_cos_abc, abs_cos_abc; for (int count = 0; count < 4; count++) { min_abs_cos_abc = std::numeric_limits::max(); for (int i = 0; i < hull_size; i++) { Point a = hull[0][ i % hull_size]; Point b = hull[0][(i + 1) % hull_size]; Point c = hull[0][(i + 2) % hull_size]; abs_cos_abc = abs(getCosVectors(a, b, c)); bool flag_detect = true; for (size_t j = 0; j < min_abc.size(); j++) { if (min_abc[j] == b) { flag_detect = false; break; } } if (flag_detect && (abs_cos_abc < min_abs_cos_abc)) { min_pnt = b; min_abs_cos_abc = abs_cos_abc; } } min_abc.push_back(min_pnt); } int min_abc_size = static_cast(min_abc.size()); std::vector index_min_abc(min_abc_size); for (int i = 0; i < min_abc_size; i++) { for (int j = 0; j < hull_size; j++) { if (hull[0][j] == min_abc[i]) { index_min_abc[i] = j; break; } } } std::vector result_hull_point(angle_size); double min_norm, temp_norm; for (size_t i = 0; i < angle_size; i++) { min_norm = std::numeric_limits::max(); Point closest_pnt; for (int j = 0; j < min_abc_size; j++) { if (min_norm > norm(hull[0][index_min_abc[j]] - angle_list[i])) { min_norm = norm(hull[0][index_min_abc[j]] - angle_list[i]); closest_pnt = hull[0][index_min_abc[j]]; } } result_hull_point[i] = closest_pnt; } int start_line[2] = {0, 0}, finish_line[2] = {0, 0}, unstable_pnt = 0; for (int i = 0; i < hull_size; i++) { if (result_hull_point[3] == hull[0][i]) { start_line[0] = i; } if (result_hull_point[2] == hull[0][i]) { finish_line[0] = start_line[1] = i; } if (result_hull_point[1] == hull[0][i]) { finish_line[1] = i; } if (result_hull_point[0] == hull[0][i]) { unstable_pnt = i; } } int index_hull, extra_index_hull, next_index_hull, extra_next_index_hull, count_points; Point result_side_begin[4], result_side_end[4]; min_norm = std::numeric_limits::max(); index_hull = start_line[0]; count_points = abs(start_line[0] - finish_line[0]); do { if (count_points > hull_size / 2) { next_index_hull = index_hull + 1; } else { next_index_hull = index_hull - 1; } if (next_index_hull == hull_size) { next_index_hull = 0; } if (next_index_hull == -1) { next_index_hull = hull_size - 1; } Point angle_closest_pnt = norm(hull[0][index_hull] - angle_list[2]) > norm(hull[0][index_hull] - angle_list[3]) ? angle_list[3] : angle_list[2]; Point intrsc_line_hull = intersectionLines(hull[0][index_hull], hull[0][next_index_hull], angle_list[2], angle_list[3]); temp_norm = getCosVectors(hull[0][index_hull], intrsc_line_hull, angle_closest_pnt); if (min_norm > temp_norm && norm(hull[0][index_hull] - hull[0][next_index_hull]) > norm(angle_list[2] - angle_list[3]) / 10) { min_norm = temp_norm; result_side_begin[0] = hull[0][index_hull]; result_side_end[0] = hull[0][next_index_hull]; } index_hull = next_index_hull; } while(index_hull != finish_line[0]); if (min_norm == std::numeric_limits::max()) { result_side_begin[0] = angle_list[2]; result_side_end[0] = angle_list[3]; } min_norm = std::numeric_limits::max(); index_hull = start_line[1]; count_points = abs(start_line[1] - finish_line[1]); do { if (count_points > hull_size / 2) { next_index_hull = index_hull + 1; } else { next_index_hull = index_hull - 1; } if (next_index_hull == hull_size) { next_index_hull = 0; } if (next_index_hull == -1) { next_index_hull = hull_size - 1; } Point angle_closest_pnt = norm(hull[0][index_hull] - angle_list[1]) > norm(hull[0][index_hull] - angle_list[2]) ? angle_list[2] : angle_list[1]; Point intrsc_line_hull = intersectionLines(hull[0][index_hull], hull[0][next_index_hull], angle_list[1], angle_list[2]); temp_norm = getCosVectors(hull[0][index_hull], intrsc_line_hull, angle_closest_pnt); if (min_norm > temp_norm && norm(hull[0][index_hull] - hull[0][next_index_hull]) > norm(angle_list[1] - angle_list[2]) / 20) { min_norm = temp_norm; result_side_begin[1] = hull[0][index_hull]; result_side_end[1] = hull[0][next_index_hull]; } index_hull = next_index_hull; } while(index_hull != finish_line[1]); if (min_norm == std::numeric_limits::max()) { result_side_begin[1] = angle_list[1]; result_side_end[1] = angle_list[2]; } double test_norm[4] = { 0.0, 0.0, 0.0, 0.0 }; int test_index[4]; for (int i = 0; i < 4; i++) { test_index[i] = (i < 2) ? static_cast(start_line[0]) : static_cast(finish_line[1]); do { next_index_hull = ((i + 1) % 2 != 0) ? test_index[i] + 1 : test_index[i] - 1; if (next_index_hull == hull_size) { next_index_hull = 0; } if (next_index_hull == -1) { next_index_hull = hull_size - 1; } test_norm[i] += norm(hull[0][next_index_hull] - hull[0][unstable_pnt]); test_index[i] = next_index_hull; } while(test_index[i] != unstable_pnt); } std::vector result_angle_list(4), test_result_angle_list(4); double min_area = std::numeric_limits::max(), test_area; index_hull = start_line[0]; do { if (test_norm[0] < test_norm[1]) { next_index_hull = index_hull + 1; } else { next_index_hull = index_hull - 1; } if (next_index_hull == hull_size) { next_index_hull = 0; } if (next_index_hull == -1) { next_index_hull = hull_size - 1; } extra_index_hull = finish_line[1]; do { if (test_norm[2] < test_norm[3]) { extra_next_index_hull = extra_index_hull + 1; } else { extra_next_index_hull = extra_index_hull - 1; } if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; } if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; } test_result_angle_list[0] = intersectionLines(result_side_begin[0], result_side_end[0], result_side_begin[1], result_side_end[1]); test_result_angle_list[1] = intersectionLines(result_side_begin[1], result_side_end[1], hull[0][extra_index_hull], hull[0][extra_next_index_hull]); test_result_angle_list[2] = intersectionLines(hull[0][extra_index_hull], hull[0][extra_next_index_hull], hull[0][index_hull], hull[0][next_index_hull]); test_result_angle_list[3] = intersectionLines(hull[0][index_hull], hull[0][next_index_hull], result_side_begin[0], result_side_end[0]); test_area = getQuadrilateralArea(test_result_angle_list[0], test_result_angle_list[1], test_result_angle_list[2], test_result_angle_list[3]); if (min_area > test_area) { min_area = test_area; for (size_t i = 0; i < test_result_angle_list.size(); i++) { result_angle_list[i] = test_result_angle_list[i]; } } extra_index_hull = extra_next_index_hull; } while(extra_index_hull != unstable_pnt); index_hull = next_index_hull; } while(index_hull != unstable_pnt); if (norm(result_angle_list[0] - angle_list[2]) > norm(angle_list[2] - angle_list[1]) / 3) { result_angle_list[0] = angle_list[2]; } if (norm(result_angle_list[1] - angle_list[1]) > norm(angle_list[1] - angle_list[0]) / 3) { result_angle_list[1] = angle_list[1]; } if (norm(result_angle_list[2] - angle_list[0]) > norm(angle_list[0] - angle_list[3]) / 3) { result_angle_list[2] = angle_list[0]; } if (norm(result_angle_list[3] - angle_list[3]) > norm(angle_list[3] - angle_list[2]) / 3) { result_angle_list[3] = angle_list[3]; } return result_angle_list; } // b __________ c // / | // / | // / S | // / | // a --------------- d double QRDecode::getQuadrilateralArea(Point a, Point b, Point c, Point d) { double length_sides[4], perimeter = 0.0, result_area = 1.0; length_sides[0] = norm(a - b); length_sides[1] = norm(b - c); length_sides[2] = norm(c - d); length_sides[3] = norm(d - a); for (int i = 0; i < 4; i++) { perimeter += length_sides[i]; } perimeter /= 2; for (int i = 0; i < 4; i++) { result_area *= (perimeter - length_sides[i]); } result_area = sqrt(result_area); return result_area; } // / | b // / | // / | // a/ | c double QRDecode::getCosVectors(Point a, Point b, Point c) { return ((a - b).x * (c - b).x + (a - b).y * (c - b).y) / (norm(a - b) * norm(c - b)); } CV_EXPORTS bool detectQRCode(InputArray in, std::vector &points, double eps_x, double eps_y) { CV_Assert(in.isMat()); CV_Assert(in.getMat().type() == CV_8UC1); QRDecode qrdec; qrdec.init(in.getMat(), eps_x, eps_y); qrdec.binarization(); if (!qrdec.localization()) { return false; } if (!qrdec.transformation()) { return false; } points = qrdec.getTransformationPoints(); return true; } }