// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // Copyright (C) 2018-2019, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "test_precomp.hpp" #include "npy_blob.hpp" #include #include namespace opencv_test { namespace { void yoloPostProcessing( std::vector& outs, std::vector& keep_classIds, std::vector& keep_confidences, std::vector& keep_boxes, float conf_threshold, float iou_threshold, const std::string& model_name, const int nc=80); template static std::string _tf(TString filename, bool required = true) { return findDataFile(std::string("dnn/onnx/") + filename, required); } class Test_ONNX_layers : public DNNTestLayer { public: bool required; Test_ONNX_layers() : required(true) { } enum Extension { npy, pb }; void testInputShapes(const Net& net, const std::vector& inps) { std::vector inLayerShapes; std::vector outLayerShapes; net.getLayerShapes(MatShape(), 0, inLayerShapes, outLayerShapes); ASSERT_EQ(inLayerShapes.size(), inps.size()); for (int i = 0; i < inps.size(); ++i) { bool hasDynamicShapes = inLayerShapes[i].empty(); if (hasDynamicShapes) continue; if (inLayerShapes[i].size() == 1) { // 1D input ASSERT_EQ(shape(inLayerShapes[i][0], 1), shape(inps[i])); } else { // Compare all axes except batch dimension which is variable. inLayerShapes[i][0] = inps[i].size[0]; ASSERT_EQ(inLayerShapes[i], shape(inps[i])); } } } void testONNXModels(const String& basename, const Extension ext = npy, double l1 = 0, double lInf = 0, const bool useSoftmax = false, bool checkNoFallbacks = true, int numInps = 1, bool testShapes = true, bool useWinograd = true) { String onnxmodel = _tf("models/" + basename + ".onnx", required); std::vector inps(numInps); Mat ref; if (ext == npy) { for (int i = 0; i < numInps; ++i) inps[i] = blobFromNPY(_tf("data/input_" + basename + (numInps > 1 ? format("_%d", i) : "") + ".npy")); ref = blobFromNPY(_tf("data/output_" + basename + ".npy")); } else if (ext == pb) { for (int i = 0; i < numInps; ++i) inps[i] = readTensorFromONNX(_tf("data/input_" + basename + (numInps > 1 ? format("_%d", i) : "") + ".pb")); ref = readTensorFromONNX(_tf("data/output_" + basename + ".pb")); } else CV_Error(Error::StsUnsupportedFormat, "Unsupported extension"); checkBackend(&inps[0], &ref); Net net = readNetFromONNX(onnxmodel); ASSERT_FALSE(net.empty()); if (testShapes) testInputShapes(net, inps); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.enableWinograd(useWinograd); std::vector inputNames; for (int i = 0; i < numInps; ++i) inputNames.push_back(format("%d", i)); net.setInputsNames(inputNames); for (int i = 0; i < numInps; ++i) net.setInput(inps[i], inputNames[i]); Mat out = net.forward(""); if (useSoftmax) { LayerParams lp; Net netSoftmax; netSoftmax.addLayerToPrev("softmaxLayer", "Softmax", lp); netSoftmax.setPreferableBackend(DNN_BACKEND_OPENCV); netSoftmax.setInput(out); out = netSoftmax.forward(); netSoftmax.setInput(ref); ref = netSoftmax.forward(); } if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) { l1 = std::max(l1, 1.4e-3); lInf = std::max(lInf, 8e-3); } normAssert(ref, out, basename.c_str(), l1 ? l1 : default_l1, lInf ? lInf : default_lInf); if (checkNoFallbacks) expectNoFallbacksFromIE(net); } }; TEST_P(Test_ONNX_layers, InstanceNorm) { if (target == DNN_TARGET_MYRIAD) testONNXModels("instancenorm", npy, 0, 0, false, false); else testONNXModels("instancenorm", npy); } TEST_P(Test_ONNX_layers, MaxPooling) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif testONNXModels("maxpooling", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, MaxPooling_2) { testONNXModels("two_maxpooling", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, Convolution) { testONNXModels("convolution"); testONNXModels("conv_asymmetric_pads"); } TEST_P(Test_ONNX_layers, Convolution_variable_weight) { if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH || backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); if (backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // not supported if (backend == DNN_BACKEND_VKCOM) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); // not supported String basename = "conv_variable_w"; Net net = readNetFromONNX(_tf("models/" + basename + ".onnx")); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); for (int i = 0; i < 2; i++) { Mat input = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_0.npy")); Mat weights = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_1.npy")); Mat ref = blobFromNPY(_tf("data/output_" + basename + format("_%d", i) + ".npy")); net.setInput(input, "0"); net.setInput(weights, "1"); Mat out = net.forward(); normAssert(ref, out, "", default_l1, default_lInf); } } TEST_P(Test_ONNX_layers, Convolution_variable_weight_bias) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) // openvino/src/plugins/intel_myriad/common/src/ngraph/transformations/extract_dynamic_batch/slice_convolution.cpp:14 Expecting operation v1::GroupConvolution GroupConvolution_6904725 (Reshape_17[0]:f32{1,4,5,5}, Reshape_6904719[0]:f32{4,1,1,2,2}) -> (f32{1,4,4,4}) to have constant kernel, got Reshape_6904719[0]:f32{4,1,1,2,2} // openvino\src\plugins\intel_myriad\common\src\ngraph\transformations\extract_dynamic_batch\slice_convolution.cpp:15 Expecting operation v1::GroupConvolution GroupConvolution_6904692 (Reshape_17[0]:f32{1,4,5,5}, Reshape_6904686[0]:f32{4,1,1,2,2}) -> (f32{1,4,4,4}) to have constant kernel, got Reshape_6904686[0]:f32{4,1,1,2,2} if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); // accuracy (depends on OpenCL version / HW) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #elif defined(INF_ENGINE_RELEASE) if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH || backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU && getInferenceEngineCPUType() == CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_ARM_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif if (backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // supports only <= 2 inputs if (backend == DNN_BACKEND_VKCOM) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); // not supported String basename = "conv_variable_wb"; Net net = readNetFromONNX(_tf("models/" + basename + ".onnx")); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); for (int i = 0; i < 2; i++) { Mat input = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_0.npy")); Mat weights = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_1.npy")); Mat bias = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_2.npy")); Mat ref = blobFromNPY(_tf("data/output_" + basename + format("_%d", i) + ".npy")); net.setInput(input, "0"); net.setInput(weights, "1"); net.setInput(bias, "bias"); Mat out = net.forward(); normAssert(ref, out, "", default_l1, default_lInf); } } TEST_P(Test_ONNX_layers, Gather) { testONNXModels("gather", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, Gather_Scalar) { testONNXModels("gather_scalar", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, GatherMulti) { // GPU plugin unsupported slice for constant if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); testONNXModels("gather_multi", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, Gather_shared_indices) { testONNXModels("gather_shared_indices", npy, 0, 0, false, false, 1); } TEST_P(Test_ONNX_layers, Two_resizes_with_shared_subgraphs) { testONNXModels("two_resizes_with_shared_subgraphs", npy, 0, 0, false, false, 3, /*testShapes*/ false); } TEST_P(Test_ONNX_layers, Convolution3D) { if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16) { // CUDA_FP16: cuDNN did not return a suitable algorithm for convolution. applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16); } testONNXModels("conv3d"); } TEST_P(Test_ONNX_layers, Convolution3D_bias) { if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16) { // CUDA_FP16: cuDNN did not return a suitable algorithm for convolution. applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16); } testONNXModels("conv3d_bias"); testONNXModels("conv3d_depthwise_bias"); // kernel 1x1 } TEST_P(Test_ONNX_layers, Two_convolution) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); #endif // Reference output values are in range [-0.855, 0.611] testONNXModels("two_convolution"); } TEST_P(Test_ONNX_layers, Deconvolution) { testONNXModels("deconvolution", npy, 0, 0, false, false); testONNXModels("two_deconvolution", npy, 0, 0, false, false); testONNXModels("deconvolution_group", npy, 0, 0, false, false); testONNXModels("deconvolution_output_shape", npy, 0, 0, false, false); if (target != DNN_TARGET_CUDA_FP16) // bug testONNXModels("deconv_adjpad_2d", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, Deconvolution3D) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { // [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/frontend/frontend.cpp:592 Failed to compile layer "2": // [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 2@weights Const data got different desc and content byte sizes (162 and 486 respectively) if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); } #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { // [ GENERAL_ERROR ] vpu/graph_transformer/src/frontend/frontend.cpp:439 Failed to compile layer "2": // [ GENERAL_ERROR ] vpu/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 2@weights Const data got different desc and content byte sizes (162 and 486 respectively) if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); } #endif if (backend == DNN_BACKEND_OPENCV) throw SkipTestException("OpenCV