/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { #define sign(a) a > 0 ? 1 : a == 0 ? 0 : -1 #define CORE_EIGEN_ERROR_COUNT 1 #define CORE_EIGEN_ERROR_SIZE 2 #define CORE_EIGEN_ERROR_DIFF 3 #define CORE_EIGEN_ERROR_ORTHO 4 #define CORE_EIGEN_ERROR_ORDER 5 #define MESSAGE_ERROR_COUNT "Matrix of eigen values must have the same rows as source matrix and 1 column." #define MESSAGE_ERROR_SIZE "Source matrix and matrix of eigen vectors must have the same sizes." #define MESSAGE_ERROR_DIFF_1 "Accuracy of eigen values computing less than required." #define MESSAGE_ERROR_DIFF_2 "Accuracy of eigen vectors computing less than required." #define MESSAGE_ERROR_ORTHO "Matrix of eigen vectors is not orthogonal." #define MESSAGE_ERROR_ORDER "Eigen values are not sorted in descending order." const int COUNT_NORM_TYPES = 3; const int NORM_TYPE[COUNT_NORM_TYPES] = {cv::NORM_L1, cv::NORM_L2, cv::NORM_INF}; enum TASK_TYPE_EIGEN {VALUES, VECTORS}; class Core_EigenTest: public cvtest::BaseTest { public: Core_EigenTest(); ~Core_EigenTest(); protected: bool test_values(const cv::Mat& src); // complex test for eigen without vectors bool check_full(int type); // complex test for symmetric matrix virtual void run (int) = 0; // main testing method protected: float eps_val_32, eps_vec_32; float eps_val_64, eps_vec_64; int ntests; bool check_pair_count(const cv::Mat& src, const cv::Mat& evalues, int low_index = -1, int high_index = -1); bool check_pair_count(const cv::Mat& src, const cv::Mat& evalues, const cv::Mat& evectors, int low_index = -1, int high_index = -1); bool check_pairs_order(const cv::Mat& eigen_values); // checking order of eigen values & vectors (it should be none up) bool check_orthogonality(const cv::Mat& U); // checking is matrix of eigen vectors orthogonal bool test_pairs(const cv::Mat& src); // complex test for eigen with vectors void print_information(const size_t norm_idx, const cv::Mat& src, double diff, double max_diff); }; class Core_EigenTest_Scalar : public Core_EigenTest { public: Core_EigenTest_Scalar() : Core_EigenTest() {} ~Core_EigenTest_Scalar(); virtual void run(int) = 0; }; class Core_EigenTest_Scalar_32 : public Core_EigenTest_Scalar { public: Core_EigenTest_Scalar_32() : Core_EigenTest_Scalar() {} ~Core_EigenTest_Scalar_32(); void run(int); }; class Core_EigenTest_Scalar_64 : public Core_EigenTest_Scalar { public: Core_EigenTest_Scalar_64() : Core_EigenTest_Scalar() {} ~Core_EigenTest_Scalar_64(); void run(int); }; class Core_EigenTest_32 : public Core_EigenTest { public: Core_EigenTest_32(): Core_EigenTest() {} ~Core_EigenTest_32() {} void run(int); }; class Core_EigenTest_64 : public Core_EigenTest { public: Core_EigenTest_64(): Core_EigenTest() {} ~Core_EigenTest_64() {} void run(int); }; Core_EigenTest_Scalar::~Core_EigenTest_Scalar() {} Core_EigenTest_Scalar_32::~Core_EigenTest_Scalar_32() {} Core_EigenTest_Scalar_64::~Core_EigenTest_Scalar_64() {} void Core_EigenTest_Scalar_32::run(int) { for (int i = 0; i < ntests; ++i) { float value = cv::randu(); cv::Mat src(1, 1, CV_32FC1, Scalar::all((float)value)); test_values(src); } } void Core_EigenTest_Scalar_64::run(int) { for (int i = 0; i < ntests; ++i) { float value = cv::randu(); cv::Mat src(1, 1, CV_64FC1, Scalar::all((double)value)); test_values(src); } } void Core_EigenTest_32::run(int) { check_full(CV_32FC1); } void Core_EigenTest_64::run(int) { check_full(CV_64FC1); } Core_EigenTest::Core_EigenTest() : eps_val_32(1e-3f), eps_vec_32(1e-3f), eps_val_64(1e-4f), eps_vec_64(1e-4f), ntests(100) {} Core_EigenTest::~Core_EigenTest() {} bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues, int low_index, int high_index) { int n = src.rows, s = sign(high_index); if (!