/** * @function Watershed_and_Distance_Transform.cpp * @brief Sample code showing how to segment overlapping objects using Laplacian filtering, in addition to Watershed and Distance Transformation * @author OpenCV Team */ #include #include using namespace std; using namespace cv; int main() { //! [load_image] // Load the image Mat src = imread("../data/cards.png"); // Check if everything was fine if (!src.data) return -1; // Show source image imshow("Source Image", src); //! [load_image] //! [black_bg] // Change the background from white to black, since that will help later to extract // better results during the use of Distance Transform for( int x = 0; x < src.rows; x++ ) { for( int y = 0; y < src.cols; y++ ) { if ( src.at(x, y) == Vec3b(255,255,255) ) { src.at(x, y)[0] = 0; src.at(x, y)[1] = 0; src.at(x, y)[2] = 0; } } } // Show output image imshow("Black Background Image", src); //! [black_bg] //! [sharp] // Create a kernel that we will use for accuting/sharpening our image Mat kernel = (Mat_(3,3) << 1, 1, 1, 1, -8, 1, 1, 1, 1); // an approximation of second derivative, a quite strong kernel // do the laplacian filtering as it is // well, we need to convert everything in something more deeper then CV_8U // because the kernel has some negative values, // and we can expect in general to have a Laplacian image with negative values // BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255 // so the possible negative number will be truncated Mat imgLaplacian; Mat sharp = src; // copy source image to another temporary one filter2D(sharp, imgLaplacian, CV_32F, kernel); src.convertTo(sharp, CV_32F); Mat imgResult = sharp - imgLaplacian; // convert back to 8bits gray scale imgResult.convertTo(imgResult, CV_8UC3); imgLaplacian.convertTo(imgLaplacian, CV_8UC3); // imshow( "Laplace Filtered Image", imgLaplacian ); imshow( "New Sharped Image", imgResult ); //! [sharp] src = imgResult; // copy back //! [bin] // Create binary image from source image Mat bw; cvtColor(src, bw, CV_BGR2GRAY); threshold(bw, bw, 40, 255, CV_THRESH_BINARY | CV_THRESH_OTSU); imshow("Binary Image", bw); //! [bin] //! [dist] // Perform the distance transform algorithm Mat dist; distanceTransform(bw, dist, CV_DIST_L2, 3); // Normalize the distance image for range = {0.0, 1.0} // so we can visualize and threshold it normalize(dist, dist, 0, 1., NORM_MINMAX); imshow("Distance Transform Image", dist); //! [dist] //! [peaks] // Threshold to obtain the peaks // This will be the markers for the foreground objects threshold(dist, dist, .4, 1., CV_THRESH_BINARY); // Dilate a bit the dist image Mat kernel1 = Mat::ones(3, 3, CV_8UC1); dilate(dist, dist, kernel1); imshow("Peaks", dist); //! [peaks] //! [seeds] // Create the CV_8U version of the distance image // It is needed for findContours() Mat dist_8u; dist.convertTo(dist_8u, CV_8U); // Find total markers vector > contours; findContours(dist_8u, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); // Create the marker image for the watershed algorithm Mat markers = Mat::zeros(dist.size(), CV_32SC1); // Draw the foreground markers for (size_t i = 0; i < contours.size(); i++) drawContours(markers, contours, static_cast(i), Scalar::all(static_cast(i)+1), -1); // Draw the background marker circle(markers, Point(5,5), 3, CV_RGB(255,255,255), -1); imshow("Markers", markers*10000); //! [seeds] //! [watershed] // Perform the watershed algorithm watershed(src, markers); Mat mark = Mat::zeros(markers.size(), CV_8UC1); markers.convertTo(mark, CV_8UC1); bitwise_not(mark, mark); // imshow("Markers_v2", mark); // uncomment this if you want to see how the mark // image looks like at that point // Generate random colors vector colors; for (size_t i = 0; i < contours.size(); i++) { int b = theRNG().uniform(0, 255); int g = theRNG().uniform(0, 255); int r = theRNG().uniform(0, 255); colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r)); } // Create the result image Mat dst = Mat::zeros(markers.size(), CV_8UC3); // Fill labeled objects with random colors for (int i = 0; i < markers.rows; i++) { for (int j = 0; j < markers.cols; j++) { int index = markers.at(i,j); if (index > 0 && index <= static_cast(contours.size())) dst.at(i,j) = colors[index-1]; else dst.at(i,j) = Vec3b(0,0,0); } } // Visualize the final image imshow("Final Result", dst); //! [watershed] waitKey(0); return 0; }