//M*////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /****************************************************************************************\ * Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation. * Contributed by Edgar Riba \****************************************************************************************/ #include "precomp.hpp" #include "upnp.h" #include using namespace std; using namespace cv; upnp::upnp(const Mat& cameraMatrix, const Mat& opoints, const Mat& ipoints) { if (cameraMatrix.depth() == CV_32F) init_camera_parameters(cameraMatrix); else init_camera_parameters(cameraMatrix); number_of_correspondences = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F)); pws.resize(3 * number_of_correspondences); us.resize(2 * number_of_correspondences); if (opoints.depth() == ipoints.depth()) { if (opoints.depth() == CV_32F) init_points(opoints, ipoints); else init_points(opoints, ipoints); } else if (opoints.depth() == CV_32F) init_points(opoints, ipoints); else init_points(opoints, ipoints); alphas.resize(4 * number_of_correspondences); pcs.resize(3 * number_of_correspondences); max_nr = 0; A1 = NULL; A2 = NULL; } upnp::~upnp() { if (A1) delete[] A1; if (A2) delete[] A2; } double upnp::compute_pose(Mat& R, Mat& t) { choose_control_points(); compute_alphas(); Mat * M = new Mat(2 * number_of_correspondences, 12, CV_64F); for(int i = 0; i < number_of_correspondences; i++) { fill_M(M, 2 * i, &alphas[0] + 4 * i, us[2 * i], us[2 * i + 1]); } double mtm[12 * 12], d[12], ut[12 * 12], vt[12 * 12]; Mat MtM = Mat(12, 12, CV_64F, mtm); Mat D = Mat(12, 1, CV_64F, d); Mat Ut = Mat(12, 12, CV_64F, ut); Mat Vt = Mat(12, 12, CV_64F, vt); MtM = M->t() * (*M); SVD::compute(MtM, D, Ut, Vt, SVD::MODIFY_A | SVD::FULL_UV); Mat(Ut.t()).copyTo(Ut); M->release(); delete M; double l_6x12[6 * 12], rho[6]; Mat L_6x12 = Mat(6, 12, CV_64F, l_6x12); Mat Rho = Mat(6, 1, CV_64F, rho); compute_L_6x12(ut, l_6x12); compute_rho(rho); double Betas[3][4], Efs[3][1], rep_errors[3]; double Rs[3][3][3], ts[3][3]; find_betas_and_focal_approx_1(&Ut, &Rho, Betas[1], Efs[1]); gauss_newton(&L_6x12, &Rho, Betas[1], Efs[1]); rep_errors[1] = compute_R_and_t(ut, Betas[1], Rs[1], ts[1]); find_betas_and_focal_approx_2(&Ut, &Rho, Betas[2], Efs[2]); gauss_newton(&L_6x12, &Rho, Betas[2], Efs[2]); rep_errors[2] = compute_R_and_t(ut, Betas[2], Rs[2], ts[2]); int N = 1; if (rep_errors[2] < rep_errors[1]) N = 2; Mat(3, 1, CV_64F, ts[N]).copyTo(t); Mat(3, 3, CV_64F, Rs[N]).copyTo(R); fu = fv = Efs[N][0]; return fu; } void upnp::copy_R_and_t(const double R_src[3][3], const double t_src[3], double