( (evalues.rows == n - max(0, low_index) - ((int)((n/2.0)*(s*s-s)) + (1+s-s*s)*(n - (high_index+1)))) && (evalues.cols == 1))) { std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl; std::cout << "Number of rows: " << evalues.rows << " Number of cols: " << evalues.cols << endl; std::cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl; CV_Error(CORE_EIGEN_ERROR_COUNT, MESSAGE_ERROR_COUNT); } return true; } bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues, const cv::Mat& evectors, int low_index, int high_index) { int n = src.rows, s = sign(high_index); int right_eigen_pair_count = n - max(0, low_index) - ((int)((n/2.0)*(s*s-s)) + (1+s-s*s)*(n - (high_index+1))); if (!(evectors.rows == right_eigen_pair_count && evectors.cols == right_eigen_pair_count)) { std::cout << endl; std::cout << "Checking sizes of eigen vectors matrix " << evectors << "..." << endl; std::cout << "Number of rows: " << evectors.rows << " Number of cols: " << evectors.cols << endl; std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl; CV_Error (CORE_EIGEN_ERROR_SIZE, MESSAGE_ERROR_SIZE); } if (!(evalues.rows == right_eigen_pair_count && evalues.cols == 1)) { std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl; std::cout << "Number of rows: " << evalues.rows << " Number of cols: " << evalues.cols << endl; std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl; CV_Error (CORE_EIGEN_ERROR_COUNT, MESSAGE_ERROR_COUNT); } return true; } void Core_EigenTest::print_information(const size_t norm_idx, const cv::Mat& src, double diff, double max_diff) { switch (NORM_TYPE[norm_idx]) { case cv::NORM_L1: std::cout << "L1"; break; case cv::NORM_L2: std::cout << "L2"; break; case cv::NORM_INF: std::cout << "INF"; break; default: break; } cout << "-criteria... " << endl; cout << "Source size: " << src.rows << " * " << src.cols << endl; cout << "Difference between original eigen vectors matrix and result: " << diff << endl; cout << "Maximum allowed difference: " << max_diff << endl; cout << endl; } bool Core_EigenTest::check_orthogonality(const cv::Mat& U) { int type = U.type(); double eps_vec = type == CV_32FC1 ? eps_vec_32 : eps_vec_64; cv::Mat UUt; cv::mulTransposed(U, UUt, false); cv::Mat E = Mat::eye(U.rows, U.cols, type); for (int i = 0; i < COUNT_NORM_TYPES; ++i) { double diff = cvtest::norm(UUt, E, NORM_TYPE[i] | cv::NORM_RELATIVE); if (diff > eps_vec) { std::cout << endl; std::cout << "Checking orthogonality of matrix " << U << ": "; print_information(i, U, diff, eps_vec); CV_Error(CORE_EIGEN_ERROR_ORTHO, MESSAGE_ERROR_ORTHO); } } return true; } bool Core_EigenTest::check_pairs_order(const cv::Mat& eigen_values) { switch (eigen_values.type()) { case CV_32FC1: { for (int i = 0; i < (int)(eigen_values.total() - 1); ++i) if (!(eigen_values.at(i, 0) > eigen_values.at(i+1, 0))) { std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl; std::cout << "Pair of indexes with non descending of eigen values: (" << i << ", " << i+1 << ")." << endl; std::cout << endl; CV_Error(CORE_EIGEN_ERROR_ORDER, MESSAGE_ERROR_ORDER); } break; } case CV_64FC1: { for (int i = 0; i < (int)(eigen_values.total() - 1); ++i) if (!