/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; #if !defined (HAVE_CUDA) void cv::gpu::remap(const GpuMat&, GpuMat&, const GpuMat&, const GpuMat&){ throw_nogpu(); } void cv::gpu::meanShiftFiltering(const GpuMat&, GpuMat&, int, int, TermCriteria) { throw_nogpu(); } void cv::gpu::meanShiftProc(const GpuMat&, GpuMat&, GpuMat&, int, int, TermCriteria) { throw_nogpu(); } void cv::gpu::drawColorDisp(const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); } void cv::gpu::reprojectImageTo3D(const GpuMat&, GpuMat&, const Mat&, Stream&) { throw_nogpu(); } void cv::gpu::resize(const GpuMat&, GpuMat&, Size, double, double, int, Stream&) { throw_nogpu(); } void cv::gpu::copyMakeBorder(const GpuMat&, GpuMat&, int, int, int, int, const Scalar&, Stream&) { throw_nogpu(); } void cv::gpu::warpAffine(const GpuMat&, GpuMat&, const Mat&, Size, int, Stream&) { throw_nogpu(); } void cv::gpu::warpPerspective(const GpuMat&, GpuMat&, const Mat&, Size, int, Stream&) { throw_nogpu(); } void cv::gpu::buildWarpSphericalMaps(Size, Rect, const Mat&, double, double, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::rotate(const GpuMat&, GpuMat&, Size, double, double, double, int, Stream&) { throw_nogpu(); } void cv::gpu::integral(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::integralBuffered(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::integral(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::sqrIntegral(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::columnSum(const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::rectStdDev(const GpuMat&, const GpuMat&, GpuMat&, const Rect&, Stream&) { throw_nogpu(); } void cv::gpu::evenLevels(GpuMat&, int, int, int) { throw_nogpu(); } void cv::gpu::histEven(const GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); } void cv::gpu::histEven(const GpuMat&, GpuMat*, int*, int*, int*, Stream&) { throw_nogpu(); } void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*, Stream&) { throw_nogpu(); } void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, int, int, double, int) { throw_nogpu(); } void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); } void cv::gpu::mulSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, bool) { throw_nogpu(); } void cv::gpu::mulAndScaleSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, float, bool) { throw_nogpu(); } void cv::gpu::dft(const GpuMat&, GpuMat&, Size, int) { throw_nogpu(); } void cv::gpu::ConvolveBuf::create(Size, Size) { throw_nogpu(); } void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_nogpu(); } void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool, ConvolveBuf&) { throw_nogpu(); } void cv::gpu::downsample(const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::upsample(const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::pyrDown(const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::pyrUp(const GpuMat&, GpuMat&) { throw_nogpu(); } #else /* !defined (HAVE_CUDA) */ namespace cv { namespace gpu { namespace imgproc { void remap_gpu_1c(const DevMem2D& src, const DevMem2Df& xmap, const DevMem2Df& ymap, DevMem2D dst); void remap_gpu_3c(const DevMem2D& src, const DevMem2Df& xmap, const DevMem2Df& ymap, DevMem2D dst); extern "C" void meanShiftFiltering_gpu(const DevMem2D& src, DevMem2D dst, int sp, int sr, int maxIter, float eps); extern "C" void meanShiftProc_gpu(const DevMem2D& src, DevMem2D dstr, DevMem2D dstsp, int sp, int sr, int maxIter, float eps); void drawColorDisp_gpu(const DevMem2D& src, const DevMem2D& dst, int ndisp, const cudaStream_t& stream); void drawColorDisp_gpu(const DevMem2D_& src, const DevMem2D& dst, int ndisp, const cudaStream_t& stream); void reprojectImageTo3D_gpu(const DevMem2D& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream); void reprojectImageTo3D_gpu(const DevMem2D_& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream); }}} //////////////////////////////////////////////////////////////////////// // remap void cv::gpu::remap(const GpuMat& src, GpuMat& dst, const GpuMat& xmap, const GpuMat& ymap) { typedef void (*remap_gpu_t)(const DevMem2D& src, const DevMem2Df& xmap, const DevMem2Df& ymap, DevMem2D dst); static const remap_gpu_t callers[] = {imgproc::remap_gpu_1c, 0, imgproc::remap_gpu_3c}; CV_Assert((src.type() == CV_8U || src.type() == CV_8UC3) && xmap.type() == CV_32F && ymap.type() == CV_32F); GpuMat out; if (dst.data != src.data) out = dst; out.create(xmap.size(), src.type()); callers[src.channels() - 1](src, xmap, ymap, out); dst = out; } //////////////////////////////////////////////////////////////////////// // meanShiftFiltering_GPU void cv::gpu::meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr, TermCriteria criteria) { CV_Assert(TargetArchs::builtWith(FEATURE_SET_COMPUTE_12) && DeviceInfo().supports(FEATURE_SET_COMPUTE_12)); if( src.empty() ) CV_Error( CV_StsBadArg, "The input image is empty" ); if( src.depth() != CV_8U || src.channels() != 4 ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" ); dst.create( src.size(), CV_8UC4 ); if( !