R_dst[3][3], double t_dst[3]) { for(int i = 0; i < 3; i++) { for(int j = 0; j < 3; j++) R_dst[i][j] = R_src[i][j]; t_dst[i] = t_src[i]; } } void upnp::estimate_R_and_t(double R[3][3], double t[3]) { double pc0[3], pw0[3]; pc0[0] = pc0[1] = pc0[2] = 0.0; pw0[0] = pw0[1] = pw0[2] = 0.0; for(int i = 0; i < number_of_correspondences; i++) { const double * pc = &pcs[3 * i]; const double * pw = &pws[3 * i]; for(int j = 0; j < 3; j++) { pc0[j] += pc[j]; pw0[j] += pw[j]; } } for(int j = 0; j < 3; j++) { pc0[j] /= number_of_correspondences; pw0[j] /= number_of_correspondences; } double abt[3 * 3] = {0}, abt_d[3], abt_u[3 * 3], abt_v[3 * 3]; Mat ABt = Mat(3, 3, CV_64F, abt); Mat ABt_D = Mat(3, 1, CV_64F, abt_d); Mat ABt_U = Mat(3, 3, CV_64F, abt_u); Mat ABt_V = Mat(3, 3, CV_64F, abt_v); ABt.setTo(0.0); for(int i = 0; i < number_of_correspondences; i++) { double * pc = &pcs[3 * i]; double * pw = &pws[3 * i]; for(int j = 0; j < 3; j++) { abt[3 * j ] += (pc[j] - pc0[j]) * (pw[0] - pw0[0]); abt[3 * j + 1] += (pc[j] - pc0[j]) * (pw[1] - pw0[1]); abt[3 * j + 2] += (pc[j] - pc0[j]) * (pw[2] - pw0[2]); } } SVD::compute(ABt, ABt_D, ABt_U, ABt_V, SVD::MODIFY_A); Mat(ABt_V.t()).copyTo(ABt_V); for(int i = 0; i < 3; i++) for(int j = 0; j < 3; j++) R[i][j] = dot(abt_u + 3 * i, abt_v + 3 * j); const double det = R[0][0] * R[1][1] * R[2][2] + R[0][1] * R[1][2] * R[2][0] + R[0][2] * R[1][0] * R[2][1] - R[0][2] * R[1][1] * R[2][0] - R[0][1] * R[1][0] * R[2][2] - R[0][0] * R[1][2] * R[2][1]; if (det < 0) { R[2][0] = -R[2][0]; R[2][1] = -R[2][1]; R[2][2] = -R[2][2]; } t[0] = pc0[0] - dot(R[0], pw0); t[1] = pc0[1] - dot(R[1], pw0); t[2] = pc0[2] - dot(R[2], pw0); } void upnp::solve_for_sign(void) { if (pcs[2] < 0.0) { for(int i = 0; i < 4; i++) for(int j = 0; j < 3; j++) ccs[i][j] = -ccs[i][j]; for(int i = 0; i < number_of_correspondences; i++) { pcs[3 * i ] = -pcs[3 * i]; pcs[3 * i + 1] = -pcs[3 * i + 1]; pcs[3 * i + 2] = -pcs[3 * i + 2]; } } } double upnp::compute_R_and_t(const double * ut, const double * betas, double R[3][3], double t[3]) { compute_ccs(betas, ut); compute_pcs(); solve_for_sign(); estimate_R_and_t(R, t); return reprojection_error(R, t); } double upnp::reprojection_error(const double R[3][3], const double t[3]) { double sum2 = 0.0; for(int i = 0; i < number_of_correspondences; i++) { double * pw = &pws[3 * i]; double Xc = dot(R[0], pw) + t[0]; double Yc = dot(R[1], pw) + t[1]; double inv_Zc = 1.0 / (dot(R[2], pw) + t[2]); double ue = uc + fu * Xc * inv_Zc; double ve = vc + fv * Yc * inv_Zc; double u = us[2 * i], v = us[2 * i + 1]; sum2 += sqrt( (u - ue) * (u - ue) + (v - ve) * (v - ve) ); } return sum2 / number_of_correspondences; } void upnp::choose_control_points() { for (int i = 0; i < 4; ++i) cws[i][0] = cws[i][1] = cws[i][2] = 0.0; cws[0][0] = cws[1][1] = cws[2][2] = 1.0; } void upnp::compute_alphas() { Mat CC = Mat(4, 3, CV_64F, &cws); Mat PC = Mat(number_of_correspondences, 3, CV_64F, &pws[0]); Mat ALPHAS = Mat(number_of_correspondences, 4, CV_64F, &alphas[0]); Mat CC_ = CC.clone().t(); Mat PC_ = PC.clone().t(); Mat row14 = Mat::ones(1, 4, CV_64F); Mat row1n = Mat::ones(1, number_of_correspondences, CV_64F); CC_.push_back(row14); PC_.push_back(row1n); ALPHAS = Mat( CC_.inv() * PC_ ).t(); } void upnp::fill_M(Mat * M, const int row, const double * as, const double u, const double v) { double * M1 = M->ptr(row); double * M2 = M1 + 12; for(int i = 0; i < 4; i++) { M1[3 * i ] = as[i] * fu; M1[3 * i + 1] = 0.0; M1[3 * i + 2] = as[i] * (uc - u); M2[3 * i ] = 0.0; M2[3 * i + 1] = as[i] * fv; M2[3 * i + 2] = as[i] * (vc - v); } } void upnp::compute_ccs(const double * betas, const double * ut) { for(int i = 0; i < 4; ++i) ccs[i][0] = ccs[i][1] = ccs[i][2] = 0.0; int N = 4; for(int i = 0; i < N; ++i) { const double * v = ut + 12 * (9 + i); for(int j = 0; j < 4; ++j) for(int k = 0; k < 3; ++k) ccs[j][k] += betas[i] * v[3 * j + k]; } for (int i = 0; i < 4; ++i) ccs[i][2] *= fu; } void upnp::compute_pcs(void) { for(int i = 0; i < number_of_correspondences; i++) { double * a = &alphas[0] + 4 * i; double * pc = &pcs[0] + 3 * i; for(int j = 0; j < 3; j++) pc[j] = a[0] * ccs[0][j] + a[1] * ccs[1][j] + a[2] * ccs[2][j] + a[3] * ccs[3][j]; } } void upnp::find_betas_and_focal_approx_1(Mat * Ut, Mat * Rho, double * betas, double * efs) { Mat Kmf1 = Mat(12, 1, CV_64F, Ut->ptr(11)); Mat dsq = Mat(6, 1, CV_64F, Rho->ptr(0)); Mat D = compute_constraint_distance_2param_6eq_2unk_f_unk( Kmf1 ); Mat Dt = D.t(); Mat A = Dt * D; Mat b = Dt * dsq; Mat x = Mat(2, 1, CV_64F); solve(A, b, x); betas[0] = sqrt( abs( x.at(0) ) ); betas[1] = betas[2] = betas[3] = 0.0; efs[0] = sqrt( abs( x.at(1) ) ) / betas[0]; } void upnp::find_betas_and_focal_approx_2(Mat * Ut, Mat * Rho, double * betas, double * efs) { double u[12*12]; Mat U = Mat(12, 12, CV_64F, u); Ut->copyTo(U); Mat Kmf1 = Mat(12, 1, CV_64F, Ut->ptr(10)); Mat Kmf2 = Mat(12, 1, CV_64F, Ut->ptr(11)); Mat dsq = Mat(6, 1, CV_64F, Rho->ptr(0)); Mat D = compute_constraint_distance_3param_6eq_6unk_f_unk( Kmf1, Kmf2 ); Mat A = D; Mat b = dsq; double x[6]; Mat X = Mat(6, 1, CV_64F, x); solve(A, b, X, DECOMP_QR); double solutions[18][3]; generate_all_possible_solutions_for_f_unk(x, solutions); // find solution with