// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "perf_precomp.hpp" #include namespace opencv_test { struct Conv1DParam_t { int kernel; struct BlobShape { int dims[3]; } shapeIn; int outCN; int groups; int stride; int dilation; int pad[2]; const char* padMode; bool hasBias; double declared_flops; }; // Details: #12142 static const Conv1DParam_t testConvolution1DConfigs[] = { {3, {{1, 6, 10}}, 6, 1, 1, 1, {0, 0}, "VALID", true, 1776.}, {3, {{1, 2, 19}}, 2, 2, 2, 1, {1, 1}, "", true, 260.}, {3, {{1, 2, 25}}, 2, 2, 1, 1, {2, 2}, "SAME", false, 650.}, }; struct Conv1DParamID { enum { CONV_0 = 0, CONV_LAST = sizeof(testConvolution1DConfigs) / sizeof(testConvolution1DConfigs[0]) }; int val_; Conv1DParamID(int val = 0) : val_(val) {} operator int() const { return val_; } static ::testing::internal::ParamGenerator all() { enum { NUM = (int)CONV_LAST }; Conv1DParamID v_[NUM]; for (int i = 0; i < NUM; ++i) { v_[i] = Conv1DParamID(i); } // reduce generated code size return ::testing::ValuesIn(v_, v_ + NUM); } }; static inline void PrintTo(const Conv1DParamID& v, std::ostream* os) { CV_Assert((int)v >= 0); CV_Assert((int)v < Conv1DParamID::CONV_LAST); const Conv1DParam_t& p = testConvolution1DConfigs[(int)v]; *os << "GFLOPS=" << cv::format("%.3f", p.declared_flops * 1e-9) << ", K=[" << p.kernel << "]" << ", IN={" << p.shapeIn.dims[0] << ", " << p.shapeIn.dims[1] << ", " << p.shapeIn.dims[2] << "}" << ", OCN=" << p.outCN; if (p.groups > 1) *os << ", G=" << p.groups; if (p.stride != 1) *os << ", S=" << p.stride; if (p.dilation != 1) *os << ", D=" << p.dilation; if (p.pad[0] != 0 && p.pad[1] != 0 ) *os << ", P=(" << p.pad[0] << ", " << p.pad[1] << ")"; if (!((std::string)p.padMode).empty()) *os << ", PM=" << ((std::string)p.padMode); if (p.hasBias) *os << ", BIAS"; } typedef tuple > Conv1DTestParam_t; typedef TestBaseWithParam Conv1D; PERF_TEST_P_(Conv1D, conv1d) { int test_id = (int)get<0>(GetParam()); ASSERT_GE(test_id, 0); ASSERT_LT(test_id, Conv1DParamID::CONV_LAST); const Conv1DParam_t& params = testConvolution1DConfigs[test_id]; double declared_flops = params.declared_flops; DictValue kernel = DictValue::arrayInt(¶ms.kernel, 1); DictValue stride = DictValue::arrayInt(¶ms.stride, 1); DictValue pad = DictValue::arrayInt(¶ms.pad[0], 2); DictValue dilation = DictValue::arrayInt(¶ms.dilation, 1); MatShape inputShape = MatShape(params.shapeIn.dims, params.shapeIn.dims + 3); int outChannels = params.outCN; int groups = params.groups; std::string padMode(params.padMode); bool hasBias = params.hasBias; Backend backendId = get<0>(get<1>(GetParam())); Target targetId = get<1>(get<1>(GetParam())); if (targetId != DNN_TARGET_CPU) throw SkipTestException("Only CPU is supported"); int inChannels = inputShape[1]; int sz[] = {outChannels, inChannels / groups, params.kernel}; Mat weights(3, &sz[0], CV_32F); randu(weights, -1.0f, 1.0f); LayerParams lp; lp.set("kernel_size", kernel); lp.set("pad", pad); if (!padMode.empty()) lp.set("pad_mode", padMode); lp.set("stride", stride); lp.set("dilation", dilation); lp.set("num_output", outChannels); lp.set("group", groups); lp.set("bias_term", hasBias); lp.type = "Convolution"; lp.name = "testLayer"; lp.blobs.push_back(weights); if (hasBias) { Mat bias(1, outChannels, CV_32F); randu(bias, -1.0f, 1.0f); lp.blobs.push_back(bias); } int inpSz[] = {1, inChannels, inputShape[2]}; Mat input(3, &inpSz[0], CV_32F); randu(input, -1.0f, 1.0f); Net net; net.addLayerToPrev(lp.name, lp.type, lp); net.setInput(input); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); // warmup Mat output = net.forward(); MatShape netInputShape = shape(input); cv::dnn::MatType netInputType = input.depth(); bool fp16 = false; #ifdef HAVE_OPENCL fp16 = ocl::Device::getDefault().isExtensionSupported("cl_khr_fp16"); #endif if (netInputType == CV_32F && fp16 && targetId == DNN_TARGET_OPENCL_FP16) netInputType = CV_16F; size_t weightsMemory = 0, blobsMemory = 0; net.getMemoryConsumption(netInputShape, netInputType, weightsMemory, blobsMemory); int64 flops = net.getFLOPS(netInputShape, netInputType); CV_Assert(flops > 0); std::cout << "IN=" << divUp(input.total() * input.elemSize(), 1u<<10) << " Kb " << netInputShape << " OUT=" << divUp(output.total() * output.elemSize(), 1u<<10) << " Kb " << shape(output) << " Weights(parameters): " << divUp(weightsMemory, 1u<<10) << " Kb" << " MFLOPS=" << flops * 1e-6 << std::endl; TEST_CYCLE() { Mat res = net.forward(); } EXPECT_NEAR(flops, declared_flops, declared_flops * 1e-6); SANITY_CHECK_NOTHING(); } INSTANTIATE_TEST_CASE_P(/**/, Conv1D, Combine( Conv1DParamID::all(), dnnBackendsAndTargets(/* withInferenceEngine = */false, /* obsolete_withHalide = */false) // defined in ../test/test_common.hpp )); } // namespace