/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; using namespace std; #if !defined (HAVE_CUDA) cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int, int, int, int, int) { throw_nogpu(); } cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int, int, int, int, float, float, float, float, int, int) { throw_nogpu(); } void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); } #else /* !defined (HAVE_CUDA) */ namespace cv { namespace gpu { namespace csbp { void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th, const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp); void init_data_cost(int rows, int cols, short* disp_selected_pyr, short* data_cost_selected, size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, cudaStream_t stream); void init_data_cost(int rows, int cols, float* disp_selected_pyr, float* data_cost_selected, size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, cudaStream_t stream); void compute_data_cost(const short* disp_selected_pyr, short* data_cost, size_t msg_step1, size_t msg_step2, int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, cudaStream_t stream); void compute_data_cost(const float* disp_selected_pyr, float* data_cost, size_t msg_step1, size_t msg_step2, int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, cudaStream_t stream); void init_message(short* u_new, short* d_new, short* l_new, short* r_new, const short* u_cur, const short* d_cur, const short* l_cur, const short* r_cur, short* selected_disp_pyr_new, const short* selected_disp_pyr_cur, short* data_cost_selected, const short* data_cost, size_t msg_step1, size_t msg_step2, int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream); void init_message(float* u_new, float* d_new, float* l_new, float* r_new, const float* u_cur, const float* d_cur, const float* l_cur, const float* r_cur, float* selected_disp_pyr_new, const float* selected_disp_pyr_cur, float* data_cost_selected, const float* data_cost, size_t msg_step1, size_t msg_step2, int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream); void calc_all_iterations(short* u, short* d, short* l, short* r, short* data_cost_selected, const short* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream); void calc_all_iterations(float*u, float* d, float* l, float* r, float* data_cost_selected, const float* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream); void compute_disp(const short* u, const short* d, const short* l, const short* r, const short* data_cost_selected, const short* disp_selected, size_t msg_step, DevMem2D_ disp, int nr_plane, cudaStream_t stream); void compute_disp(const float* u, const float* d, const float* l, const float* r, const float* data_cost_selected, const float* disp_selected, size_t msg_step, DevMem2D_ disp, int nr_plane, cudaStream_t stream); }}} namespace { const float DEFAULT_MAX_DATA_TERM = 30.0f; const float DEFAULT_DATA_WEIGHT = 1.0f; const float DEFAULT_MAX_DISC_TERM = 160.0f; const float DEFAULT_DISC_SINGLE_JUMP = 10.0f; } cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, int levels_, int nr_plane_, int msg_type_) : ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_), max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT), max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), min_disp_th(0), msg_type(msg_type_) { CV_Assert(msg_type_ == CV_32F || msg_type_ == CV_16S); } cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, int levels_, int nr_plane_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int min_disp_th_, int msg_type_) : ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_), max_data_term(max_data_term_), data_weight(data_weight_), max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_), min_disp_th(min_disp_th_), msg_type(msg_type_) { CV_Assert(msg_type_ == CV_32F || msg_type_ == CV_16S); } template static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat u[2], GpuMat d[2], GpuMat l[2], GpuMat r[2], GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected, GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, cudaStream_t stream) { CV_DbgAssert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels && 0 < rthis.nr_plane && left.rows == right.rows && left.cols == right.cols && left.type() == right.type()); CV_Assert(rthis.levels <= 8 && (left.type() == CV_8UC1 || left.type() == CV_8UC3)); const Scalar zero = Scalar::all(0); const float scale = (rthis.msg_type == CV_32F) ? 