minimum reprojection error double min_error = std::numeric_limits::max(); int min_sol = 0; for (int i = 0; i < 18; ++i) { betas[3] = solutions[i][0]; betas[2] = solutions[i][1]; betas[1] = betas[0] = 0.0; fu = fv = solutions[i][2]; double Rs[3][3], ts[3]; double error_i = compute_R_and_t( u, betas, Rs, ts); if( error_i < min_error) { min_error = error_i; min_sol = i; } } betas[0] = solutions[min_sol][0]; betas[1] = solutions[min_sol][1]; betas[2] = betas[3] = 0.0; efs[0] = solutions[min_sol][2]; } Mat upnp::compute_constraint_distance_2param_6eq_2unk_f_unk(const Mat& M1) { Mat P = Mat(6, 2, CV_64F); double m[13]; for (int i = 1; i < 13; ++i) m[i] = *M1.ptr(i-1); double t1 = pow( m[4], 2 ); double t4 = pow( m[1], 2 ); double t5 = pow( m[5], 2 ); double t8 = pow( m[2], 2 ); double t10 = pow( m[6], 2 ); double t13 = pow( m[3], 2 ); double t15 = pow( m[7], 2 ); double t18 = pow( m[8], 2 ); double t22 = pow( m[9], 2 ); double t26 = pow( m[10], 2 ); double t29 = pow( m[11], 2 ); double t33 = pow( m[12], 2 ); *P.ptr(0,0) = t1 - 2 * m[4] * m[1] + t4 + t5 - 2 * m[5] * m[2] + t8; *P.ptr(0,1) = t10 - 2 * m[6] * m[3] + t13; *P.ptr(1,0) = t15 - 2 * m[7] * m[1] + t4 + t18 - 2 * m[8] * m[2] + t8; *P.ptr(1,1) = t22 - 2 * m[9] * m[3] + t13; *P.ptr(2,0) = t26 - 2 * m[10] * m[1] + t4 + t29 - 2 * m[11] * m[2] + t8; *P.ptr(2,1) = t33 - 2 * m[12] * m[3] + t13; *P.ptr(3,0) = t15 - 2 * m[7] * m[4] + t1 + t18 - 2 * m[8] * m[5] + t5; *P.ptr(3,1) = t22 - 2 * m[9] * m[6] + t10; *P.ptr(4,0) = t26 - 2 * m[10] * m[4] + t1 + t29 - 2 * m[11] * m[5] + t5; *P.ptr(4,1) = t33 - 2 * m[12] * m[6] + t10; *P.ptr(5,0) = t26 - 2 * m[10] * m[7] + t15 + t29 - 2 * m[11] * m[8] + t18; *P.ptr(5,1) = t33 - 2 * m[12] * m[9] + t22; return P; } Mat upnp::compute_constraint_distance_3param_6eq_6unk_f_unk(const Mat& M1, const Mat& M2) { Mat P = Mat(6, 6, CV_64F); double m[3][13]; for (int i = 1; i < 13; ++i) { m[1][i] = *M1.ptr(i-1); m[2][i] = *M2.ptr(i-1); } double t1 = pow( m[1][4], 2 ); double t2 = pow( m[1][1], 2 ); double t7 = pow( m[1][5], 2 ); double t8 = pow( m[1][2], 2 ); double t11 = m[1][1] * m[2][1]; double t12 = m[1][5] * m[2][5]; double t15 = m[1][2] * m[2][2]; double t16 = m[1][4] * m[2][4]; double t19 = pow( m[2][4], 2 ); double t22 = pow( m[2][2], 2 ); double t23 = pow( m[2][1], 2 ); double t24 = pow( m[2][5], 2 ); double t28 = pow( m[1][6], 2 ); double t29 = pow( m[1][3], 2 ); double t34 = pow( m[1][3], 2 ); double t36 = m[1][6] * m[2][6]; double t40 = pow( m[2][6], 2 ); double t41 = pow( m[2][3], 2 ); double t47 = pow( m[1][7], 2 ); double t48 = pow( m[1][8], 2 ); double t52 = m[1][7] * m[2][7]; double