(criteria.type & TermCriteria::MAX_ITER) ) criteria.maxCount = 5; int maxIter = std::min(std::max(criteria.maxCount, 1), 100); float eps; if( !(criteria.type & TermCriteria::EPS) ) eps = 1.f; eps = (float)std::max(criteria.epsilon, 0.0); imgproc::meanShiftFiltering_gpu(src, dst, sp, sr, maxIter, eps); } //////////////////////////////////////////////////////////////////////// // meanShiftProc_GPU void cv::gpu::meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr, TermCriteria criteria) { CV_Assert(TargetArchs::builtWith(FEATURE_SET_COMPUTE_12) && DeviceInfo().supports(FEATURE_SET_COMPUTE_12)); if( src.empty() ) CV_Error( CV_StsBadArg, "The input image is empty" ); if( src.depth() != CV_8U || src.channels() != 4 ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" ); dstr.create( src.size(), CV_8UC4 ); dstsp.create( src.size(), CV_16SC2 ); if( !(criteria.type & TermCriteria::MAX_ITER) ) criteria.maxCount = 5; int maxIter = std::min(std::max(criteria.maxCount, 1), 100); float eps; if( !(criteria.type & TermCriteria::EPS) ) eps = 1.f; eps = (float)std::max(criteria.epsilon, 0.0); imgproc::meanShiftProc_gpu(src, dstr, dstsp, sp, sr, maxIter, eps); } //////////////////////////////////////////////////////////////////////// // drawColorDisp namespace { template void drawColorDisp_caller(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream) { GpuMat out; if (dst.data != src.data) out = dst; out.create(src.size(), CV_8UC4); imgproc::drawColorDisp_gpu((DevMem2D_)src, out, ndisp, stream); dst = out; } typedef void (*drawColorDisp_caller_t)(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream); const drawColorDisp_caller_t drawColorDisp_callers[] = {drawColorDisp_caller, 0, 0, drawColorDisp_caller, 0, 0, 0, 0}; } void cv::gpu::drawColorDisp(const GpuMat& src, GpuMat& dst, int ndisp, Stream& stream) { CV_Assert(src.type() == CV_8U || src.type() == CV_16S); drawColorDisp_callers[src.type()](src, dst, ndisp, StreamAccessor::getStream(stream)); } //////////////////////////////////////////////////////////////////////// // reprojectImageTo3D namespace { template void reprojectImageTo3D_caller(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, const cudaStream_t& stream) { xyzw.create(disp.rows, disp.cols, CV_32FC4); imgproc::reprojectImageTo3D_gpu((DevMem2D_)disp, xyzw, Q.ptr(), stream); } typedef void (*reprojectImageTo3D_caller_t)(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, const cudaStream_t& stream); const reprojectImageTo3D_caller_t reprojectImageTo3D_callers[] = {reprojectImageTo3D_caller, 0, 0, reprojectImageTo3D_caller, 0, 0, 0, 0}; } void cv::gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, Stream& stream) { CV_Assert((disp.type() == CV_8U || disp.type() == CV_16S) && Q.type() == CV_32F && Q.rows == 4 && Q.cols == 4); reprojectImageTo3D_callers[disp.type()](disp, xyzw, Q, StreamAccessor::getStream(stream)); } //////////////////////////////////////////////////////////////////////// // resize void cv::gpu::resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx, double fy, int interpolation, Stream& s) { static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR/*, NPPI_INTER_CUBIC, 0, NPPI_INTER_LANCZOS*/}; CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4); CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR/* || interpolation == INTER_CUBIC || interpolation == INTER_LANCZOS4*/); CV_Assert( src.size().area() > 0 ); CV_Assert( !