(eigen_values.at(i, 0) > eigen_values.at(i+1, 0))) { std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl; std::cout << "Pair of indexes with non descending of eigen values: (" << i << ", " << i+1 << ")." << endl; std::cout << endl; CV_Error(CORE_EIGEN_ERROR_ORDER, "Eigen values are not sorted in descending order."); } break; } default:; } return true; } bool Core_EigenTest::test_pairs(const cv::Mat& src) { int type = src.type(); double eps_vec = type == CV_32FC1 ? eps_vec_32 : eps_vec_64; cv::Mat eigen_values, eigen_vectors; cv::eigen(src, eigen_values, eigen_vectors); if (!check_pair_count(src, eigen_values, eigen_vectors)) return false; if (!check_orthogonality (eigen_vectors)) return false; if (!check_pairs_order(eigen_values)) return false; cv::Mat eigen_vectors_t; cv::transpose(eigen_vectors, eigen_vectors_t); // Check: // src * eigenvector = eigenval * eigenvector cv::Mat lhs(src.rows, src.cols, type); cv::Mat rhs(src.rows, src.cols, type); lhs = src*eigen_vectors_t; for (int i = 0; i < src.cols; ++i) { double eigenval = 0; switch (type) { case CV_32FC1: eigenval = eigen_values.at(i, 0); break; case CV_64FC1: eigenval = eigen_values.at(i, 0); break; } cv::Mat rhs_v = eigenval * eigen_vectors_t.col(i); rhs_v.copyTo(rhs.col(i)); } for (int i = 0; i < COUNT_NORM_TYPES; ++i) { double diff = cvtest::norm(lhs, rhs, NORM_TYPE[i] | cv::NORM_RELATIVE); if (diff > eps_vec) { std::cout << endl; std::cout << "Checking accuracy of eigen vectors computing for matrix " << src << ": "; print_information(i, src, diff, eps_vec); CV_Error(CORE_EIGEN_ERROR_DIFF, MESSAGE_ERROR_DIFF_2); } } return true; } bool Core_EigenTest::test_values(const cv::Mat& src) { int type = src.type(); double eps_val = type == CV_32FC1 ? eps_val_32 : eps_val_64; cv::Mat eigen_values_1, eigen_values_2, eigen_vectors; if (!test_pairs(src)) return false; cv::eigen(src, eigen_values_1, eigen_vectors); cv::eigen(src, eigen_values_2); if (!check_pair_count(src, eigen_values_2)) return false; for (int i = 0; i < COUNT_NORM_TYPES; ++i) { double diff = cvtest::norm(eigen_values_1, eigen_values_2, NORM_TYPE[i] | cv::NORM_RELATIVE); if (diff > eps_val) { std::cout << endl; std::cout << "Checking accuracy of eigen values computing for matrix " << src << ": "; print_information(i, src, diff, eps_val); CV_Error(CORE_EIGEN_ERROR_DIFF, MESSAGE_ERROR_DIFF_1); } } return true; } bool Core_EigenTest::check_full(int type) { const int MAX_DEGREE = 7; RNG rng = cv::theRNG(); // fix the seed for (int i = 0; i < ntests; ++i) { int src_size = (int)(std::pow(2.0, (rng.uniform(0, MAX_DEGREE) + 1.))); cv::Mat src(src_size, src_size, type); for (int j = 0; j < src.rows; ++j) for (int k = j; k < src.cols; ++k) if (type == CV_32FC1) src.at(k, j) = src.at(j, k) = cv::randu(); else src.at(k, j) = src.at(j, k) = cv::randu(); if (!test_values(src)) return false; } return true; } TEST(Core_Eigen, scalar_32) {Core_EigenTest_Scalar_32 test; test.safe_run(); } TEST(Core_Eigen, scalar_64) {Core_EigenTest_Scalar_64 test; test.safe_run(); } TEST(Core_Eigen, vector_32) { Core_EigenTest_32 test; test.safe_run(); } TEST(Core_Eigen, vector_64) { Core_EigenTest_64 test; test.safe_run(); } template static void testEigen(const Mat_& src, const Mat_& expected_eigenvalues, bool runSymmetric = false) { SCOPED_TRACE(runSymmetric ? "cv::eigen" : "cv::eigenNonSymmetric"); int type = traits::Type::value; const T eps = src.type() == CV_32F ? 