t55 = m[1][8] * m[2][8]; double t59 = pow( m[2][8], 2 ); double t62 = pow( m[2][7], 2 ); double t64 = pow( m[1][9], 2 ); double t68 = m[1][9] * m[2][9]; double t74 = pow( m[2][9], 2 ); double t78 = pow( m[1][10], 2 ); double t79 = pow( m[1][11], 2 ); double t84 = m[1][10] * m[2][10]; double t87 = m[1][11] * m[2][11]; double t90 = pow( m[2][10], 2 ); double t95 = pow( m[2][11], 2 ); double t99 = pow( m[1][12], 2 ); double t101 = m[1][12] * m[2][12]; double t105 = pow( m[2][12], 2 ); *P.ptr(0,0) = t1 + t2 - 2 * m[1][4] * m[1][1] - 2 * m[1][5] * m[1][2] + t7 + t8; *P.ptr(0,1) = -2 * m[2][4] * m[1][1] + 2 * t11 + 2 * t12 - 2 * m[1][4] * m[2][1] - 2 * m[2][5] * m[1][2] + 2 * t15 + 2 * t16 - 2 * m[1][5] * m[2][2]; *P.ptr(0,2) = t19 - 2 * m[2][4] * m[2][1] + t22 + t23 + t24 - 2 * m[2][5] * m[2][2]; *P.ptr(0,3) = t28 + t29 - 2 * m[1][6] * m[1][3]; *P.ptr(0,4) = -2 * m[2][6] * m[1][3] + 2 * t34 - 2 * m[1][6] * m[2][3] + 2 * t36; *P.ptr(0,5) = -2 * m[2][6] * m[2][3] + t40 + t41; *P.ptr(1,0) = t8 - 2 * m[1][8] * m[1][2] - 2 * m[1][7] * m[1][1] + t47 + t48 + t2; *P.ptr(1,1) = 2 * t15 - 2 * m[1][8] * m[2][2] - 2 * m[2][8] * m[1][2] + 2 * t52 - 2 * m[1][7] * m[2][1] - 2 * m[2][7] * m[1][1] + 2 * t55 + 2 * t11; *P.ptr(1,2) = -2 * m[2][8] * m[2][2] + t22 + t23 + t59 - 2 * m[2][7] * m[2][1] + t62; *P.ptr(1,3) = t29 + t64 - 2 * m[1][9] * m[1][3]; *P.ptr(1,4) = 2 * t34 + 2 * t68 - 2 * m[2][9] * m[1][3] - 2 * m[1][9] * m[2][3]; *P.ptr(1,5) = -2 * m[2][9] * m[2][3] + t74 + t41; *P.ptr(2,0) = -2 * m[1][11] * m[1][2] + t2 + t8 + t78 + t79 - 2 * m[1][10] * m[1][1]; *P.ptr(2,1) = 2 * t15 - 2 * m[1][11] * m[2][2] + 2 * t84 - 2 * m[1][10] * m[2][1] - 2 * m[2][10] * m[1][1] + 2 * t87 - 2 * m[2][11] * m[1][2]+ 2 * t11; *P.ptr(2,2) = t90 + t22 - 2 * m[2][10] * m[2][1] + t23 - 2 * m[2][11] * m[2][2] + t95; *P.ptr(2,3) = -2 * m[1][12] * m[1][3] + t99 + t29; *P.ptr(2,4) = 2 * t34 + 2 * t101 - 2 * m[2][12] * m[1][3] - 2 * m[1][12] * m[2][3]; *P.ptr(2,5) = t41 + t105 - 2 * m[2][12] * m[2][3]; *P.ptr(3,0) = t48 + t1 - 2 * m[1][8] * m[1][5] + t7 - 2 * m[1][7] * m[1][4] + t47; *P.ptr(3,1) = 2 * t16 - 2 * m[1][7] * m[2][4] + 2 * t55 + 2 * t52 - 2 * m[1][8] * m[2][5] - 2 * m[2][8] * m[1][5] - 2 * m[2][7] * m[1][4] + 2 * t12; *P.ptr(3,2) = t24 - 2 * m[2][8] * m[2][5] + t19 - 2 * m[2][7] * m[2][4] + t62 + t59; *P.ptr(3,3) = -2 * m[1][9] * m[1][6] + t64 + t28; *P.ptr(3,4) = 2 * t68 + 2 * t36 - 2 * m[2][9] * m[1][6] - 2 * m[1][9] * m[2][6]; *P.ptr(3,5) = t40 + t74 - 2 * m[2][9] * m[2][6]; *P.ptr(4,0) = t1 - 2 * m[1][10] * m[1][4] + t7 + t78 + t79 - 2 * m[1][11] * m[1][5]; *P.ptr(4,1) = 2 * t84 - 2 * m[1][11] * m[2][5] - 2 * m[1][10] * m[2][4] + 2 * t16 - 2 * m[2][11] * m[1][5] + 2 * t87 - 2 * m[2][10] * m[1][4] + 2 * t12; *P.ptr(4,2) = t19 + t24 - 2 * m[2][10] * m[2][4] - 2 * m[2][11] * m[2][5] + t95 + t90; *P.ptr(4,3) = t28 - 2 * m[1][12] * m[1][6] + t99; *P.ptr(4,4) = 2 * t101 + 2 * t36 - 2 * m[2][12] * m[1][6] - 2 * m[1][12] * m[2][6]; *P.ptr(4,5) = t105 - 2 * m[2][12] * m[2][6] + t40; *P.ptr(5,0) = -2 * m[1][10] * m[1][7] + t47 + t48 + t78 + t79 - 2 * m[1][11] * m[1][8]; *P.ptr(5,1) = 2 * t84 + 2 * t87 - 2 * m[2][11] * m[1][8] - 2 * m[1][10] * m[2][7] - 2 * m[2][10] * m[1][7] + 2 * t55 + 2 * t52 - 2 * m[1][11] * m[2][8]; *P.ptr(5,2) = -2 * m[2][10] * m[2][7] - 2 * m[2][11] * m[2][8] + t62 + t59 + t90 + t95; *P.ptr(5,3) = t64 - 2 * m[1][12] * m[1][9] + t99; *P.ptr(5,4) = 2 * t68 - 2 * m[2][12] * m[1][9] - 2 * m[1][12] * m[2][9] + 2 * t101; *P.ptr(5,5) = t105 - 2 * m[2][12] * m[2][9] + t74; return P; } void upnp::generate_all_possible_solutions_for_f_unk(const double betas[5], double solutions[18][3]) { int matrix_to_resolve[18][9] = { { 2, 0, 0, 1, 1, 0, 2, 0, 2 }, { 2, 0, 0, 1, 1, 0, 1, 1, 2 }, { 2, 0, 0, 1, 1, 0, 0, 2, 2 }, { 2, 0, 0, 0, 2, 0, 2, 0, 2 }, { 2, 0, 0, 0, 2, 0, 1, 1, 2 }, { 2, 0, 0, 0, 2, 0, 0, 2, 2 }, { 2, 0, 0, 2, 0, 2, 1, 1, 2 }, { 2, 0, 0, 2, 0, 2, 0, 2, 2 }, { 2, 0, 0, 1, 1, 2, 0, 2, 2 }, { 1, 1, 0, 0, 2, 0, 2, 0, 2 }, { 1, 1, 0, 0, 2, 0, 1, 1, 2 }, { 1, 1, 0, 2, 0, 2, 0, 2, 2 }, { 1, 1, 0, 2, 0, 2, 1, 1, 2 }, { 1, 1, 0, 2, 0, 2, 0, 2, 2 }, { 1, 1, 0, 1, 1, 2, 0, 2, 2 }, { 0, 2, 0, 2, 0, 2, 1, 1, 2 }, { 0, 2, 0, 2, 0, 2, 0, 2, 2 }, { 0, 2, 0, 1, 1, 2, 0, 2, 2 } }; int combination[18][3] = { { 1, 2, 4 }, { 1, 2, 5 }, { 1, 2, 6 }, { 1, 3, 4 }, { 1, 3, 5 }, { 1, 3, 6 }, { 1, 4, 5 }, { 1, 4, 6 }, { 1, 5, 6 }, { 2, 3, 4 }, { 2, 3, 5 }, { 2, 3, 6 }, { 2, 4, 5 }, { 2, 4, 6 }, { 2, 5, 6 }, { 3, 4, 5 }, { 3, 4, 6 }, { 3, 5, 6 } }; for (int i = 0; i < 18; ++i) { double matrix[9], independent_term[3]; Mat M = Mat(3, 3, CV_64F, matrix); Mat I = Mat(3, 1, CV_64F, independent_term); Mat S = Mat(1, 3, CV_64F); for (int j = 0; j < 9; ++j) matrix[j] = (double)matrix_to_resolve[i][j]; independent_term[0] = log( abs( betas[ combination[i][0]-1 ] ) ); independent_term[1] = log( abs( betas[ combination[i][1]-1 ] ) ); independent_term[2] = log( abs( betas[ combination[i][2]-1 ] ) ); exp( Mat(M.inv() * I), S); solutions[i][0] = S.at(0); solutions[i][1] = S.at(1) * sign( betas[1] ); solutions[i][2] = abs( S.at(2) ); } } void upnp::gauss_newton(const Mat * L_6x12, const Mat * Rho, double betas[4], double * f) { const int iterations_number = 50; double