(dsize == Size()) || (fx > 0 && fy > 0) ); if( dsize == Size() ) { dsize = Size(saturate_cast(src.cols * fx), saturate_cast(src.rows * fy)); } else { fx = (double)dsize.width / src.cols; fy = (double)dsize.height / src.rows; } dst.create(dsize, src.type()); NppiSize srcsz; srcsz.width = src.cols; srcsz.height = src.rows; NppiRect srcrect; srcrect.x = srcrect.y = 0; srcrect.width = src.cols; srcrect.height = src.rows; NppiSize dstsz; dstsz.width = dst.cols; dstsz.height = dst.rows; cudaStream_t stream = StreamAccessor::getStream(s); NppStreamHandler h(stream); if (src.type() == CV_8UC1) { nppSafeCall( nppiResize_8u_C1R(src.ptr(), srcsz, src.step, srcrect, dst.ptr(), dst.step, dstsz, fx, fy, npp_inter[interpolation]) ); } else { nppSafeCall( nppiResize_8u_C4R(src.ptr(), srcsz, src.step, srcrect, dst.ptr(), dst.step, dstsz, fx, fy, npp_inter[interpolation]) ); } if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } //////////////////////////////////////////////////////////////////////// // copyMakeBorder void cv::gpu::copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, const Scalar& value, Stream& s) { CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4 || src.type() == CV_32SC1 || src.type() == CV_32FC1); dst.create(src.rows + top + bottom, src.cols + left + right, src.type()); NppiSize srcsz; srcsz.width = src.cols; srcsz.height = src.rows; NppiSize dstsz; dstsz.width = dst.cols; dstsz.height = dst.rows; cudaStream_t stream = StreamAccessor::getStream(s); NppStreamHandler h(stream); switch (src.type()) { case CV_8UC1: { Npp8u nVal = static_cast(value[0]); nppSafeCall( nppiCopyConstBorder_8u_C1R(src.ptr(), src.step, srcsz, dst.ptr(), dst.step, dstsz, top, left, nVal) ); break; } case CV_8UC4: { Npp8u nVal[] = {static_cast(value[0]), static_cast(value[1]), static_cast(value[2]), static_cast(value[3])}; nppSafeCall( nppiCopyConstBorder_8u_C4R(src.ptr(), src.step, srcsz, dst.ptr(), dst.step, dstsz, top, left, nVal) ); break; } case CV_32SC1: { Npp32s nVal = static_cast(value[0]); nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr(), src.step, srcsz, dst.ptr(), dst.step, dstsz, top, left, nVal) ); break; } case CV_32FC1: { Npp32f val = static_cast(value[0]); Npp32s nVal = *(reinterpret_cast(&val)); nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr(), src.step, srcsz, dst.ptr(), dst.step, dstsz, top, left, nVal) ); break; } default: CV_Assert(!"Unsupported source type"); } if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } //////////////////////////////////////////////////////////////////////// // warp namespace { typedef NppStatus (*npp_warp_8u_t)(const Npp8u* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp8u* pDst, int dstStep, NppiRect dstRoi, const double coeffs[][3], int interpolation); typedef NppStatus (*npp_warp_16u_t)(const Npp16u* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp16u* pDst, int dstStep, NppiRect dstRoi, const double coeffs[][3], int interpolation); typedef NppStatus (*npp_warp_32s_t)(const Npp32s* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp32s* pDst, int dstStep, NppiRect dstRoi, const double coeffs[][3], int interpolation); typedef NppStatus (*npp_warp_32f_t)(const Npp32f* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp32f* pDst, int dstStep, NppiRect dstRoi, const double coeffs[][3], int interpolation); void nppWarpCaller(const GpuMat& src, GpuMat& dst, double coeffs[][3], const Size& dsize, int flags, npp_warp_8u_t npp_warp_8u[][2], npp_warp_16u_t npp_warp_16u[][2], npp_warp_32s_t npp_warp_32s[][2], npp_warp_32f_t npp_warp_32f[][2], cudaStream_t stream) { static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC}; int interpolation = flags & INTER_MAX; CV_Assert((src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32S || src.depth() == CV_32F) && src.channels() != 2); CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC); dst.create(dsize, src.type()); NppiSize srcsz; srcsz.height = src.rows; srcsz.width = src.cols; NppiRect srcroi; srcroi.x = srcroi.y = 0; srcroi.height = src.rows; srcroi.width = src.cols; NppiRect dstroi; dstroi.x = dstroi.y = 0; dstroi.height = dst.rows; dstroi.width = dst.cols; int warpInd = (flags & WARP_INVERSE_MAP) >> 4; NppStreamHandler h(stream); switch (src.depth()) { case CV_8U: nppSafeCall( npp_warp_8u[src.channels()][warpInd](src.ptr(), srcsz, src.step, srcroi, dst.ptr(), dst.step, dstroi, coeffs, npp_inter[interpolation]) ); break; case CV_16U: nppSafeCall( npp_warp_16u[src.channels()][warpInd](src.ptr(), srcsz, src.step, srcroi, dst.ptr(), dst.step, dstroi, coeffs, npp_inter[interpolation]) ); break; case CV_32S: nppSafeCall( npp_warp_32s[src.channels()][warpInd](src.ptr(), srcsz, src.step, srcroi, dst.ptr(), dst.step, dstroi, coeffs, npp_inter[interpolation]) ); break; case CV_32F: nppSafeCall( npp_warp_32f[src.channels()][warpInd](src.ptr(), srcsz, src.step, srcroi, dst.ptr(), dst.step, dstroi, coeffs, npp_inter[interpolation]) ); break; default: CV_Assert(!"Unsupported source type"); } if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } } void cv::gpu::warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags, Stream& s) { static npp_warp_8u_t npp_warpAffine_8u[][2] = { {0, 