1.0f : 10.0f; //////////////////////////////////////////////////////////////////////////////////////////// // Init int rows = left.rows; int cols = left.cols; rthis.levels = min(rthis.levels, int(log((double)rthis.ndisp) / log(2.0))); int levels = rthis.levels; AutoBuffer buf(levels * 4); int* cols_pyr = buf; int* rows_pyr = cols_pyr + levels; int* nr_plane_pyr = rows_pyr + levels; int* step_pyr = nr_plane_pyr + levels; cols_pyr[0] = cols; rows_pyr[0] = rows; nr_plane_pyr[0] = rthis.nr_plane; const int n = 64; step_pyr[0] = alignSize(cols * sizeof(T), n) / sizeof(T); for (int i = 1; i < levels; i++) { cols_pyr[i] = (cols_pyr[i-1] + 1) / 2; rows_pyr[i] = (rows_pyr[i-1] + 1) / 2; nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2; step_pyr[i] = alignSize(cols_pyr[i] * sizeof(T), n) / sizeof(T); } Size msg_size(step_pyr[0], rows * nr_plane_pyr[0]); Size data_cost_size(step_pyr[0], rows * nr_plane_pyr[0] * 2); u[0].create(msg_size, DataType::type); d[0].create(msg_size, DataType::type); l[0].create(msg_size, DataType::type); r[0].create(msg_size, DataType::type); u[1].create(msg_size, DataType::type); d[1].create(msg_size, DataType::type); l[1].create(msg_size, DataType::type); r[1].create(msg_size, DataType::type); disp_selected_pyr[0].create(msg_size, DataType::type); disp_selected_pyr[1].create(msg_size, DataType::type); data_cost.create(data_cost_size, DataType::type); data_cost_selected.create(msg_size, DataType::type); step_pyr[0] = data_cost.step / sizeof(T); Size temp_size = data_cost_size; if (data_cost_size.width * data_cost_size.height < step_pyr[levels - 1] * rows_pyr[levels - 1] * rthis.ndisp) temp_size = Size(step_pyr[levels - 1], rows_pyr[levels - 1] * rthis.ndisp); temp.create(temp_size, DataType::type); //////////////////////////////////////////////////////////////////////////// // Compute csbp::load_constants(rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight, scale * rthis.max_disc_term, scale * rthis.disc_single_jump, rthis.min_disp_th, left, right, temp); l[0] = zero; d[0] = zero; r[0] = zero; u[0] = zero; l[1] = zero; d[1] = zero; r[1] = zero; u[1] = zero; data_cost = zero; data_cost_selected = zero; int cur_idx = 0; for (int i = levels - 1; i >= 0; i--) { if (i == levels - 1) { csbp::init_data_cost(left.rows, left.cols, disp_selected_pyr[cur_idx].ptr(), data_cost_selected.ptr(), step_pyr[i], rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], rthis.ndisp, left.channels(), stream); } else { csbp::compute_data_cost(disp_selected_pyr[cur_idx].ptr(), data_cost.ptr(), step_pyr[i], step_pyr[i+1], left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), stream); int new_idx = (cur_idx + 1) & 1; csbp::init_message(u[new_idx].ptr(), d[new_idx].ptr(), l[new_idx].ptr(), r[new_idx].ptr(), u[cur_idx].ptr(), d[cur_idx].ptr(), l[cur_idx].ptr(), r[cur_idx].ptr(), disp_selected_pyr[new_idx].ptr(), disp_selected_pyr[cur_idx].ptr(), data_cost_selected.ptr(), data_cost.ptr(), step_pyr[i], step_pyr[i+1], rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], stream); cur_idx = new_idx; } csbp::calc_all_iterations(u[cur_idx].ptr(), d[cur_idx].ptr(), l[cur_idx].ptr(), r[cur_idx].ptr(), data_cost_selected.ptr(), disp_selected_pyr[cur_idx].ptr(), step_pyr[i], rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], rthis.iters, stream); } if (disp.empty()) disp.create(rows, cols, CV_16S); out = ((disp.type() == CV_16S) ? disp : GpuMat(rows, cols, CV_16S)); out = zero; csbp::compute_disp(u[cur_idx].ptr(), d[cur_idx].ptr(), l[cur_idx].ptr(), r[cur_idx].ptr(), data_cost_selected.ptr(), disp_selected_pyr[cur_idx].ptr(), step_pyr[0], out, nr_plane_pyr[0], stream); if (disp.type() != CV_16S) out.convertTo(disp, disp.type()); } typedef void (*csbp_operator_t)(StereoConstantSpaceBP& rthis, GpuMat u[2], GpuMat d[2], GpuMat l[2], GpuMat r[2], GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected, GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, cudaStream_t stream); const static csbp_operator_t operators[] = {0, 0, 0, csbp_operator, 0, csbp_operator, 0, 0}; void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp) { CV_Assert(msg_type == CV_32F || msg_type == CV_16S); operators[msg_type](*this, u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp, out, left, right, disp, 0); } void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream) { CV_Assert(msg_type == CV_32F || msg_type == CV_16S); operators[msg_type](*this, u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp, out, left, right, disp, StreamAccessor::getStream(stream)); } #endif /* !defined (HAVE_CUDA) */