backend is not supported"); // FIXIT use tags if (backend == DNN_BACKEND_VKCOM) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); testONNXModels("deconv3d"); } TEST_P(Test_ONNX_layers, Deconvolution3D_bias) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { // [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/frontend/frontend.cpp:592 Failed to compile layer "3": // [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 3@weights Const data got different desc and content byte sizes (270 and 810 respectively) if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); } #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { // [ GENERAL_ERROR ] vpu/graph_transformer/src/frontend/frontend.cpp:439 Failed to compile layer "2": // [ GENERAL_ERROR ] vpu/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 2@weights Const data got different desc and content byte sizes (162 and 486 respectively) if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); } #endif if (backend == DNN_BACKEND_OPENCV) throw SkipTestException("OpenCV backend is not supported"); // FIXIT use tags if (backend == DNN_BACKEND_VKCOM) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); testONNXModels("deconv3d_bias"); } TEST_P(Test_ONNX_layers, Deconvolution3D_pad) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { // [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/frontend/frontend.cpp:592 Failed to compile layer "3": // [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 3@weights Const data got different desc and content byte sizes (108 and 432 respectively) if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); } #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { // [ GENERAL_ERROR ] vpu/graph_transformer/src/frontend/frontend.cpp:439 Failed to compile layer "2": // [ GENERAL_ERROR ] vpu/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 2@weights Const data got different desc and content byte sizes (162 and 486 respectively) if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); } #endif if (backend == DNN_BACKEND_OPENCV) throw SkipTestException("OpenCV backend is not supported"); // FIXIT use tags if (backend == DNN_BACKEND_VKCOM) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); testONNXModels("deconv3d_pad"); } TEST_P(Test_ONNX_layers, Deconvolution3D_adjpad) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { // [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/frontend/frontend.cpp:592 Failed to compile layer "3": // [ GENERAL_ERROR ] openvino/src/plugins/intel_myriad/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 3@weights Const data got different desc and content byte sizes (90 and 180 respectively) if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); } #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { // [ GENERAL_ERROR ] vpu/graph_transformer/src/frontend/frontend.cpp:439 Failed to compile layer "2": // [ GENERAL_ERROR ] vpu/graph_transformer/src/model/model.cpp:198 duplicateData error: while duplicating 2@weights Const data got different desc and content byte sizes (162 and 486 respectively) if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); } #endif if (backend == DNN_BACKEND_OPENCV) throw SkipTestException("OpenCV backend is not supported"); // FIXIT use tags if (backend == DNN_BACKEND_VKCOM) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); testONNXModels("deconv3d_adjpad"); } TEST_P(Test_ONNX_layers, Dropout) { testONNXModels("dropout"); } TEST_P(Test_ONNX_layers, Linear) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); testONNXModels("linear"); } TEST_P(Test_ONNX_layers, ReLU) { testONNXModels("ReLU"); } TEST_P(Test_ONNX_layers, PReLU) { testONNXModels("PReLU_slope"); } TEST_P(Test_ONNX_layers, Clip) { testONNXModels("clip", npy); } TEST_P(Test_ONNX_layers, Clip_init) { testONNXModels("clip_init_min_max"); testONNXModels("clip_init_min"); testONNXModels("clip_init_max"); } TEST_P(Test_ONNX_layers, Shape) { testONNXModels("shape_of_constant"); } TEST_P(Test_ONNX_layers, ReduceMean) { testONNXModels("reduce_mean"); testONNXModels("reduce_mean_axis1"); testONNXModels("reduce_mean_axis2"); } TEST_P(Test_ONNX_layers, ReduceSum) { testONNXModels("reduce_sum"); testONNXModels("reduce_sum_axis_dynamic_batch"); } TEST_P(Test_ONNX_layers, ReduceMax) { testONNXModels("reduce_max"); } TEST_P(Test_ONNX_layers, ReduceMax_axis_0) { testONNXModels("reduce_max_axis_0"); } TEST_P(Test_ONNX_layers, ReduceMax_axis_1) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // [ GENERAL_ERROR ] AssertionFailed: !out.networkInputs.empty() if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif testONNXModels("reduce_max_axis_1"); } TEST_P(Test_ONNX_layers, Min) { testONNXModels("min", npy, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, ArgLayer) { if (backend != DNN_BACKEND_OPENCV || target != DNN_TARGET_CPU) throw SkipTestException("Only CPU is supported"); // FIXIT use tags testONNXModels("argmax"); testONNXModels("argmin"); } TEST_P(Test_ONNX_layers, Scale) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) // accuracy (inf/nan) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // accuracy if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); // IE exception: mkldnn_node.cpp:238 Ngraph operation Reshape with name ReduceMean_0 has dynamic output shape on 0 port, but CPU plug-in supports only static shape if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // Ngraph operation Reshape with name ReduceMean_0 has dynamic output shape on 0 port, but CPU plug-in supports only static shape if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif testONNXModels("scale"); } TEST_P(Test_ONNX_layers, Scale_broadcast) { if (backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // doesn't support broadcasting testONNXModels("scale_broadcast", npy, 0, 0, false, true, 3); } TEST_P(Test_ONNX_layers, Scale_broadcast_mid) { if (backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // doesn't support broadcasting testONNXModels("scale_broadcast_mid", npy, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, ReduceMean3D) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported #endif if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU) throw SkipTestException("Only CPU is supported"); // FIXIT use tags if (backend == DNN_BACKEND_VKCOM) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); testONNXModels("reduce_mean3d"); } TEST_P(Test_ONNX_layers, MaxPooling_Sigmoid) { testONNXModels("maxpooling_sigmoid"); } TEST_P(Test_ONNX_layers, Cast) { testONNXModels("cast"); } TEST_P(Test_ONNX_layers, Power) { testONNXModels("pow2", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, Exp) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); testONNXModels("exp"); } TEST_P(Test_ONNX_layers, Elementwise_Ceil) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif testONNXModels("ceil"); } TEST_P(Test_ONNX_layers, Elementwise_Floor) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif testONNXModels("floor"); } TEST_P(Test_ONNX_layers, Elementwise_Log) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif testONNXModels("log"); } TEST_P(Test_ONNX_layers, Elementwise_Round) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif testONNXModels("round"); } TEST_P(Test_ONNX_layers, Elementwise_Sqrt) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); testONNXModels("sqrt"); #endif } TEST_P(Test_ONNX_layers, Elementwise_not) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif testONNXModels("not"); } TEST_P(Test_ONNX_layers, Compare_EQ) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // IE exception: Function contains several inputs and outputs with one friendly name! if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); // IE exception: Function contains several inputs and outputs with one friendly name! if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif testONNXModels("equal"); } TEST_P(Test_ONNX_layers, Compare_GT) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // IE exception: Function contains several inputs and outputs with one friendly name! if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); // IE exception: Function contains several inputs and outputs with one friendly name! if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif testONNXModels("greater"); } TEST_P(Test_ONNX_layers, Greater_input_dtype_int64) { testONNXModels("greater_input_dtype_int64"); } TEST_P(Test_ONNX_layers, Compare_LT) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // IE exception: Function contains several inputs and outputs with one friendly name! if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); // IE exception: Function contains several inputs and outputs with one friendly name! if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif testONNXModels("less"); } TEST_P(Test_ONNX_layers, Compare_GTorEQ) { testONNXModels("greater_or_equal"); } TEST_P(Test_ONNX_layers, Compare_LEorEQ) { testONNXModels("less_or_equal"); } TEST_P(Test_ONNX_layers, CompareSameDims_EQ) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // IE exception: Function contains several inputs and outputs with one friendly name! if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); // IE exception: Function contains several inputs and outputs with one friendly name! if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif testONNXModels("equal_same_dims", npy, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, CompareSameDims_GT) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // IE