0}, {nppiWarpAffine_8u_C1R, nppiWarpAffineBack_8u_C1R}, {0, 0}, {nppiWarpAffine_8u_C3R, nppiWarpAffineBack_8u_C3R}, {nppiWarpAffine_8u_C4R, nppiWarpAffineBack_8u_C4R} }; static npp_warp_16u_t npp_warpAffine_16u[][2] = { {0, 0}, {nppiWarpAffine_16u_C1R, nppiWarpAffineBack_16u_C1R}, {0, 0}, {nppiWarpAffine_16u_C3R, nppiWarpAffineBack_16u_C3R}, {nppiWarpAffine_16u_C4R, nppiWarpAffineBack_16u_C4R} }; static npp_warp_32s_t npp_warpAffine_32s[][2] = { {0, 0}, {nppiWarpAffine_32s_C1R, nppiWarpAffineBack_32s_C1R}, {0, 0}, {nppiWarpAffine_32s_C3R, nppiWarpAffineBack_32s_C3R}, {nppiWarpAffine_32s_C4R, nppiWarpAffineBack_32s_C4R} }; static npp_warp_32f_t npp_warpAffine_32f[][2] = { {0, 0}, {nppiWarpAffine_32f_C1R, nppiWarpAffineBack_32f_C1R}, {0, 0}, {nppiWarpAffine_32f_C3R, nppiWarpAffineBack_32f_C3R}, {nppiWarpAffine_32f_C4R, nppiWarpAffineBack_32f_C4R} }; CV_Assert(M.rows == 2 && M.cols == 3); double coeffs[2][3]; Mat coeffsMat(2, 3, CV_64F, (void*)coeffs); M.convertTo(coeffsMat, coeffsMat.type()); nppWarpCaller(src, dst, coeffs, dsize, flags, npp_warpAffine_8u, npp_warpAffine_16u, npp_warpAffine_32s, npp_warpAffine_32f, StreamAccessor::getStream(s)); } void cv::gpu::warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags, Stream& s) { static npp_warp_8u_t npp_warpPerspective_8u[][2] = { {0, 0}, {nppiWarpPerspective_8u_C1R, nppiWarpPerspectiveBack_8u_C1R}, {0, 0}, {nppiWarpPerspective_8u_C3R, nppiWarpPerspectiveBack_8u_C3R}, {nppiWarpPerspective_8u_C4R, nppiWarpPerspectiveBack_8u_C4R} }; static npp_warp_16u_t npp_warpPerspective_16u[][2] = { {0, 0}, {nppiWarpPerspective_16u_C1R, nppiWarpPerspectiveBack_16u_C1R}, {0, 0}, {nppiWarpPerspective_16u_C3R, nppiWarpPerspectiveBack_16u_C3R}, {nppiWarpPerspective_16u_C4R, nppiWarpPerspectiveBack_16u_C4R} }; static npp_warp_32s_t npp_warpPerspective_32s[][2] = { {0, 0}, {nppiWarpPerspective_32s_C1R, nppiWarpPerspectiveBack_32s_C1R}, {0, 0}, {nppiWarpPerspective_32s_C3R, nppiWarpPerspectiveBack_32s_C3R}, {nppiWarpPerspective_32s_C4R, nppiWarpPerspectiveBack_32s_C4R} }; static npp_warp_32f_t npp_warpPerspective_32f[][2] = { {0, 0}, {nppiWarpPerspective_32f_C1R, nppiWarpPerspectiveBack_32f_C1R}, {0, 0}, {nppiWarpPerspective_32f_C3R, nppiWarpPerspectiveBack_32f_C3R}, {nppiWarpPerspective_32f_C4R, nppiWarpPerspectiveBack_32f_C4R} }; CV_Assert(M.rows == 3 && M.cols == 3); double coeffs[3][3]; Mat coeffsMat(3, 3, CV_64F, (void*)coeffs); M.convertTo(coeffsMat, coeffsMat.type()); nppWarpCaller(src, dst, coeffs, dsize, flags, npp_warpPerspective_8u, npp_warpPerspective_16u, npp_warpPerspective_32s, npp_warpPerspective_32f, StreamAccessor::getStream(s)); } ////////////////////////////////////////////////////////////////////////////// // buildWarpSphericalMaps namespace cv { namespace gpu { namespace imgproc { void buildWarpSphericalMaps(int tl_u, int tl_v, DevMem2Df map_x, DevMem2Df map_y, const float r[9], const float rinv[9], float f, float s, float half_w, float half_h, cudaStream_t stream); }}} void cv::gpu::buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat& R, double f, double s, GpuMat& map_x, GpuMat& map_y, Stream& stream) { CV_Assert(R.size() == Size(3,3) && R.isContinuous() && R.type() == CV_32F); Mat Rinv = R.inv(); CV_Assert(Rinv.isContinuous()); map_x.create(dst_roi.size(), CV_32F); map_y.create(dst_roi.size(), CV_32F); imgproc::buildWarpSphericalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, R.ptr(), Rinv.ptr(), f, s, 0.5f*src_size.width, 0.5f*src_size.height, StreamAccessor::getStream(stream)); } //////////////////////////////////////////////////////////////////////// // rotate void cv::gpu::rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, Stream& s) { static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC}; CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4); CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC); dst.create(dsize, src.type()); NppiSize srcsz; srcsz.height = src.rows; srcsz.width = src.cols; NppiRect srcroi; srcroi.x = srcroi.y = 0; srcroi.height = src.rows; srcroi.width = src.cols; NppiRect dstroi; dstroi.x = dstroi.y = 0; dstroi.height = dst.rows; dstroi.width = dst.cols; cudaStream_t stream = StreamAccessor::getStream(s); NppStreamHandler h(stream); if (src.type() == CV_8UC1) { nppSafeCall( nppiRotate_8u_C1R(src.ptr(), srcsz, src.step, srcroi, dst.ptr(), dst.step, dstroi, angle, xShift, yShift, npp_inter[interpolation]) ); } else { nppSafeCall( nppiRotate_8u_C4R(src.ptr(), srcsz, src.step, srcroi, dst.ptr(), dst.step, dstroi, angle, xShift, yShift, npp_inter[interpolation]) ); } if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } //////////////////////////////////////////////////////////////////////// // integral