#include "opencv2/imgproc.hpp" #include "opencv2/highgui.hpp" #include "opencv2/ml.hpp" #include "opencv2/objdetect.hpp" #include #include using namespace cv; using namespace cv::ml; using namespace std; vector< float > get_svm_detector( const Ptr< SVM >& svm ); void convert_to_ml( const std::vector< Mat > & train_samples, Mat& trainData ); void load_images( const String & dirname, vector< Mat > & img_lst, bool showImages ); void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size ); void computeHOGs( const Size wsize, const vector< Mat > & img_lst, vector< Mat > & gradient_lst, bool use_flip ); void test_trained_detector( String obj_det_filename, String test_dir, String videofilename ); vector< float > get_svm_detector( const Ptr< SVM >& svm ) { // get the support vectors Mat sv = svm->getSupportVectors(); const int sv_total = sv.rows; // get the decision function Mat alpha, svidx; double rho = svm->getDecisionFunction( 0, alpha, svidx ); CV_Assert( alpha.total() == 1 && svidx.total() == 1 && sv_total == 1 ); CV_Assert( (alpha.type() == CV_64F && alpha.at(0) == 1.) || (alpha.type() == CV_32F && alpha.at(0) == 1.f) ); CV_Assert( sv.type() == CV_32F ); vector< float > hog_detector( sv.cols + 1 ); memcpy( &hog_detector[0], sv.ptr(), sv.cols*sizeof( hog_detector[0] ) ); hog_detector[sv.cols] = (float)-rho; return hog_detector; } /* * Convert training/testing set to be used by OpenCV Machine Learning algorithms. * TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1. * Transposition of samples are made if needed. */ void convert_to_ml( const vector< Mat > & train_samples, Mat& trainData ) { //--Convert data const int rows = (int)train_samples.size(); const int cols = (int)std::max( train_samples[0].cols, train_samples[0].rows ); Mat tmp( 1, cols, CV_32FC1 ); //< used for transposition if needed trainData = Mat( rows, cols, CV_32FC1 ); for( size_t i = 0 ; i < train_samples.size(); ++i ) { CV_Assert( train_samples[i].cols == 1 || train_samples[i].rows == 1 ); if( train_samples[i].cols == 1 ) { transpose( train_samples[i], tmp ); tmp.copyTo( trainData.row( (int)i ) ); } else if( train_samples[i].rows == 1 ) { train_samples[i].copyTo( trainData.row( (int)i ) ); } } } void load_images( const String & dirname, vector< Mat > & img_lst, bool showImages = false ) { vector< String > files; glob( dirname, files ); for ( size_t i = 0; i < files.size(); ++i ) { Mat img = imread( files[i] ); // load the image if ( img.empty() ) // invalid image, skip it. { cout << files[i] << " is invalid!" << endl; continue; } if ( showImages ) { imshow( "image", img ); waitKey( 1 ); } img_lst.push_back( img ); } } void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size ) { Rect box; box.width = size.width; box.height = size.height; const int size_x = box.width; const int size_y = box.height; srand( (unsigned int)time( NULL ) ); for ( size_t i = 0; i < full_neg_lst.size(); i++ ) if ( full_neg_lst[i].cols > box.width && full_neg_lst[i].rows > box.height ) { box.x = rand() % ( full_neg_lst[i].cols - size_x ); box.y = rand() % ( full_neg_lst[i].rows - size_y ); Mat roi = full_neg_lst[i]( box ); neg_lst.push_back( roi.clone() ); } } void computeHOGs( const Size wsize, const vector< Mat > & img_lst, vector< Mat > & gradient_lst, bool use_flip ) { HOGDescriptor hog; hog.winSize = wsize; Mat gray; vector< float > descriptors; for( size_t i = 0 ; i < img_lst.size(); i++ ) { if ( img_lst[i].cols >= wsize.width && img_lst[i].rows >= wsize.height ) { Rect r = Rect(( img_lst[i].cols - wsize.width ) / 2, ( img_lst[i].rows - wsize.height ) / 2, wsize.width, wsize.height); cvtColor( img_lst[i](r), gray, COLOR_BGR2GRAY ); hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ) ); gradient_lst.push_back( Mat( descriptors ).clone() ); if ( use_flip ) { flip( gray, gray, 1 ); hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ) ); gradient_lst.push_back( Mat( descriptors ).clone() ); } } } } void test_trained_detector( String obj_det_filename, String test_dir, String videofilename ) { cout << "Testing trained detector..." << endl; HOGDescriptor hog; hog.load( obj_det_filename ); vector< String > files; glob( test_dir, files ); int delay = 0; VideoCapture cap; if ( videofilename != "" ) { if ( videofilename.size() == 1 && isdigit( videofilename[0] ) ) cap.open( videofilename[0] - '0' ); else cap.open( videofilename ); } obj_det_filename = "testing " + obj_det_filename; namedWindow( obj_det_filename, WINDOW_NORMAL ); for( size_t i=0;; i++ ) { Mat img; if ( cap.isOpened() ) { cap >> img; delay = 1; } else if( i < files.size() ) { img = imread( files[i] ); } if ( img.empty() ) { return; } vector< Rect > detections; vector< double > foundWeights; hog.detectMultiScale( img, detections, foundWeights ); for ( size_t j = 0; j < detections.size(); j++ ) { Scalar color = Scalar( 