exception: Function contains several inputs and outputs with one friendly name! if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); // IE exception: Function contains several inputs and outputs with one friendly name! if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif testONNXModels("greater_same_dims", npy, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, CompareSameDims_LT) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // IE exception: Function contains several inputs and outputs with one friendly name! if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); // IE exception: Function contains several inputs and outputs with one friendly name! if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif testONNXModels("less_same_dims", npy, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, Concatenation) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } testONNXModels("concatenation"); testONNXModels("concat_const_blobs"); } TEST_P(Test_ONNX_layers, CumSumExclusiveInplace) { testONNXModels("cumsum_exclusive_inplace"); } TEST_P(Test_ONNX_layers, Range) { testONNXModels("range_float"); testONNXModels("range_float_negative"); } TEST_P(Test_ONNX_layers, Eltwise3D) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported #endif testONNXModels("eltwise3d"); } TEST_P(Test_ONNX_layers, AveragePooling) { testONNXModels("average_pooling"); } TEST_P(Test_ONNX_layers, MaxPooling3D) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { // accuracy if (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); // IE exception: [ GENERAL_ERROR ] AssertionFailed: !expired() if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); } #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { // accuracy if (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); // IE exception: [ GENERAL_ERROR ] AssertionFailed: !expired() if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); } #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported #endif if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU) throw SkipTestException("Only CPU is supported"); // FIXIT use tags if (backend == DNN_BACKEND_VKCOM) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); testONNXModels("max_pool3d", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, AvePooling3D) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported #endif if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU) throw SkipTestException("Only CPU is supported"); // FIXIT use tags if (backend == DNN_BACKEND_VKCOM) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); testONNXModels("ave_pool3d"); } TEST_P(Test_ONNX_layers, PoolConv3D) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported #endif if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU) throw SkipTestException("Only CPU is supported"); // FIXIT use tags if (backend == DNN_BACKEND_VKCOM) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16) { // CUDA_FP16: cuDNN did not return a suitable algorithm for convolution. applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16); } testONNXModels("pool_conv_3d"); } TEST_P(Test_ONNX_layers, BatchNormalization) { testONNXModels("batch_norm"); } TEST_P(Test_ONNX_layers, BatchNormalization3D) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } testONNXModels("batch_norm_3d"); } TEST_P(Test_ONNX_layers, BatchNormalizationUnfused) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception #endif testONNXModels("frozenBatchNorm2d"); } TEST_P(Test_ONNX_layers, BatchNormalizationSubgraph) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception #endif testONNXModels("batch_norm_subgraph"); } TEST_P(Test_ONNX_layers, NormalizeFusionSubgraph) { testONNXModels("normalize_fusion"); } TEST_P(Test_ONNX_layers, Transpose) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } testONNXModels("transpose"); } TEST_P(Test_ONNX_layers, Multiplication) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); testONNXModels("mul"); } TEST_P(Test_ONNX_layers, MatMul_2d) { testONNXModels("matmul_2d"); } TEST_P(Test_ONNX_layers, MatMul_3d) { testONNXModels("matmul_3d"); } TEST_P(Test_ONNX_layers, MatMul_4d) { testONNXModels("matmul_4d"); } TEST_P(Test_ONNX_layers, MatMul_2d_init) { testONNXModels("matmul_2d_init"); } TEST_P(Test_ONNX_layers, MatMul_3d_init) { testONNXModels("matmul_3d_init"); } TEST_P(Test_ONNX_layers, MatMul_4d_init) { testONNXModels("matmul_4d_init"); } TEST_P(Test_ONNX_layers, MatMul_init_2) { testONNXModels("matmul_init_2"); } TEST_P(Test_ONNX_layers, MatMul_init_bcast) { testONNXModels("matmul_init_bcast"); } TEST_P(Test_ONNX_layers, MatMul_bcast_3dx2d) { testONNXModels("matmul_bcast"); } TEST_P(Test_ONNX_layers, MatMulAdd) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) // accuracy if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); #endif if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); testONNXModels("matmul_add"); } TEST_P(Test_ONNX_layers, Expand) { testONNXModels("expand"); } TEST_P(Test_ONNX_layers, ExpandIdentity) { testONNXModels("expand_identity"); } TEST_P(Test_ONNX_layers, ExpandBatch) { testONNXModels("expand_batch"); } TEST_P(Test_ONNX_layers, ExpandChannels) { testONNXModels("expand_channels"); } TEST_P(Test_ONNX_layers, ExpandNegBatch) { testONNXModels("expand_neg_batch"); } TEST_P(Test_ONNX_layers, ExpandHW) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); testONNXModels("expand_hw"); } TEST_P(Test_ONNX_layers, Constant) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif testONNXModels("constant"); } TEST_P(Test_ONNX_layers, Padding) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000) testONNXModels("padding", npy, 0, 0, false, false); #else testONNXModels("padding"); #endif } TEST_P(Test_ONNX_layers, Resize) { testONNXModels("resize_nearest"); testONNXModels("tf_half_pixel_for_nn"); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); testONNXModels("resize_bilinear"); } TEST_P(Test_ONNX_layers, ResizeUnfused) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); testONNXModels("upsample_unfused_torch1.2"); testONNXModels("upsample_unfused_opset9_torch1.4"); testONNXModels("resize_nearest_unfused_opset11_torch1.4"); testONNXModels("resize_nearest_unfused_opset11_torch1.3"); testONNXModels("resize_bilinear_unfused_opset11_torch1.4"); } TEST_P(Test_ONNX_layers, ResizeUnfusedTwoInputs) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2023000000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif testONNXModels("upsample_unfused_two_inputs_opset9_torch1.4", npy, 0, 0, false, true, 2); testONNXModels("upsample_unfused_two_inputs_opset11_torch1.4", npy, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, MultyInputs) { testONNXModels("multy_inputs", npy, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, Broadcast) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); testONNXModels("channel_broadcast", npy, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, DynamicResize) { testONNXModels("dynamic_resize_9", npy, 0, 0, false, true, 2); testONNXModels("dynamic_resize_10", npy, 0, 0, false, true, 2); testONNXModels("dynamic_resize_11", npy, 0, 0, false, true, 2); testONNXModels("dynamic_resize_13", npy, 0, 0, false, true, 2); testONNXModels("dynamic_resize_scale_9", npy, 0, 0, false, true, 2); testONNXModels("dynamic_resize_scale_10", npy, 0, 0, false, true, 2); testONNXModels("dynamic_resize_scale_11", npy, 0, 0, false, true, 2); testONNXModels("dynamic_resize_scale_13", npy, 0, 0, false, true, 2); testONNXModels("resize_size_opset11"); testONNXModels("resize_size_opset13"); } TEST_P(Test_ONNX_layers, Resize_HumanSeg) { testONNXModels("resize_humanseg"); } TEST_P(Test_ONNX_layers, Div) { const String model = _tf("models/div.onnx"); Net net = readNetFromONNX(model); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); // Reference output values range is -68.80928, 2.991873. So to avoid computational // difference for FP16 we'll perform reversed division (just swap inputs). Mat inp1 = blobFromNPY(_tf("data/input_div_1.npy")); Mat inp2 = blobFromNPY(_tf("data/input_div_0.npy")); Mat ref = blobFromNPY(_tf("data/output_div.npy")); cv::divide(1.0, ref, ref); checkBackend(&inp1, &ref); net.setInput(inp1, "0"); net.setInput(inp2, "1"); Mat out = net.forward(); normAssert(ref, out, "", default_l1, default_lInf); // NaryEltwise layer suuports only CPU for now testONNXModels("div_test_1x1", npy, 0, 0, false, false, 2); } TEST_P(Test_ONNX_layers, DynamicReshape) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); testONNXModels("dynamic_reshape"); testONNXModels("dynamic_reshape_opset_11"); testONNXModels("flatten_by_prod"); testONNXModels("flatten_const"); } TEST_P(Test_ONNX_layers, Reshape) { testONNXModels("unsqueeze"); testONNXModels("unsqueeze_opset_13"); } TEST_P(Test_ONNX_layers, Unsqueeze_Neg_Axes) { testONNXModels("unsqueeze_neg_axes"); } TEST_P(Test_ONNX_layers, Squeeze) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); testONNXModels("squeeze"); testONNXModels("squeeze_axes_op13"); } TEST_P(Test_ONNX_layers, ReduceL2) { testONNXModels("reduceL2"); testONNXModels("reduceL2_subgraph"); testONNXModels("reduceL2_subgraph_2"); testONNXModels("reduceL2_subgraph2_2"); } TEST_P(Test_ONNX_layers, Split) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2023000000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif testONNXModels("split_0"); testONNXModels("split_1"); testONNXModels("split_2"); testONNXModels("split_3"); testONNXModels("split_4"); testONNXModels("split_5"); testONNXModels("split_6"); testONNXModels("split_neg_axis"); } // Mul inside with 0-d tensor, output should be A x 1, but is 1 x A. PR #22652 TEST_P(Test_ONNX_layers, DISABLED_Split_sizes_0d) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); testONNXModels("split_sizes"); } TEST_P(Test_ONNX_layers, Slice) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000) testONNXModels("slice", npy, 0, 0, false, false); #else testONNXModels("slice"); testONNXModels("slice_neg_starts"); testONNXModels("slice_opset_11"); testONNXModels("slice_neg_steps", pb); #endif } TEST_P(Test_ONNX_layers, Slice_Steps_2DInput) { testONNXModels("slice_opset_11_steps_2d"); } TEST_P(Test_ONNX_layers, Slice_Steps_3DInput) { testONNXModels("slice_opset_11_steps_3d"); } TEST_P(Test_ONNX_layers, Slice_Steps_4DInput) { testONNXModels("slice_opset_11_steps_4d"); } TEST_P(Test_ONNX_layers, Slice_Steps_5DInput) { testONNXModels("slice_opset_11_steps_5d"); } TEST_P(Test_ONNX_layers, Slice_Nonseq_Axes) { testONNXModels("slice_nonseq_axes"); testONNXModels("slice_nonseq_axes_steps"); testONNXModels("slice_nonseq_miss_axes_steps"); } TEST_P(Test_ONNX_layers, Slice_Neg_Axes) { testONNXModels("slice_neg_axes"); testONNXModels("slice_neg_axes_steps"); testONNXModels("slice_neg_miss_axes_steps"); } TEST_P(Test_ONNX_layers, Softmax) { testONNXModels("softmax"); testONNXModels("log_softmax", npy, 0, 0, false, false); testONNXModels("softmax_unfused"); } TEST_P(Test_ONNX_layers, Split_EltwiseMax) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2023000000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif testONNXModels("split_max"); } TEST_P(Test_ONNX_layers, LSTM_Activations) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) // IE exception: Node Block1326/lstm/reshape_0/permute was not assigned on any pointed device if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // IE Exception: Ngraph operation Reshape with name Block1237_Output_0_before_reshape has dynamic output shape on 0 port, but CPU plug-in supports only static shape if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #endif testONNXModels("lstm_cntk_tanh", pb, 0, 0, false, false); } // disabled due to poor handling of 1-d mats TEST_P(Test_ONNX_layers, DISABLED_LSTM) { testONNXModels("lstm", npy, 0, 0, false, false); } // disabled due to poor handling of 1-d mats TEST_P(Test_ONNX_layers, DISABLED_LSTM_bidirectional) { testONNXModels("lstm_bidirectional", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, LSTM_hidden) { testONNXModels("hidden_lstm", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, LSTM_hidden_bidirectional) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) // IE exception: Node Transpose_45 was not assigned on any pointed device. if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #endif testONNXModels("hidden_lstm_bi", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, GRU) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) // IE exception: Node GRU_22 was not assigned on any pointed device if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #endif testONNXModels("gru", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, gru_cell_batchsize_50_seqlen_1) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) // IE exception: Node GRU_22 was not assigned on any pointed device if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #endif if(backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); testONNXModels("gru_cell_batchsize_50_seqlen_1", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, gru_cell_batchsize_5_seqlen_5) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) // IE exception: Node GRU_22 was not assigned on any pointed device if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #endif if(backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); testONNXModels("gru_cell_batchsize_5_seqlen_5", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, gru_cell_batchsize_1_seqlen_50) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) // IE exception: Node GRU_22 was not assigned on any pointed device if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #endif if(backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); testONNXModels("gru_cell_batchsize_1_seqlen_50", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, GRU_bidirectional) { testONNXModels("gru_bi", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, LSTM_cell_forward) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) // accuracy! if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // Ngraph operation Reshape with name LSTM_16/lstm_y/reshape has dynamic output shape on 0 port, but CPU plug-in supports only static shape if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif testONNXModels("lstm_cell_forward", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, LSTM_cell_bidirectional) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // Ngraph operation Reshape with name LSTM_16/lstm_y/reshape has dynamic output shape on 0 port, but CPU plug-in supports only static shape if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif testONNXModels("lstm_cell_bidirectional", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, LSTM_cell_with_peepholes) { testONNXModels("lstm_cell_with_peepholes", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, LSTM_cell_batchsize_50_seqlen_1) { if(backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); testONNXModels("lstm_cell_batchsize_50_seqlen_1", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, LSTM_cell_batchsize_1_seqlen_50) { if(backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); testONNXModels("lstm_cell_batchsize_1_seqlen_50", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, LSTM_cell_batchsize_5_seqlen_5) { if(backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); testONNXModels("lstm_cell_batchsize_5_seqlen_5", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, LSTM_init_h0_c0) { if(backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); testONNXModels("lstm_init_h0_c0", npy, 0, 0, false, false, 3); } // epsilon is larger because onnx does not match with torch/opencv exactly TEST_P(Test_ONNX_layers, LSTM_layout_seq) { if(backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); testONNXModels("lstm_layout_0", npy, 0.005, 0.005, false, false, 3); } // epsilon is larger because onnx does not match with torch/opencv exactly TEST_P(Test_ONNX_layers, LSTM_layout_batch) { if(backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); testONNXModels("lstm_layout_1", npy, 0.005, 0.005, false, false, 3); } TEST_P(Test_ONNX_layers, DISABLED_Einsum_1D) { testONNXModels("einsum_1d", npy, 0, 0, false, false, 2); } TEST_P(Test_ONNX_layers, Einsum_2D) { testONNXModels("einsum_2d", npy, 0, 0, false, false, 2); } TEST_P(Test_ONNX_layers, Einsum_2D_Ellipses) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); testONNXModels("einsum_2d_ellipses", npy, 0, 0, false, false, 2); } TEST_P(Test_ONNX_layers, Einsum_3D) { testONNXModels("einsum_3d", npy, 0, 0, false, false, 2); } TEST_P(Test_ONNX_layers, Einsum_4D) { testONNXModels("einsum_4d", npy, 0, 0, false, false, 2); } TEST_P(Test_ONNX_layers, Einsum_5D) { testONNXModels("einsum_5d", npy, 0, 0, false, false, 2); } TEST_P(Test_ONNX_layers, DISABLED_Einsum_InnerProduct) { testONNXModels("einsum_inner", npy, 0, 0, false, false, 2); } TEST_P(Test_ONNX_layers, DISABLED_Einsum_HadamardProduct) { testONNXModels("einsum_hadamard", npy, 0, 0, false, false, 2); } TEST_P(Test_ONNX_layers, Einsum_Batch_Diagonal) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); testONNXModels("einsum_batch_diagonal", npy, 0, 0, false, false, 1); } TEST_P(Test_ONNX_layers, Einsum_Sum) { testONNXModels("einsum_sum", npy, 0, 0, false, false, 1); } TEST_P(Test_ONNX_layers, Einsum_transpose) { testONNXModels("einsum_transpose", npy, 0, 0, false, false, 1); } TEST_P(Test_ONNX_layers, Einsum_const_inputs) { testONNXModels("einsum_const_inputs", npy, 0, 0, false, false, 1); } TEST_P(Test_ONNX_layers, Pad2d_Unfused) { testONNXModels("ReflectionPad2d"); testONNXModels("ZeroPad2d"); } TEST_P(Test_ONNX_layers, LinearWithConstant) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2020040000) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); #endif if (backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); testONNXModels("lin_with_constant"); } TEST_P(Test_ONNX_layers, MatmulWithTwoInputs) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2020040000) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); #endif testONNXModels("matmul_with_two_inputs"); } TEST_P(Test_ONNX_layers, ResizeOpset11_Torch1_6) { testONNXModels("resize_opset11_torch1.6"); } TEST_P(Test_ONNX_layers, Mish) { testONNXModels("mish"); testONNXModels("mish_no_softplus"); } TEST_P(Test_ONNX_layers, CalculatePads) { testONNXModels("calc_pads"); } TEST_P(Test_ONNX_layers, Conv1d) { testONNXModels("conv1d"); } TEST_P(Test_ONNX_layers, Conv1d_bias) { testONNXModels("conv1d_bias"); } TEST_P(Test_ONNX_layers, Conv1d_variable_weight) { if (backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // not supported if (backend == DNN_BACKEND_VKCOM) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); // not supported String basename = "conv1d_variable_w"; Net net = readNetFromONNX(_tf("models/" + basename + ".onnx")); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat input = blobFromNPY(_tf("data/input_" + basename + "_0.npy")); Mat weights = blobFromNPY(_tf("data/input_" + basename + "_1.npy")); Mat ref = blobFromNPY(_tf("data/output_" + basename + ".npy")); net.setInput(input, "0"); net.setInput(weights, "1"); Mat out = net.forward(); normAssert(ref, out, "", default_l1, default_lInf); } TEST_P(Test_ONNX_layers, Conv1d_variable_weight_bias) { if (backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // not supported if (backend == DNN_BACKEND_VKCOM) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); // not supported if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); if (target == DNN_TARGET_CPU && getInferenceEngineCPUType() == CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_ARM_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } String basename = "conv1d_variable_wb"; Net net = readNetFromONNX(_tf("models/" + basename + ".onnx")); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat input = blobFromNPY(_tf("data/input_" + basename + "_0.npy")); Mat weights = blobFromNPY(_tf("data/input_" + basename + "_1.npy")); Mat bias = blobFromNPY(_tf("data/input_" + basename + "_2.npy")); Mat ref = blobFromNPY(_tf("data/output_" + basename + ".npy")); net.setInput(input, "0"); net.setInput(weights, "1"); net.setInput(bias, "bias"); Mat out = net.forward(); normAssert(ref, out, "", default_l1, default_lInf); } TEST_P(Test_ONNX_layers, GatherMultiOutput) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // IE Exception: Ngraph operation Reshape with name 6 has dynamic output shape on 0 port, but CPU plug-in supports only static shape if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2021030000) if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE); #endif testONNXModels("gather_multi_output", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, DynamicAxes_squeeze_and_conv) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } #if INF_ENGINE_VER_MAJOR_LT(2021000000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif #endif testONNXModels("squeeze_and_conv_dynamic_axes"); } TEST_P(Test_ONNX_layers, DynamicAxes_unsqueeze_and_conv) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } #if INF_ENGINE_VER_MAJOR_LT(2021000000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif #endif testONNXModels("unsqueeze_and_conv_dynamic_axes"); } TEST_P(Test_ONNX_layers, DynamicAxes_gather) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } #if INF_ENGINE_VER_MAJOR_LT(2021000000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif #endif testONNXModels("gather_dynamic_axes", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, DynamicAxes_gather_scalar) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) // accuracy if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // accuracy if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #elif defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } #if INF_ENGINE_VER_MAJOR_LT(2021000000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif #endif testONNXModels("gather_scalar_dynamic_axes", npy, 0, 0, false, false); } TEST_P(Test_ONNX_layers, DynamicAxes_slice) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } #if INF_ENGINE_VER_MAJOR_LT(2021000000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif #endif testONNXModels("slice_dynamic_axes"); } TEST_P(Test_ONNX_layers, DynamicAxes_slice_opset_11) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } #if INF_ENGINE_VER_MAJOR_LT(2021000000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif #endif testONNXModels("slice_opset_11_dynamic_axes"); } TEST_P(Test_ONNX_layers, DynamicAxes_resize_opset11_torch16) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } #if INF_ENGINE_VER_MAJOR_LT(2021000000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif #endif testONNXModels("resize_opset11_torch1.6_dynamic_axes"); } TEST_P(Test_ONNX_layers, DynamicAxes_average_pooling) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } #if INF_ENGINE_VER_MAJOR_LT(2021000000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif #endif testONNXModels("average_pooling_dynamic_axes"); } TEST_P(Test_ONNX_layers, DynamicAxes_maxpooling_sigmoid) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } #if INF_ENGINE_VER_MAJOR_LT(2021000000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif #endif testONNXModels("maxpooling_sigmoid_dynamic_axes"); } TEST_P(Test_ONNX_layers, DynamicAxes_dynamic_batch) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } #if INF_ENGINE_VER_MAJOR_LT(2021000000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif #endif testONNXModels("dynamic_batch"); } TEST_P(Test_ONNX_layers, MaxPool1d) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) { // 2021.4: [ GENERAL_ERROR ] AssertionFailed: !expired() applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif testONNXModels("maxpooling_1d"); } TEST_P(Test_ONNX_layers, MaxPoolSigmoid1d) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif testONNXModels("maxpooling_sigmoid_1d"); } TEST_P(Test_ONNX_layers, MaxPool1d_Twise) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif testONNXModels("two_maxpooling_1d"); } TEST_P(Test_ONNX_layers, AvePool1d) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif testONNXModels("average_pooling_1d"); } TEST_P(Test_ONNX_layers, PoolConv1d) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } #endif testONNXModels("pool_conv_1d"); } TEST_P(Test_ONNX_layers, ConvResizePool1d) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // IE Exception: Ngraph operation Reshape with name 15 has dynamic output shape on 0 port, but CPU plug-in supports only static shape if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #endif #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #if INF_ENGINE_VER_MAJOR_EQ(2021030000) if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception #endif } #endif const double lInf = (target == DNN_TARGET_CPU_FP16) ? 0.024 : default_lInf; testONNXModels("conv_resize_pool_1d", npy, default_l1, lInf); } TEST_P(Test_ONNX_layers, DepthWiseAdd) { testONNXModels("depthwiseconv_add"); } TEST_P(Test_ONNX_layers, DepthStride2) { testONNXModels("depthwise_stride2"); } TEST_P(Test_ONNX_layers, SubFromConst) { testONNXModels("sub_from_const1"); testONNXModels("sub_from_const_eltwise"); testONNXModels("sub_from_const_broadcast"); } TEST_P(Test_ONNX_layers, DivConst) { testONNXModels("div_const"); } TEST_P(Test_ONNX_layers, Gemm) { testONNXModels("gemm_no_transB"); testONNXModels("gemm_transB_0"); testONNXModels("gemm_first_const"); } TEST_P(Test_ONNX_layers, Gemm_bias) { testONNXModels("gemm_vector_bias"); } TEST_P(Test_ONNX_layers, Quantized_Convolution) { // The difference of QOperator and QDQ format: // https://onnxruntime.ai/docs/performance/quantization.html#onnx-quantization-representation-format. { SCOPED_TRACE("QOperator quantized model."); testONNXModels("quantized_conv_uint8_weights", npy, 0.004, 0.02); testONNXModels("quantized_conv_int8_weights", npy, 0.03, 0.5); testONNXModels("quantized_conv_per_channel_weights", npy, 0.06, 0.4); testONNXModels("quantized_conv_asymmetric_pads_int8_weights"); } { SCOPED_TRACE("QDQ quantized model."); testONNXModels("quantized_conv_uint8_weights_qdq", npy, 0.004, 0.02); testONNXModels("quantized_conv_int8_weights_qdq", npy, 0.03, 0.5); testONNXModels("quantized_conv_per_channel_weights_qdq", npy, 0.06, 0.4); } } TEST_P(Test_ONNX_layers, Quantized_MatMul) { testONNXModels("quantized_matmul_uint8_weights", npy, 0.005, 0.007); testONNXModels("quantized_matmul_int8_weights", npy, 0.06, 0.2); testONNXModels("quantized_matmul_per_channel_weights", npy, 0.06, 0.22); } TEST_P(Test_ONNX_layers, Quantized_Gemm) { testONNXModels("quantized_gemm", npy); } TEST_P(Test_ONNX_layers, Quantized_MatMul_Variable_Weights) { // Unsupported EXPECT_THROW( { testONNXModels("quantized_matmul_variable_inputs"); }, cv::Exception); } TEST_P(Test_ONNX_layers, Quantized_Eltwise) { testONNXModels("quantized_eltwise"); } TEST_P(Test_ONNX_layers, Quantized_Eltwise_Scalar) { testONNXModels("quantized_eltwise_scalar"); } TEST_P(Test_ONNX_layers, Quantized_Eltwise_Broadcast) { testONNXModels("quantized_eltwise_broadcast"); } TEST_P(Test_ONNX_layers, Quantized_LeakyReLU) { testONNXModels("quantized_leaky_relu"); } TEST_P(Test_ONNX_layers, Quantized_Sigmoid) { testONNXModels("quantized_sigmoid"); } TEST_P(Test_ONNX_layers, Quantized_MaxPool) { testONNXModels("quantized_maxpool"); } TEST_P(Test_ONNX_layers, Quantized_AvgPool) { testONNXModels("quantized_avgpool"); } TEST_P(Test_ONNX_layers, Quantized_Split) { testONNXModels("quantized_split"); } TEST_P(Test_ONNX_layers, Quantized_Pad) { testONNXModels("quantized_padding"); } TEST_P(Test_ONNX_layers, Quantized_Reshape) { testONNXModels("quantized_reshape"); } TEST_P(Test_ONNX_layers, Quantized_Transpose) { testONNXModels("quantized_transpose"); } TEST_P(Test_ONNX_layers, Quantized_Squeeze) { testONNXModels("quantized_squeeze"); } TEST_P(Test_ONNX_layers, Quantized_Unsqueeze) { testONNXModels("quantized_unsqueeze"); } TEST_P(Test_ONNX_layers, Quantized_Resize) { testONNXModels("quantized_resize_nearest"); double l1 = backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ? 0.0013 : 2e-4; testONNXModels("quantized_resize_bilinear", npy, l1, 0.003); l1 = backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ? 