a[6*4], b[6], x[4] = {0}; Mat * A = new Mat(6, 4, CV_64F, a); Mat * B = new Mat(6, 1, CV_64F, b); Mat * X = new Mat(4, 1, CV_64F, x); for(int k = 0; k < iterations_number; k++) { compute_A_and_b_gauss_newton(L_6x12->ptr(0), Rho->ptr(0), betas, A, B, f[0]); qr_solve(A, B, X); for(int i = 0; i < 3; i++) betas[i] += x[i]; f[0] += x[3]; } if (f[0] < 0) f[0] = -f[0]; fu = fv = f[0]; A->release(); delete A; B->release(); delete B; X->release(); delete X; } void upnp::compute_A_and_b_gauss_newton(const double * l_6x12, const double * rho, const double betas[4], Mat * A, Mat * b, double const f) { for(int i = 0; i < 6; i++) { const double * rowL = l_6x12 + i * 12; double * rowA = A->ptr(i); rowA[0] = 2 * rowL[0] * betas[0] + rowL[1] * betas[1] + rowL[2] * betas[2] + f*f * ( 2 * rowL[6]*betas[0] + rowL[7]*betas[1] + rowL[8]*betas[2] ); rowA[1] = rowL[1] * betas[0] + 2 * rowL[3] * betas[1] + rowL[4] * betas[2] + f*f * ( rowL[7]*betas[0] + 2 * rowL[9]*betas[1] + rowL[10]*betas[2] ); rowA[2] = rowL[2] * betas[0] + rowL[4] * betas[1] + 2 * rowL[5] * betas[2] + f*f * ( rowL[8]*betas[0] + rowL[10]*betas[1] + 2 * rowL[11]*betas[2] ); rowA[3] = 2*f * ( rowL[6]*betas[0]*betas[0] + rowL[7]*betas[0]*betas[1] + rowL[8]*betas[0]*betas[2] + rowL[9]*betas[1]*betas[1] + rowL[10]*betas[1]*betas[2] + rowL[11]*betas[2]*betas[2] ) ; *b->ptr(i) = rho[i] - ( rowL[0] * betas[0] * betas[0] + rowL[1] * betas[0] * betas[1] + rowL[2] * betas[0] * betas[2] + rowL[3] * betas[1] * betas[1] + rowL[4] * betas[1] * betas[2] + rowL[5] * betas[2] * betas[2] + f*f * rowL[6] * betas[0] * betas[0] + f*f * rowL[7] * betas[0] * betas[1] + f*f * rowL[8] * betas[0] * betas[2] + f*f * rowL[9] * betas[1] * betas[1] + f*f * rowL[10] * betas[1] * betas[2] + f*f * rowL[11] * betas[2] * betas[2] ); } } void upnp::compute_L_6x12(const double * ut, double * l_6x12) { const double * v[3]; v[0] = ut + 12 * 9; v[1] = ut + 12 * 10; v[2] = ut + 12 * 11; double dv[3][6][3]; for(int i = 0; i < 3; i++) { int a = 0, b = 1; for(int j = 0; j < 6; j++) { dv[i][j][0] = v[i][3 * a ] - v[i][3 * b]; dv[i][j][1] = v[i][3 * a + 1] - v[i][3 * b + 1]; dv[i][j][2] = v[i][3 * a + 2] - v[i][3 * b + 2]; b++; if (b > 3) { a++; b = a + 1; } } } for(int i = 0; i < 6; i++) { double * row = l_6x12 + 12 * i; row[0] = dotXY(dv[0][i], dv[0][i]); row[1] = 2.0f * dotXY(dv[0][i], dv[1][i]); row[2] = dotXY(dv[1][i], dv[1][i]); row[3] = 2.0f * dotXY(dv[0][i], dv[2][i]); row[4] = 2.0f * dotXY(dv[1][i], dv[2][i]); row[5] = dotXY(dv[2][i], dv[2][i]); row[6] = dotZ(dv[0][i], dv[0][i]); row[7] = 2.0f * dotZ(dv[0][i], dv[1][i]); row[8] = 2.0f * dotZ(dv[0][i], dv[2][i]); row[9] = dotZ(dv[1][i], dv[1][i]); row[10] = 2.0f * dotZ(dv[1][i], dv[2][i]); row[11] = dotZ(dv[2][i], dv[2][i]); } } void upnp::compute_rho(double * rho) { rho[0] = dist2(cws[0], cws[1]); rho[1] = dist2(cws[0], cws[2]); rho[2] = dist2(cws[0], cws[3]); rho[3] = dist2(cws[1], cws[2]); rho[4] = dist2(cws[1], cws[3]); rho[5] = dist2(cws[2], cws[3]); } double upnp::dist2(const double * p1, const double * p2) { return (p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]) + (p1[2] - p2[2]) * (p1[2] - p2[2]); } double upnp::dot(const double * v1, const double * v2) { return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]; } double upnp::dotXY(const double * v1, const double * v2) { return v1[0] * v2[0] + v1[1] * v2[1]; } double upnp::dotZ(const double * v1, const double * v2) { return v1[2] * v2[2]; } double upnp::sign(const double v) { return ( v < 0.0 ) ? -1.0 : ( v > 0.0 ) ? 1.0 : 0.0; } void upnp::qr_solve(Mat * A, Mat * b, Mat * X) { const int nr = A->rows; const int nc = A->cols; if (max_nr != 0 && max_nr < nr) { delete [] A1; delete [] A2; } if (max_nr < nr) { max_nr = nr; A1 = new double[nr]; A2 = new double[nr]; } double * pA = A->ptr(0), * ppAkk = pA; for(int k = 0; k < nc; k++) { double * ppAik1 = ppAkk, eta = fabs(*ppAik1); for(int i = k + 1; i < nr; i++) { double elt = fabs(*ppAik1); if (eta < elt) eta = elt; ppAik1 += nc; } if (eta == 0) { A1[k] = A2[k] = 0.0; //cerr << "God damnit, A is singular, this shouldn't happen." << endl; return; } else { double * ppAik2 = ppAkk, sum2 = 0.0, inv_eta = 1. / eta; for(int i = k; i < nr; i++) { *ppAik2 *= inv_eta; sum2 += *ppAik2 * *ppAik2; ppAik2 += nc; } double sigma = sqrt(sum2); if (*ppAkk < 0) sigma = -sigma; *ppAkk += sigma; A1[k] = sigma * *ppAkk; A2[k] = -eta * sigma; for(int j = k + 1; j < nc; j++) { double * ppAik = ppAkk, sum = 0; for(int i = k; i < nr; i++) { sum += *ppAik * ppAik[j - k]; ppAik += nc; } double tau = sum / A1[k]; ppAik = ppAkk; for(int i = k; i < nr; i++) { ppAik[j - k] -= tau * *ppAik; ppAik += nc; } } } ppAkk += nc + 1; } // b <- Qt b double * ppAjj = pA, * pb = b->ptr(0); for(int j = 0; j < nc; j++) { double * ppAij = ppAjj, tau = 0; for(int i = j; i < nr; i++) { tau += *ppAij * pb[i]; ppAij += nc; } tau /= A1[j]; ppAij = ppAjj; for(int i = j; i < nr; i++) { pb[i] -= tau * *ppAij; ppAij += nc; } ppAjj += nc + 1; } // X = R-1 b double * pX = X->ptr(0); pX[nc - 1] = pb[nc - 1] / A2[nc - 1]; for(int i = nc - 2; i >= 0; i--) { double * ppAij = pA + i * nc + (i + 1), sum = 0; for(int j = i + 1; j < nc; j++) { sum += *ppAij * pX[j]; ppAij++; } pX[i] = (pb[i] - sum) / A2[i]; } }