void cv::gpu::integral(const GpuMat& src, GpuMat& sum, Stream& s) { GpuMat buffer; integralBuffered(src, sum, buffer, s); } void cv::gpu::integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, Stream& s) { CV_Assert(src.type() == CV_8UC1); sum.create(src.rows + 1, src.cols + 1, CV_32S); NcvSize32u roiSize; roiSize.width = src.cols; roiSize.height = src.rows; cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) ); Ncv32u bufSize; nppSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) ); ensureSizeIsEnough(1, bufSize, CV_8UC1, buffer); cudaStream_t stream = StreamAccessor::getStream(s); NppStStreamHandler h(stream); nppSafeCall( nppiStIntegral_8u32u_C1R(const_cast(src.ptr()), src.step, sum.ptr(), sum.step, roiSize, buffer.ptr(), bufSize, prop) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } void cv::gpu::integral(const GpuMat& src, GpuMat& sum, GpuMat& sqsum, Stream& s) { CV_Assert(src.type() == CV_8UC1); int width = src.cols + 1, height = src.rows + 1; sum.create(height, width, CV_32S); sqsum.create(height, width, CV_32F); NppiSize sz; sz.width = src.cols; sz.height = src.rows; cudaStream_t stream = StreamAccessor::getStream(s); NppStreamHandler h(stream); nppSafeCall( nppiSqrIntegral_8u32s32f_C1R(const_cast(src.ptr()), src.step, sum.ptr(), sum.step, sqsum.ptr(), sqsum.step, sz, 0, 0.0f, height) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } ////////////////////////////////////////////////////////////////////////////// // sqrIntegral void cv::gpu::sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& s) { CV_Assert(src.type() == CV_8U); NcvSize32u roiSize; roiSize.width = src.cols; roiSize.height = src.rows; cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) ); Ncv32u bufSize; nppSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize, prop)); GpuMat buf(1, bufSize, CV_8U); cudaStream_t stream = StreamAccessor::getStream(s); NppStStreamHandler h(stream); sqsum.create(src.rows + 1, src.cols + 1, CV_64F); nppSafeCall(nppiStSqrIntegral_8u64u_C1R(const_cast(src.ptr(0)), src.step, sqsum.ptr(0), sqsum.step, roiSize, buf.ptr(0), bufSize, prop)); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } ////////////////////////////////////////////////////////////////////////////// // columnSum namespace cv { namespace gpu { namespace imgproc { void columnSum_32F(const DevMem2D src, const DevMem2D dst); }}} void cv::gpu::columnSum(const GpuMat& src, GpuMat& dst) { CV_Assert(src.type() == CV_32F); dst.create(src.size(), CV_32F); imgproc::columnSum_32F(src, dst); } void cv::gpu::rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect, Stream& s) { CV_Assert(src.type() == CV_32SC1 && sqr.type() == CV_32FC1); dst.create(src.size(), CV_32FC1); NppiSize sz; sz.width = src.cols; sz.height = src.rows; NppiRect nppRect; nppRect.height = rect.height; nppRect.width = rect.width; nppRect.x = rect.x; nppRect.y = rect.y; cudaStream_t stream = StreamAccessor::getStream(s); NppStreamHandler h(stream); nppSafeCall( nppiRectStdDev_32s32f_C1R(src.ptr(), src.step, sqr.ptr(), sqr.step, dst.ptr(), dst.step, sz, nppRect) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } //////////////////////////////////////////////////////////////////////// // Histogram namespace { template struct NPPTypeTraits; template<> struct NPPTypeTraits { typedef Npp8u npp_type; }; template<> struct NPPTypeTraits { typedef Npp16u npp_type; }; template<> struct NPPTypeTraits { typedef Npp16s npp_type; }; template<> struct NPPTypeTraits { typedef Npp32f npp_type; }; typedef NppStatus (*get_buf_size_c1_t)(NppiSize oSizeROI, int nLevels, int* hpBufferSize); typedef NppStatus (*get_buf_size_c4_t)(NppiSize oSizeROI, int nLevels[], int* hpBufferSize); template struct NppHistogramEvenFuncC1 { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist, int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer); }; template struct NppHistogramEvenFuncC4 { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist[4], int nLevels[4], Npp32s nLowerLevel[4], Npp32s nUpperLevel[4], Npp8u * pBuffer); }; template::func_ptr func, get_buf_size_c1_t get_buf_size> struct NppHistogramEvenC1 { typedef typename NppHistogramEvenFuncC1::src_t src_t; static void hist(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, cudaStream_t stream) { int levels = histSize + 1; hist.create(1, histSize, CV_32S); NppiSize sz; sz.width = src.cols; sz.height = src.rows; GpuMat buffer; int