1e-4f : 1e-6f; Mat eigenvalues, eigenvectors, eigenvalues0; if (runSymmetric) { cv::eigen(src, eigenvalues0, noArray()); cv::eigen(src, eigenvalues, eigenvectors); } else { cv::eigenNonSymmetric(src, eigenvalues0, noArray()); cv::eigenNonSymmetric(src, eigenvalues, eigenvectors); } #if 0 std::cout << "src = " << src << std::endl; std::cout << "eigenvalues.t() = " << eigenvalues.t() << std::endl; std::cout << "eigenvectors = " << eigenvectors << std::endl; #endif ASSERT_EQ(type, eigenvalues0.type()); ASSERT_EQ(type, eigenvalues.type()); ASSERT_EQ(type, eigenvectors.type()); ASSERT_EQ(src.rows, eigenvalues.rows); ASSERT_EQ(eigenvalues.rows, eigenvectors.rows); ASSERT_EQ(src.rows, eigenvectors.cols); EXPECT_LT(cvtest::norm(eigenvalues, eigenvalues0, NORM_INF), eps); // check definition: src*eigenvectors.row(i).t() = eigenvalues.at(i)*eigenvectors.row(i).t() for (int i = 0; i < src.rows; i++) { EXPECT_NEAR(eigenvalues.at(i), expected_eigenvalues(i), eps) << "i=" << i; Mat lhs = src*eigenvectors.row(i).t(); Mat rhs = eigenvalues.at(i)*eigenvectors.row(i).t(); EXPECT_LT(cvtest::norm(lhs, rhs, NORM_INF), eps) << "i=" << i << " eigenvalue=" << eigenvalues.at(i) << std::endl << "lhs=" << lhs.t() << std::endl << "rhs=" << rhs.t(); } } template static void testEigenSymmetric3x3() { /*const*/ T values_[] = { 2, -1, 0, -1, 2, -1, 0, -1, 2 }; Mat_ src(3, 3, values_); /*const*/ T expected_eigenvalues_[] = { 3.414213562373095f, 2, 0.585786437626905f }; Mat_ expected_eigenvalues(3, 1, expected_eigenvalues_); testEigen(src, expected_eigenvalues); testEigen(src, expected_eigenvalues, true); } TEST(Core_EigenSymmetric, float3x3) { testEigenSymmetric3x3(); } TEST(Core_EigenSymmetric, double3x3) { testEigenSymmetric3x3(); } template static void testEigenSymmetric5x5() { /*const*/ T values_[5*5] = { 5, -1, 0, 2, 1, -1, 4, -1, 0, 0, 0, -1, 3, 1, -1, 2, 0, 1, 4, 0, 1, 0, -1, 0, 1 }; Mat_ src(5, 5, values_); /*const*/ T expected_eigenvalues_[] = { 7.028919644935684f, 4.406130784616501f, 3.73626552682258f, 1.438067799899037f, 0.390616243726198f }; Mat_ expected_eigenvalues(5, 1, expected_eigenvalues_); testEigen(src, expected_eigenvalues); testEigen(src, expected_eigenvalues, true); } TEST(Core_EigenSymmetric, float5x5) { testEigenSymmetric5x5(); } TEST(Core_EigenSymmetric, double5x5) { testEigenSymmetric5x5(); } template static void testEigen2x2() { /*const*/ T values_[] = { 4, 1, 6, 3 }; Mat_ src(2, 2, values_); /*const*/ T expected_eigenvalues_[] = { 6, 1 }; Mat_ expected_eigenvalues(2, 1, expected_eigenvalues_); testEigen(src, expected_eigenvalues); } TEST(Core_EigenNonSymmetric, float2x2) { testEigen2x2(); } TEST(Core_EigenNonSymmetric, double2x2) { testEigen2x2(); } template static void testEigen3x3() { /*const*/ T values_[3*3] = { 3,1,0, 0,3,1, 0,0,3 }; Mat_ src(3, 3, values_); /*const*/ T expected_eigenvalues_[] = { 3, 3, 3 }; Mat_ expected_eigenvalues(3, 1, expected_eigenvalues_); testEigen(src, expected_eigenvalues); } TEST(Core_EigenNonSymmetric, float3x3) { testEigen3x3(); } TEST(Core_EigenNonSymmetric, double3x3) { testEigen3x3(); } typedef testing::TestWithParam Core_EigenZero; TEST_P(Core_EigenZero, double) { int N = GetParam(); Mat_ srcZero = Mat_::zeros(N, N); Mat_ expected_eigenvalueZero = Mat_::zeros(N, 1); // 1D Mat testEigen(srcZero, expected_eigenvalueZero); testEigen(srcZero, expected_eigenvalueZero, true); } INSTANTIATE_TEST_CASE_P(/**/, Core_EigenZero, testing::Values(2, 3, 5)); TEST(Core_EigenNonSymmetric, convergence) { Matx33d m( 0, -1, 0, 1, 0, 1, 0, -1, 0); Mat eigenvalues, eigenvectors; // eigen values are complex, algorithm doesn't converge try { cv::eigenNonSymmetric(m, eigenvalues, eigenvectors); std::cout << Mat(eigenvalues.t()) << std::endl; } catch (const cv::Exception& e) { EXPECT_EQ(Error::StsNoConv, e.code) << e.what(); } catch (...) { FAIL() << "Unknown exception has been raised"; } } }} // namespace