0, foundWeights[j] * foundWeights[j] * 200, 0 ); rectangle( img, detections[j], color, img.cols / 400 + 1 ); } imshow( obj_det_filename, img ); if( waitKey( delay ) == 27 ) { return; } } } int main( int argc, char** argv ) { const char* keys = { "{help h| | show help message}" "{pd | | path of directory contains positive images}" "{nd | | path of directory contains negative images}" "{td | | path of directory contains test images}" "{tv | | test video file name}" "{dw | | width of the detector}" "{dh | | height of the detector}" "{f |false| indicates if the program will generate and use mirrored samples or not}" "{d |false| train twice}" "{t |false| test a trained detector}" "{v |false| visualize training steps}" "{fn |my_detector.yml| file name of trained SVM}" }; CommandLineParser parser( argc, argv, keys ); if ( parser.has( "help" ) ) { parser.printMessage(); exit( 0 ); } String pos_dir = parser.get< String >( "pd" ); String neg_dir = parser.get< String >( "nd" ); String test_dir = parser.get< String >( "td" ); String obj_det_filename = parser.get< String >( "fn" ); String videofilename = parser.get< String >( "tv" ); int detector_width = parser.get< int >( "dw" ); int detector_height = parser.get< int >( "dh" ); bool test_detector = parser.get< bool >( "t" ); bool train_twice = parser.get< bool >( "d" ); bool visualization = parser.get< bool >( "v" ); bool flip_samples = parser.get< bool >( "f" ); if ( test_detector ) { test_trained_detector( obj_det_filename, test_dir, videofilename ); exit( 0 ); } if( pos_dir.empty() || neg_dir.empty() ) { parser.printMessage(); cout << "Wrong number of parameters.\n\n" << "Example command line:\n" << argv[0] << " -dw=64 -dh=128 -pd=/INRIAPerson/96X160H96/Train/pos -nd=/INRIAPerson/neg -td=/INRIAPerson/Test/pos -fn=HOGpedestrian64x128.xml -d\n" << "\nExample command line for testing trained detector:\n" << argv[0] << " -t -fn=HOGpedestrian64x128.xml -td=/INRIAPerson/Test/pos"; exit( 1 ); } vector< Mat > pos_lst, full_neg_lst, neg_lst, gradient_lst; vector< int > labels; clog << "Positive images are being loaded..." ; load_images( pos_dir, pos_lst, visualization ); if ( pos_lst.size() > 0 ) { clog << "...[done]" << endl; } else { clog << "no image in " << pos_dir < svm = SVM::create(); /* Default values to train SVM */ svm->setCoef0( 0.0 ); svm->setDegree( 3 ); svm->setTermCriteria( TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, 1e-3 ) ); svm->setGamma( 0 ); svm->setKernel( SVM::LINEAR ); svm->setNu( 0.5 ); svm->setP( 0.1 ); // for EPSILON_SVR, epsilon in loss function? svm->setC( 0.01 ); // From paper, soft classifier svm->setType( SVM::EPS_SVR ); // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task svm->train( train_data, ROW_SAMPLE, labels ); clog << "...[done]" << endl; if ( train_twice ) { clog << "Testing trained detector on negative images. This may take a few minutes..."; HOGDescriptor my_hog; my_hog.winSize = pos_image_size; // Set the trained svm to my_hog my_hog.setSVMDetector( get_svm_detector( svm ) ); vector< Rect > detections; vector< double > foundWeights; for ( size_t i = 0; i < full_neg_lst.size(); i++ ) { if ( full_neg_lst[i].cols >= pos_image_size.width && full_neg_lst[i].rows >= pos_image_size.height ) my_hog.detectMultiScale( full_neg_lst[i], detections, foundWeights ); else detections.clear(); for ( size_t j = 0; j < detections.size(); j++ ) { Mat detection = full_neg_lst[i]( detections[j] ).clone(); resize( detection, detection, pos_image_size, 0, 0, INTER_LINEAR_EXACT); neg_lst.push_back( detection ); } if ( visualization ) { for ( size_t j = 0; j < detections.size(); j++ ) { rectangle( full_neg_lst[i], detections[j], Scalar( 0, 255, 0 ), 2 ); } imshow( "testing trained detector on negative images", full_neg_lst[i] ); waitKey( 5 ); } } clog << "...[done]" << endl; gradient_lst.clear(); clog << "Histogram of Gradients are being calculated for positive images..."; computeHOGs( pos_image_size, pos_lst, gradient_lst, flip_samples ); positive_count = gradient_lst.size(); clog << "...[done] ( positive count : " << positive_count << " )" << endl; clog << "Histogram of Gradients are being calculated for negative images..."; computeHOGs( pos_image_size, neg_lst, gradient_lst, flip_samples ); negative_count = gradient_lst.size() - positive_count; clog << "...[done] ( negative count : " << negative_count << " )" << endl; labels.clear(); labels.assign(positive_count, +1); labels.insert(labels.end(), negative_count, -1); clog << "Training SVM again..."; convert_to_ml( gradient_lst, train_data ); svm->train( train_data, ROW_SAMPLE, labels ); clog << "...[done]" << endl; } HOGDescriptor hog; hog.winSize = pos_image_size; hog.setSVMDetector( get_svm_detector( svm ) ); hog.save( obj_det_filename ); test_trained_detector( obj_det_filename, test_dir, videofilename ); return 0; }