buf_size; get_buf_size(sz, levels, &buf_size); buffer.create(1, buf_size, CV_8U); NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), src.step, sz, hist.ptr(), levels, lowerLevel, upperLevel, buffer.ptr()) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func, get_buf_size_c4_t get_buf_size> struct NppHistogramEvenC4 { typedef typename NppHistogramEvenFuncC4::src_t src_t; static void hist(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], cudaStream_t stream) { int levels[] = {histSize[0] + 1, histSize[1] + 1, histSize[2] + 1, histSize[3] + 1}; hist[0].create(1, histSize[0], CV_32S); hist[1].create(1, histSize[1], CV_32S); hist[2].create(1, histSize[2], CV_32S); hist[3].create(1, histSize[3], CV_32S); NppiSize sz; sz.width = src.cols; sz.height = src.rows; Npp32s* pHist[] = {hist[0].ptr(), hist[1].ptr(), hist[2].ptr(), hist[3].ptr()}; GpuMat buffer; int buf_size; get_buf_size(sz, levels, &buf_size); buffer.create(1, buf_size, CV_8U); NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), src.step, sz, pHist, levels, lowerLevel, upperLevel, buffer.ptr()) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; template struct NppHistogramRangeFuncC1 { typedef typename NPPTypeTraits::npp_type src_t; typedef Npp32s level_t; enum {LEVEL_TYPE_CODE=CV_32SC1}; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist, const Npp32s* pLevels, int nLevels, Npp8u* pBuffer); }; template<> struct NppHistogramRangeFuncC1 { typedef Npp32f src_t; typedef Npp32f level_t; enum {LEVEL_TYPE_CODE=CV_32FC1}; typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist, const Npp32f* pLevels, int nLevels, Npp8u* pBuffer); }; template struct NppHistogramRangeFuncC4 { typedef typename NPPTypeTraits::npp_type src_t; typedef Npp32s level_t; enum {LEVEL_TYPE_CODE=CV_32SC1}; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4], const Npp32s* pLevels[4], int nLevels[4], Npp8u* pBuffer); }; template<> struct NppHistogramRangeFuncC4 { typedef Npp32f src_t; typedef Npp32f level_t; enum {LEVEL_TYPE_CODE=CV_32FC1}; typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4], const Npp32f* pLevels[4], int nLevels[4], Npp8u* pBuffer); }; template::func_ptr func, get_buf_size_c1_t get_buf_size> struct NppHistogramRangeC1 { typedef typename NppHistogramRangeFuncC1::src_t src_t; typedef typename NppHistogramRangeFuncC1::level_t level_t; enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1::LEVEL_TYPE_CODE}; static void hist(const GpuMat& src, GpuMat& hist, const GpuMat& levels, cudaStream_t stream) { CV_Assert(levels.type() == LEVEL_TYPE_CODE && levels.rows == 1); hist.create(1, levels.cols - 1, CV_32S); NppiSize sz; sz.width = src.cols; sz.height = src.rows; GpuMat buffer; int buf_size; get_buf_size(sz, levels.cols, &buf_size); buffer.create(1, buf_size, CV_8U); NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), src.step, sz, hist.ptr(), levels.ptr(), levels.cols, buffer.ptr()) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func, get_buf_size_c4_t get_buf_size> struct NppHistogramRangeC4 { typedef typename NppHistogramRangeFuncC4::src_t src_t; typedef typename NppHistogramRangeFuncC1::level_t level_t; enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1::LEVEL_TYPE_CODE}; static void hist(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], cudaStream_t stream) { CV_Assert(levels[0].type() == LEVEL_TYPE_CODE && levels[0].rows == 1); CV_Assert(levels[1].type() == LEVEL_TYPE_CODE && levels[1].rows == 1); CV_Assert(levels[2].type() == LEVEL_TYPE_CODE && levels[2].rows == 1); CV_Assert(levels[3].type() == LEVEL_TYPE_CODE && levels[3].rows == 1); hist[0].create(1, levels[0].cols - 1, CV_32S); hist[1].create(1, levels[1].cols - 1, CV_32S); hist[2].create(1, levels[2].cols - 1, CV_32S); hist[3].create(1, levels[3].cols - 1, CV_32S); Npp32s* pHist[] = {hist[0].ptr(), hist[1].ptr(), hist[2].ptr(), hist[3].ptr()}; int nLevels[] = {levels[0].cols, levels[1].cols, levels[2].cols, levels[3].cols}; const level_t* pLevels[] = {levels[0].ptr(), levels[1].ptr(), levels[2].ptr(), levels[3].ptr()}; NppiSize sz; sz.width = src.cols; sz.height = src.rows; GpuMat buffer; int buf_size; get_buf_size(sz, nLevels, &buf_size); buffer.create(1, buf_size, CV_8U); NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), src.step, sz, pHist, pLevels, nLevels, buffer.ptr()) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; } void cv::gpu::evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel) { Mat host_levels(1, nLevels, CV_32SC1); nppSafeCall( nppiEvenLevelsHost_32s(host_levels.ptr(), nLevels, lowerLevel, upperLevel) ); levels.upload(host_levels); } void