0.0013 : 3e-4; testONNXModels("quantized_resize_bilinear_align", npy, l1, 0.003); } TEST_P(Test_ONNX_layers, Quantized_Concat) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); testONNXModels("quantized_concat"); testONNXModels("quantized_concat_const_blob"); } TEST_P(Test_ONNX_layers, Quantized_Constant) { testONNXModels("quantized_constant", npy, 0.002, 0.008); } TEST_P(Test_ONNX_layers, OutputRegistration) { testONNXModels("output_registration", npy, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, QLinearSoftmax) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); testONNXModels("qlinearsoftmax_v11", npy, 0.002, 0.002); // 2D coerced testONNXModels("qlinearsoftmax_v13", npy, 0.002, 0.002); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_ONNX_layers, dnnBackendsAndTargets()); class Test_ONNX_nets : public Test_ONNX_layers { public: Test_ONNX_nets() { required = false; } }; TEST_P(Test_ONNX_nets, Alexnet) { #if defined(OPENCV_32BIT_CONFIGURATION) && (defined(HAVE_OPENCL) || defined(_WIN32)) applyTestTag(CV_TEST_TAG_MEMORY_2GB); #else applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); #endif const String model = _tf("models/alexnet.onnx", false); Net net = readNetFromONNX(model); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.enableWinograd(false); Mat inp = imread(_tf("../grace_hopper_227.png")); Mat ref = blobFromNPY(_tf("../caffe_alexnet_prob.npy")); checkBackend(&inp, &ref); net.setInput(blobFromImage(inp, 1.0f, Size(227, 227), Scalar(), false)); ASSERT_FALSE(net.empty()); Mat out = net.forward(); normAssert(out, ref, "", default_l1, default_lInf); expectNoFallbacksFromIE(net); } TEST_P(Test_ONNX_nets, RAFT) { applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG, CV_TEST_TAG_MEMORY_2GB); std::string weight_path = _tf("models/optical_flow_estimation_raft_2023aug.onnx", false); std::string img0_path = findDataFile(std::string("gpu/opticalflow/frame0.png")); std::string img1_path = findDataFile(std::string("gpu/opticalflow/frame1.png")); Size target_size{480, 360}; auto img0 = imread(img0_path); auto img1 = imread(img1_path); auto blob0 = blobFromImage(img0, 1.0, target_size, 0, true); auto blob1 = blobFromImage(img1, 1.0, target_size, 0, true); auto net = readNet(weight_path); net.setInput(blob0, "0"); net.setInput(blob1, "1"); std::vector outnames{"12007", "12006"}; std::vector outs; net.forward(outs, outnames); // output 12006 is not checked to save space in opencv_extra since its ref is > 1MB, // and output 12006 is calculated from 12007 so checking 12007 is sufficient. std::string ref_12700_path = _tf("data/output_optical_flow_estimation_raft_2023aug.npy"); auto ref0 = blobFromNPY(ref_12700_path); normAssert(ref0, outs[0], "", 1e-5, 1.8e-4); } TEST_P(Test_ONNX_nets, Squeezenet) { testONNXModels("squeezenet", pb); } TEST_P(Test_ONNX_nets, Googlenet) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) // accuracy if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // accuracy if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif const String model = _tf("models/googlenet.onnx", false); Net net = readNetFromONNX(model); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); if (target == DNN_TARGET_CPU_FP16) net.enableWinograd(false); std::vector images; images.push_back( imread(_tf("../googlenet_0.png")) ); images.push_back( imread(_tf("../googlenet_1.png")) ); Mat inp = blobFromImages(images, 1.0f, Size(), Scalar(), false); Mat ref = blobFromNPY(_tf("../googlenet_prob.npy")); checkBackend(&inp, &ref); net.setInput(inp); ASSERT_FALSE(net.empty()); Mat out = net.forward(); normAssert(ref, out, "", default_l1, default_lInf); expectNoFallbacksFromIE(net); } TEST_P(Test_ONNX_nets, CaffeNet) { #if defined(OPENCV_32BIT_CONFIGURATION) && (defined(HAVE_OPENCL) || defined(_WIN32)) applyTestTag(CV_TEST_TAG_MEMORY_2GB); #else applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019030000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif testONNXModels("caffenet", pb); } TEST_P(Test_ONNX_nets, RCNN_ILSVRC13) { #if defined(OPENCV_32BIT_CONFIGURATION) && (defined(HAVE_OPENCL) || defined(_WIN32)) applyTestTag(CV_TEST_TAG_MEMORY_2GB); #else applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019030000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif // Reference output values are in range [-4.992, -1.161] testONNXModels("rcnn_ilsvrc13", pb, 0.0046); } TEST_P(Test_ONNX_nets, VGG16_bn) { applyTestTag(CV_TEST_TAG_MEMORY_6GB); // > 2.3Gb // output range: [-16; 27], after Softmax [0; 0.67] const double lInf = (target == DNN_TARGET_MYRIAD) ? 0.038 : default_lInf; testONNXModels("vgg16-bn", pb, default_l1, lInf, true); } TEST_P(Test_ONNX_nets, ZFNet) { applyTestTag(CV_TEST_TAG_MEMORY_2GB); testONNXModels("zfnet512", pb); } TEST_P(Test_ONNX_nets, ResNet18v1) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); // output range: [-16; 22], after Softmax [0, 0.51] testONNXModels("resnet18v1", pb, default_l1, default_lInf, true, target != DNN_TARGET_MYRIAD); } TEST_P(Test_ONNX_nets, ResNet50v1) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); // output range: [-67; 75], after Softmax [0, 0.98] size_t hwm0 = getTopMemoryUsageMB(); testONNXModels("resnet50v1", pb, default_l1, default_lInf, true, target != DNN_TARGET_MYRIAD); size_t hwm1 = getTopMemoryUsageMB(); if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_CPU) { EXPECT_LE(hwm1 - hwm0, 350) << "Top allocated memory"; } } TEST_P(Test_ONNX_nets, ResNet50_Int8) { testONNXModels("resnet50_int8", pb, default_l1, default_lInf, true); } TEST_P(Test_ONNX_nets, ResNet101_DUC_HDC) { applyTestTag(CV_TEST_TAG_VERYLONG); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); #endif if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL) { if (backend == DNN_BACKEND_OPENCV) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_OPENCL : CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); throw SkipTestException("Test is disabled for OpenCL targets"); } testONNXModels("resnet101_duc_hdc", pb); } TEST_P(Test_ONNX_nets, TinyYolov2) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); if (cvtest::skipUnstableTests) throw SkipTestException("Skip unstable test"); #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16) ) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ? CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER : CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif // output range: [-11; 8] double l1 = default_l1, lInf = default_lInf; if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CPU_FP16) { l1 = 0.02; lInf = 0.2; } else if (target == DNN_TARGET_CUDA_FP16) { l1 = 0.018; lInf = 0.16; } #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) { l1 = 0.018f; lInf = 0.16f; } #endif testONNXModels("tiny_yolo2", pb, l1, lInf, false, true, 1, true, false); } TEST_P(Test_ONNX_nets, CNN_MNIST) { // output range: [-1952; 6574], after Softmax [0; 1] testONNXModels("cnn_mnist", pb, default_l1, default_lInf, true); } TEST_P(Test_ONNX_nets, MobileNet_v2) { // output range: [-166; 317], after Softmax [0; 1] testONNXModels("mobilenetv2", pb, default_l1, default_lInf, true); } TEST_P(Test_ONNX_nets, MobileNet_v2_FP16) { testONNXModels("mobilenetv2_fp16", npy, default_l1, default_lInf, true); } TEST_P(Test_ONNX_nets, LResNet100E_IR) { applyTestTag( #if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL) CV_TEST_TAG_MEMORY_2GB, #else (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB), #endif CV_TEST_TAG_DEBUG_VERYLONG ); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); } double l1 = default_l1, lInf = default_lInf; // output range: [-3; 3] bool useWinograd = true; if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) { l1 = 0.009; lInf = 0.035; } else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_CPU) { l1 = 4.6e-5; lInf = 1.9e-4; } else if (target == DNN_TARGET_CUDA_FP16) { l1 = 0.009; lInf = 0.04; } else if (target == DNN_TARGET_CPU_FP16) { useWinograd = false; l1 = 0.009; lInf = 0.035; } testONNXModels("LResNet100E_IR", pb, l1, lInf, false, true, 1, true, useWinograd); } TEST_P(Test_ONNX_nets, Emotion_ferplus) { #if defined(INF_ENGINE_RELEASE) if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ? CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER : CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif double l1 = default_l1; double lInf = default_lInf; bool useWinograd = true; // Output values are in range [-2.011, 2.111] if ((backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) || (target == DNN_TARGET_CUDA_FP16)) l1 = 0.007; else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL_FP16) { l1 = 0.021; lInf = 0.034; } else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_CPU || target == DNN_TARGET_OPENCL)) { l1 = 2.4e-4; lInf = 6e-4; } else if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_CPU_FP16) { useWinograd = false; l1 = 0.007; } #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) { l1 = 0.013f; lInf = 0.035f; } #endif testONNXModels("emotion_ferplus", pb, l1, lInf, false, true, 1, true, useWinograd); } TEST_P(Test_ONNX_nets, Inception_v2) { testONNXModels("inception_v2", pb, default_l1, default_lInf, true); } TEST_P(Test_ONNX_nets, DenseNet121) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); // output range: [-87; 138], after Softmax [0; 1] testONNXModels("densenet121", pb, default_l1, default_lInf, true, target != DNN_TARGET_MYRIAD); } TEST_P(Test_ONNX_nets, Inception_v1) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #endif testONNXModels("inception_v1", pb); } TEST_P(Test_ONNX_nets, Shufflenet) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); } #endif