cv::gpu::histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream) { CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 ); typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, int levels, int lowerLevel, int upperLevel, cudaStream_t stream); static const hist_t hist_callers[] = { NppHistogramEvenC1::hist, 0, NppHistogramEvenC1::hist, NppHistogramEvenC1::hist }; hist_callers[src.depth()](src, hist, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream)); } void cv::gpu::histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream) { CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 ); typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], int levels[4], int lowerLevel[4], int upperLevel[4], cudaStream_t stream); static const hist_t hist_callers[] = { NppHistogramEvenC4::hist, 0, NppHistogramEvenC4::hist, NppHistogramEvenC4::hist }; hist_callers[src.depth()](src, hist, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream)); } void cv::gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream) { CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 || src.type() == CV_32FC1); typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, const GpuMat& levels, cudaStream_t stream); static const hist_t hist_callers[] = { NppHistogramRangeC1::hist, 0, NppHistogramRangeC1::hist, NppHistogramRangeC1::hist, 0, NppHistogramRangeC1::hist }; hist_callers[src.depth()](src, hist, levels, StreamAccessor::getStream(stream)); } void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream) { CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 || src.type() == CV_32FC4); typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], cudaStream_t stream); static const hist_t hist_callers[] = { NppHistogramRangeC4::hist, 0, NppHistogramRangeC4::hist, NppHistogramRangeC4::hist, 0, NppHistogramRangeC4::hist }; hist_callers[src.depth()](src, hist, levels, StreamAccessor::getStream(stream)); } //////////////////////////////////////////////////////////////////////// // cornerHarris & minEgenVal namespace cv { namespace gpu { namespace imgproc { void extractCovData_caller(const DevMem2Df Dx, const DevMem2Df Dy, PtrStepf dst); void cornerHarris_caller(const int block_size, const float k, const DevMem2D Dx, const DevMem2D Dy, DevMem2D dst, int border_type); void cornerMinEigenVal_caller(const int block_size, const DevMem2D Dx, const DevMem2D Dy, DevMem2D dst, int border_type); }}} namespace { template void extractCovData(const GpuMat& src, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType) { double scale = (double)(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize; if (ksize < 0) scale *= 2.; if (src.depth() == CV_8U) scale *= 255.; scale = 1./scale; GpuMat tmp_buf(src.size(), CV_32F); Dx.create(src.size(), CV_32F); Dy.create(src.size(), CV_32F); if (ksize > 0) { Sobel(src, Dx, CV_32F, 1, 0, ksize, scale, borderType); Sobel(src, Dy, CV_32F, 0, 1, ksize, scale, borderType); } else { Scharr(src, Dx, CV_32F, 1, 0, scale, borderType); Scharr(src, Dy, CV_32F, 0, 1, scale, borderType); } } void extractCovData(const GpuMat& src, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType) { switch (src.type()) { case CV_8U: extractCovData(src, Dx, Dy, blockSize, ksize, borderType); break; case CV_32F: extractCovData(src, Dx, Dy, blockSize, ksize, borderType); break; default: CV_Error(CV_StsBadArg, "extractCovData: unsupported type of the source matrix"); } } } // Anonymous namespace bool cv::gpu::tryConvertToGpuBorderType(int cpuBorderType, int& gpuBorderType) { if (cpuBorderType == cv::BORDER_REFLECT101) { gpuBorderType = cv::gpu::BORDER_REFLECT101_GPU; return true; } if (cpuBorderType == cv::BORDER_REPLICATE) { gpuBorderType = cv::gpu::BORDER_REPLICATE_GPU; return true; } if (cpuBorderType == cv::BORDER_CONSTANT) { gpuBorderType = cv::gpu::BORDER_CONSTANT_GPU; return true; } return false; } void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType) { CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE); int gpuBorderType; CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType)); GpuMat Dx, Dy; extractCovData(src, Dx, Dy, blockSize, ksize, borderType); dst.create(src.size(), CV_32F); imgproc::cornerHarris_caller(blockSize, (float)k, Dx, Dy, dst, gpuBorderType); } void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType) { CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE); int gpuBorderType; CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType)); GpuMat