testONNXModels("shufflenet", pb); } TEST_P(Test_ONNX_nets, Resnet34_kinetics) { applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) // IE exception: Failed to allocate graph: MYRIAD device is not opened if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); // accuracy if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { // IE exception: Function contains several inputs and outputs with one friendly name! if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); } #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported #endif if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU) throw SkipTestException("Only CPU is supported"); // FIXIT use tags if (backend == DNN_BACKEND_VKCOM) applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); String onnxmodel = findDataFile("dnn/resnet-34_kinetics.onnx", false); Mat image0 = imread(findDataFile("dnn/dog416.png")); Mat image1 = imread(findDataFile("dnn/street.png")); Mat ref0 = blobFromNPY(_tf("data/output_kinetics0.npy")); Mat ref1 = blobFromNPY(_tf("data/output_kinetics1.npy")); std::vector images_0(16, image0); std::vector images_1(16, image1); Mat blob0 = blobFromImages(images_0, 1.0, Size(112, 112), Scalar(114.7748, 107.7354, 99.4750), true, true); Mat blob1 = blobFromImages(images_1, 1.0, Size(112, 112), Scalar(114.7748, 107.7354, 99.4750), true, true); Net permute; LayerParams lp; int order[] = {1, 0, 2, 3}; lp.set("order", DictValue::arrayInt(&order[0], 4)); permute.addLayerToPrev("perm", "Permute", lp); permute.setPreferableBackend(backend); permute.setPreferableTarget(target); permute.setInput(blob0); Mat input0 = permute.forward().clone(); permute.setInput(blob1); Mat input1 = permute.forward().clone(); int dims[] = {1, 3, 16, 112, 112}; input0 = input0.reshape(0, 5, &dims[0]); input1 = input1.reshape(0, 5, &dims[0]); Net net = readNetFromONNX(onnxmodel); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); // output range [-5, 11] float l1 = 0.0013; float lInf = 0.009; if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) { l1 = 0.02; lInf = 0.07; } if (target == DNN_TARGET_CUDA_FP16) { l1 = 0.01; lInf = 0.06; } testInputShapes(net, {input0}); checkBackend(&input0, &ref0); net.setInput(input0); Mat out = net.forward().clone(); normAssert(ref0, out, "", l1, lInf); checkBackend(&input1, &ref1); net.setInput(input1); out = net.forward().clone(); normAssert(ref1, out, "", l1, lInf); expectNoFallbacksFromIE(net); } TEST_P(Test_ONNX_layers, CumSum) { testONNXModels("cumsum_1d_exclusive_1"); testONNXModels("cumsum_1d_reverse"); testONNXModels("cumsum_1d_exclusive_1_reverse"); testONNXModels("cumsum_2d_dim_1"); testONNXModels("cumsum_3d_dim_2"); } static void testYOLO(const std::string& weightPath, const std::vector& refClassIds, const std::vector& refScores, const std::vector& refBoxes, Image2BlobParams imgParams, float conf_threshold = 0.3, float iou_threshold = 0.5, double scores_diff = 1e-5, double boxes_iou_diff = 1e-4, const std::string test_name = "") { std::string imgPath = _tf("../dog_orig_size.png"); Mat img = imread(imgPath); Mat inp = blobFromImageWithParams(img, imgParams); Net net = readNet(weightPath); net.setInput(inp); std::vector outs; net.forward(outs, net.getUnconnectedOutLayersNames()); // Retrieve std::vector keep_classIds; std::vector keep_confidences; std::vector keep_boxes; yoloPostProcessing(outs, keep_classIds, keep_confidences, keep_boxes, conf_threshold, iou_threshold, test_name); normAssertDetections( refClassIds, refScores, refBoxes, keep_classIds, keep_confidences, keep_boxes, "", 0.0, scores_diff, boxes_iou_diff); } void yoloPostProcessing( std::vector& outs, std::vector& keep_classIds, std::vector& keep_confidences, std::vector& keep_boxes, float conf_threshold, float iou_threshold, const std::string& model_name, const int nc ){ // Retrieve std::vector classIds; std::vector confidences; std::vector boxes; if (model_name == "yolov8" || model_name == "yolov10" || model_name == "yolov9") { cv::transposeND(outs[0], {0, 2, 1}, outs[0]); } if (model_name == "yolonas"){ // outs contains 2 elemets of shape [1, 8400, 80] and [1, 8400, 4]. Concat them to get [1, 8400, 84] Mat concat_out; // squeeze the first dimension outs[0] = outs[0].reshape(1, outs[0].size[1]); outs[1] = outs[1].reshape(1, outs[1].size[1]); cv::hconcat(outs[1], outs[0], concat_out); outs[0] = concat_out; // remove the second element outs.pop_back(); // unsqueeze the first dimension outs[0] = outs[0].reshape(0, std::vector{1, 8400, 84}); } // assert if last dim is 85 or 84 CV_CheckEQ(outs[0].dims, 3, "Invalid output shape. The shape should be [1, #anchors, 85 or 84]"); CV_CheckEQ((outs[0].size[2] == nc + 5 || outs[0].size[2] == 80 + 4), true, "Invalid output shape: "); for (auto preds : outs){ preds = preds.reshape(1, preds.size[1]); // [1, 8400, 85] -> [8400, 85] for (int i = 0; i < preds.rows; ++i) { // filter out non object float obj_conf = (model_name == "yolov8" || model_name == "yolonas" || model_name == "yolov9" || model_name == "yolov10") ? 1.0f : preds.at(i, 4) ; if (obj_conf < conf_threshold) continue; Mat scores = preds.row(i).colRange((model_name == "yolov8" || model_name == "yolonas" || model_name == "yolov9" || model_name == "yolov10") ? 4 : 5, preds.cols); double conf; Point maxLoc; minMaxLoc(scores, 0, &conf, 0, &maxLoc); conf = (model_name == "yolov8" || model_name == "yolonas" || model_name == "yolov9" || model_name == "yolov10") ? conf : conf * obj_conf; if (conf < conf_threshold) continue; // get bbox coords float* det = preds.ptr(i); double cx = det[0]; double cy = det[1]; double w = det[2]; double h = det[3]; // [x1, y1, x2, y2] if (model_name == "yolonas" || model_name == "yolov10"){ boxes.push_back(Rect2d(cx, cy, w, h)); } else { boxes.push_back(Rect2d(cx - 0.5 * w, cy - 0.5 * h, cx + 0.5 * w, cy + 0.5 * h)); } classIds.push_back(maxLoc.x); confidences.push_back(conf); } } // NMS std::vector keep_idx; NMSBoxes(boxes, confidences, conf_threshold, iou_threshold, keep_idx); for (auto i : keep_idx) { keep_classIds.push_back(classIds[i]); keep_confidences.push_back(confidences[i]); keep_boxes.push_back(boxes[i]); } } TEST_P(Test_ONNX_nets, YOLOv10) { std::string weightPath = _tf("models/yolov10s.onnx", false); Size targetSize{640, 480}; float conf_threshold = 0.50; float iou_threshold = 0.50; std::vector refClassIds{1, 16, 7}; std::vector refScores{0.9510f, 0.9454f, 0.8404f}; std::vector refBoxes{ Rect2d(105.5014, 112.8838, 472.9274, 350.0603), Rect2d(109.8231, 185.7994, 258.5916, 452.9302), Rect2d(388.5018, 62.1034, 576.6399, 143.3986) }; Image2BlobParams imgParams( Scalar::all(1 / 255.0), targetSize, Scalar::all(0), true, CV_32F, DNN_LAYOUT_NCHW, DNN_PMODE_LETTERBOX, Scalar::all(114) ); testYOLO( weightPath, refClassIds, refScores, refBoxes, imgParams, conf_threshold, iou_threshold, 1.0e-4, 1.0e-4, "yolov10"); } TEST_P(Test_ONNX_nets, YOLOv9) { std::string weightPath = _tf("models/yolov9t.onnx", false); Size targetSize{640, 480}; float conf_threshold = 0.50; float iou_threshold = 0.50; std::vector refClassIds{1, 16, 2}; // wrong class mapping for yolov9 std::vector refScores{0.959274f, 0.901125f, 0.559396f}; std::vector refBoxes{ Rect2d(106.255, 107.927, 472.497, 350.309), Rect2d(108.633, 185.256, 259.287, 450.672), Rect2d(390.701, 62.1454, 576.928, 141.795) }; Image2BlobParams imgParams( Scalar::all(1 / 255.0), targetSize, Scalar::all(0), true, CV_32F, DNN_LAYOUT_NCHW, DNN_PMODE_LETTERBOX, Scalar::all(114) ); testYOLO( weightPath, refClassIds, refScores, refBoxes, imgParams, conf_threshold, iou_threshold, 1.0e-4, 1.0e-4, "yolov9"); } TEST_P(Test_ONNX_nets, YOLOX) { applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG); std::string weightPath = _tf("models/yolox_s_inf_decoder.onnx", false); Size targetSize{640, 640}; float conf_threshold = 0.50; float iou_threshold = 0.50; std::vector refClassIds{1, 16, 7}; std::vector refScores{0.9649f, 0.9163f, 0.6879f}; std::vector refBoxes{ Rect2d(105.5384, 179.4100, 470.6339, 428.5553), Rect2d(111.4482, 263.4098, 258.7438, 526.1140), Rect2d(389.1421, 143.9286, 577.9495, 222.0294) }; Image2BlobParams imgParams( Scalar::all(1), targetSize, Scalar::all(0), true, CV_32F, DNN_LAYOUT_NCHW, DNN_PMODE_LETTERBOX, Scalar::all(114) ); testYOLO( weightPath, refClassIds, refScores, refBoxes, imgParams, conf_threshold, iou_threshold, 1.0e-4, 1.0e-4); } TEST_P(Test_ONNX_nets, YOLONas) { // model information: https://dl.opencv.org/models/yolo-nas/Readme.md std::string weightPath = _tf("models/yolo_nas_s.onnx", false); Size targetSize{640, 640}; float conf_threshold = 0.50; float iou_threshold = 0.50; std::vector refClassIds{1, 16, 7}; std::vector refScores{0.9720f, 0.9283f, 0.8990f}; // [x1, y1, x2, y2] std::vector refBoxes{ Rect2d(105.516, 173.696, 471.323, 430.433), Rect2d(109.241, 263.406, 259.872, 531.858), Rect2d(390.153, 142.492, 574.932, 222.709) }; Image2BlobParams imgParams( Scalar::all(1/255.0), targetSize, Scalar::all(0), false, CV_32F, DNN_LAYOUT_NCHW, DNN_PMODE_LETTERBOX, Scalar::all(114) ); testYOLO( weightPath, refClassIds, refScores, refBoxes, imgParams, conf_threshold, iou_threshold, 1.0e-4, 1.0e-4, "yolonas"); } TEST_P(Test_ONNX_nets, YOLOv8) { std::string weightPath = _tf("models/yolov8n.onnx", false); Size targetSize{640, 640}; float conf_threshold = 0.25; float iou_threshold = 0.50; std::vector refClassIds{16, 1, 2}; std::vector refScores{0.9332f, 0.8959f, 0.6157f}; // [x1, y1, x2, y2] std::vector refBoxes{ Rect2d(108.8965, 261.9094, 257.1633, 530.3049), Rect2d(110.4020, 192.9843, 473.4418, 429.5965), Rect2d(389.1603, 143.2506, 577.3542, 223.0615), }; Image2BlobParams imgParams( Scalar::all(1/255.0), targetSize, Scalar::all(0), true, CV_32F, DNN_LAYOUT_NCHW, DNN_PMODE_LETTERBOX, Scalar::all(114) ); testYOLO( weightPath, refClassIds, refScores, refBoxes, imgParams, conf_threshold, iou_threshold, 1.0e-4, 1.0e-4, "yolov8"); } // This test is mainly to test: // 1. identity node with constant input // 2. limited support to range operator (all inputs are constant) // 3. parseExpand with multiple broadcast axes // 4. 1D mat dimension issue with the output of range operator TEST_P(Test_ONNX_nets, YOLOv7) { applyTestTag( CV_TEST_TAG_MEMORY_2GB, CV_TEST_TAG_DEBUG_VERYLONG ); std::string weightPath = _tf("models/yolov7.onnx", false); // Reference, which is collected with input size of 640x640 std::vector refClassIds{1, 16, 7}; std::vector refScores{0.9614331f, 0.9589417f, 0.8679074f}; // [x1, y1, x2, y2] x 3 std::vector refBoxes{Rect2d(105.973236f, 150.16716f, 472.59012f, 466.48834f), Rect2d(109.97953f, 246.17862f, 259.83676f, 600.76624f), Rect2d(385.96185f, 83.02809f, 576.07355f, 189.82793f)}; Size targetSize{640, 640}; Image2BlobParams imgParams( Scalar::all(1/255.0), targetSize, Scalar::all(0), true, CV_32F, DNN_LAYOUT_NCHW, DNN_PMODE_NULL, Scalar::all(0) ); testYOLO(weightPath, refClassIds, refScores, refBoxes, imgParams); } TEST_P(Test_ONNX_nets, YOLOv6) { std::string weightPath = _tf("models/yolov6n.onnx", false); Size targetSize{640, 640}; float conf_threshold = 0.30; float iou_threshold = 0.50; std::vector refClassIds{1, 16, 7, 1}; std::vector refScores{0.95031f, 0.87123f, 0.65453f, 0.34142f}; // [x1, y1, x2, y2] x 3 std::vector refBoxes{Rect2d(98.84, 177.91, 473.29, 431.19), Rect2d(109.80, 265.50, 258.86, 531.97), Rect2d(387.79, 141.61, 576.98, 223.52), Rect2d(105.62, 199.24, 218.37, 389.84), }; Image2BlobParams imgParams( Scalar::all(1/255.0), targetSize, Scalar::all(0), true, CV_32F, DNN_LAYOUT_NCHW, DNN_PMODE_LETTERBOX, Scalar::all(114) ); testYOLO( weightPath, refClassIds, refScores, refBoxes, imgParams, conf_threshold, iou_threshold, 1.0e-4, 1.0e-3); } TEST_P(Test_ONNX_nets, YOLOv5n) { std::string weightPath = findDataFile("dnn/yolov5n.onnx", false); // Reference, which is collected with input size of 640x640 std::vector refClassIds{16, 2, 1}; std::vector refScores{0.749053f, 0.616853f, 0.32506f}; // [x1, y1, x2, y2] x 4 std::vector refBoxes{Rect2d(108.088f, 239.293f, 266.196f, 607.658f), Rect2d(392.028f, 89.9233f, 579.152f, 190.447f), Rect2d(120.278f, 159.76, 214.481f, 241.473f)}; Size targetSize{640, 640}; Image2BlobParams imgParams( Scalar::all(1/255.0), targetSize, Scalar::all(0), true, CV_32F, DNN_LAYOUT_NCHW, DNN_PMODE_NULL, Scalar::all(0) ); testYOLO(weightPath, refClassIds, refScores, refBoxes, imgParams); } TEST_P(Test_ONNX_layers, Tile) { testONNXModels("tile", pb); } TEST_P(Test_ONNX_layers, Gelu) { testONNXModels("gelu"); testONNXModels("gelu_approximation"); } TEST_P(Test_ONNX_layers, OpenAI_CLIP_head) { testONNXModels("clip-vit-base-head"); } TEST_P(Test_ONNX_layers, where_node) { testONNXModels("where_layer"); } TEST_P(Test_ONNX_layers, Gemm_all_attributes) { testONNXModels("test_gemm_all_attributes", pb, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, Gemm_alpha) { testONNXModels("test_gemm_alpha", pb, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, Gemm_beta) { testONNXModels("test_gemm_beta", pb, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, Gemm_default_matrix_bias) { testONNXModels("test_gemm_default_matrix_bias", pb, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, Gemm_default_no_bias) { testONNXModels("test_gemm_default_no_bias", pb, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, Gemm_default_scalar_bias) { testONNXModels("test_gemm_default_scalar_bias", pb, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, Gemm_default_single_elem_vector_bias) { testONNXModels("test_gemm_default_single_elem_vector_bias", pb, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, Gemm_default_vector_bias) { testONNXModels("test_gemm_default_vector_bias", pb, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, Gemm_default_zero_bias) { testONNXModels("test_gemm_default_zero_bias", pb, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, Gemm_transposeA) { testONNXModels("test_gemm_transposeA", pb, 0, 0, false, true, 2); } TEST_P(Test_ONNX_layers, Gemm_transposeB) { testONNXModels("test_gemm_transposeB", pb, 0, 0, false, true, 2); } // Note: These tests are converted from onnx/onnx so that they have constant shape as input. // TODO: They can be moved into conformance tests once dynamic input is properly supported. TEST_P(Test_ONNX_layers, Expand_dim_changed) { testONNXModels("test_expand_dim_changed", pb, 0, 0, false, true, 1); } TEST_P(Test_ONNX_layers, Expand_dim_unchanged) { testONNXModels("test_expand_dim_unchanged", pb, 0, 0, false, true, 1); } TEST_P(Test_ONNX_layers, Expand_shape_model1) { testONNXModels("test_expand_shape_model1", pb, 0, 0, false, true, 1); } TEST_P(Test_ONNX_layers, Expand_shape_model2) { testONNXModels("test_expand_shape_model2", pb, 0, 0, false, true, 1); } TEST_P(Test_ONNX_layers, Expand_shape_model3) { testONNXModels("test_expand_shape_model3", pb, 0, 0, false, true, 1); } TEST_P(Test_ONNX_layers, Expand_shape_model4) { testONNXModels("test_expand_shape_model4", pb, 0, 0, false, true, 1); } TEST_P(Test_ONNX_layers, Attention) { testONNXModels("attention"); } TEST_P(Test_ONNX_layers, AttentionSingleHead) { testONNXModels("attention_single_head"); } TEST_P(Test_ONNX_layers, PyTorchAttentionSingleHead){ testONNXModels("pytorch_attention_single_head"); } TEST_P(Test_ONNX_layers, PyTorchUnflatten){ testONNXModels("unflatten"); } TEST_P(Test_ONNX_nets, ViT_B_32) { applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_LONG); const std::string model_path = _tf("models/vit_b_32.onnx", false); auto net = readNet(model_path); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); auto image = imread(_tf("../googlenet_0.png")); auto blob = blobFromImage(image, 1.f, Size(224, 224)); auto ref = blobFromNPY(_tf("data/output_vit_b_32.npy")); checkBackend(&blob, &ref); net.setInput(blob); auto out = net.forward(); double l1 = default_l1; double lInf = default_lInf; if (target == DNN_TARGET_CUDA_FP16) { l1 = 0.01; lInf = 0.06; } if (target == DNN_TARGET_OPENCL_FP16) { l1 = 0.008; lInf = 0.04; } if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (target == DNN_TARGET_CPU) { l1 = 4.4e-5; // Expected: (normL1) <= (l1), actual: 4.31208e-05 vs 1e-05 lInf = 0.0002; // Expected: (normInf) <= (lInf), actual: 0.000194907 vs 0.0001 } else if (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16) { l1 = 0.0092; // Expected: (normL1) <= (l1), actual: 0.00918349 vs 4.4e-05 lInf = 0.056; // Expected: (normInf) <= (lInf), actual: 0.0556431 vs 0.0002 } } normAssert(ref, out, "ViTB_32", l1, lInf); } TEST_P(Test_ONNX_nets, VitTrack) { auto image = imread(_tf("../dog_orig_size.png")); auto input0 = blobFromImage(image, 1.f, Size(128, 128)); auto input1 = blobFromImage(image, 1.f, Size(256, 256)); auto net = readNet(_tf("models/object_tracking_vittrack_2023sep.onnx", false)); net.setInput(input0, "template"); net.setInput(input1, "search"); std::vector output_names{"output1", "output2", "output3"}; std::vector outputs; net.forward(outputs, output_names); auto ref_output1 = blobFromNPY(_tf("data/output_object_tracking_vittrack_2023sep_0.npy")); auto ref_output2 = blobFromNPY(_tf("data/output_object_tracking_vittrack_2023sep_1.npy")); auto ref_output3 = blobFromNPY(_tf("data/output_object_tracking_vittrack_2023sep_2.npy")); normAssert(ref_output1, outputs[0], "VitTrack output1"); normAssert(ref_output2, outputs[1], "VitTrack output2"); normAssert(ref_output3, outputs[2], "VitTrack output3"); } TEST_P(Test_ONNX_layers, LayerNormNoFusion) { testONNXModels("layer_norm_no_fusion"); } TEST_P(Test_ONNX_layers, MatMulAddFusion) { double l1 = (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) ? 0.0018 : default_l1; double lInf = (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) ? 0.011 : default_lInf; testONNXModels("biased_matmul", npy, l1, lInf); } TEST_P(Test_ONNX_layers, ClipDivSharedConstant) { testONNXModels("clip_div_shared_constant"); } TEST_P(Test_ONNX_layers, TopK) { auto test = [&](const std::string &basename, double l1 = 0, double lInf = 0) { std::string onnxmodel = _tf("models/" + basename + ".onnx", true); Mat input = readTensorFromONNX(_tf("data/input_" + basename + ".pb")); Mat output_ref_val = readTensorFromONNX(_tf("data/output_" + basename + "_0.pb")), output_ref_ind = readTensorFromONNX(_tf("data/output_" + basename + "_1.pb")); checkBackend(&input, &output_ref_val); checkBackend(&input, &output_ref_ind); Net net = readNetFromONNX(onnxmodel); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(input); std::vector outputs; net.forward(outputs, std::vector{"values", "indices"}); Mat output_res_val = outputs.front(), output_res_ind = outputs.back(); output_res_ind.convertTo(output_res_ind, CV_32S); // TODO: remove this conversion on 5.x normAssert(output_ref_val, output_res_val, (basename + " values").c_str(), l1 ? l1 : default_l1, lInf ? lInf : default_lInf); normAssert(output_ref_ind, output_res_ind, (basename + " indices").c_str(), l1 ? l1 : default_l1, lInf ? lInf : default_lInf); expectNoFallbacksFromIE(net); }; test("top_k"); test("top_k_negative_axis"); test("top_k_smallest"); } INSTANTIATE_TEST_CASE_P(/**/, Test_ONNX_nets, dnnBackendsAndTargets()); }} // namespace