Dx, Dy; extractCovData(src, Dx, Dy, blockSize, ksize, borderType); dst.create(src.size(), CV_32F); imgproc::cornerMinEigenVal_caller(blockSize, Dx, Dy, dst, gpuBorderType); } ////////////////////////////////////////////////////////////////////////////// // mulSpectrums namespace cv { namespace gpu { namespace imgproc { void mulSpectrums(const PtrStep_ a, const PtrStep_ b, DevMem2D_ c); void mulSpectrums_CONJ(const PtrStep_ a, const PtrStep_ b, DevMem2D_ c); }}} void cv::gpu::mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, bool conjB) { typedef void (*Caller)(const PtrStep_, const PtrStep_, DevMem2D_); static Caller callers[] = { imgproc::mulSpectrums, imgproc::mulSpectrums_CONJ }; CV_Assert(a.type() == b.type() && a.type() == CV_32FC2); CV_Assert(a.size() == b.size()); c.create(a.size(), CV_32FC2); Caller caller = callers[(int)conjB]; caller(a, b, c); } ////////////////////////////////////////////////////////////////////////////// // mulAndScaleSpectrums namespace cv { namespace gpu { namespace imgproc { void mulAndScaleSpectrums(const PtrStep_ a, const PtrStep_ b, float scale, DevMem2D_ c); void mulAndScaleSpectrums_CONJ(const PtrStep_ a, const PtrStep_ b, float scale, DevMem2D_ c); }}} void cv::gpu::mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, float scale, bool conjB) { typedef void (*Caller)(const PtrStep_, const PtrStep_, float scale, DevMem2D_); static Caller callers[] = { imgproc::mulAndScaleSpectrums, imgproc::mulAndScaleSpectrums_CONJ }; CV_Assert(a.type() == b.type() && a.type() == CV_32FC2); CV_Assert(a.size() == b.size()); c.create(a.size(), CV_32FC2); Caller caller = callers[(int)conjB]; caller(a, b, scale, c); } ////////////////////////////////////////////////////////////////////////////// // dft void cv::gpu::dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags) { CV_Assert(src.type() == CV_32F || src.type() == CV_32FC2); // We don't support unpacked output (in the case of real input) CV_Assert(!(flags & DFT_COMPLEX_OUTPUT)); bool is_1d_input = (dft_size.height == 1) || (dft_size.width == 1); int is_row_dft = flags & DFT_ROWS; int is_scaled_dft = flags & DFT_SCALE; int is_inverse = flags & DFT_INVERSE; bool is_complex_input = src.channels() == 2; bool is_complex_output = !(flags & DFT_REAL_OUTPUT); // We don't support real-to-real transform CV_Assert(is_complex_input || is_complex_output); GpuMat src_data; // Make sure here we work with the continuous input, // as CUFFT can't handle gaps src_data = src; createContinuous(src.rows, src.cols, src.type(), src_data); if (src_data.data != src.data) src.copyTo(src_data); Size dft_size_opt = dft_size; if (is_1d_input && !is_row_dft) { // If the source matrix is single column handle it as single row dft_size_opt.width = std::max(dft_size.width, dft_size.height); dft_size_opt.height = std::min(dft_size.width, dft_size.height); } cufftType dft_type = CUFFT_R2C; if (is_complex_input) dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R; CV_Assert(dft_size_opt.width > 1); cufftHandle plan; if (is_1d_input || is_row_dft) cufftPlan1d(&plan, dft_size_opt.width, dft_type, dft_size_opt.height); else cufftPlan2d(&plan, dft_size_opt.height, dft_size_opt.width, dft_type); if (is_complex_input) { if (is_complex_output) { createContinuous(dft_size, CV_32FC2, dst); cufftSafeCall(cufftExecC2C( plan, src_data.ptr(), dst.ptr(), is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD)); } else { createContinuous(dft_size, CV_32F, dst); cufftSafeCall(cufftExecC2R( plan, src_data.ptr(), dst.ptr())); } } else { // We could swap dft_size for efficiency. Here we must reflect it if (dft_size == dft_size_opt) createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, dst); else createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, dst); cufftSafeCall(cufftExecR2C( plan, src_data.ptr(), dst.ptr())); } cufftSafeCall(cufftDestroy(plan)); if (is_scaled_dft) multiply(dst, Scalar::all(1. / dft_size.area()), dst); } ////////////////////////////////////////////////////////////////////////////// // convolve void cv::gpu::ConvolveBuf::create(Size image_size, Size templ_size) { result_size = Size(image_size.width - templ_size.width + 1, image_size.height - templ_size.height + 1); block_size = estimateBlockSize(result_size, templ_size); dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1); dft_size.height = getOptimalDFTSize(block_size.width + templ_size.height - 1); createContinuous(dft_size, CV_32F, image_block); createContinuous(dft_size, CV_32F, templ_block); createContinuous(dft_size, CV_32F, result_data); spect_len = dft_size.height * (dft_size.width / 2 + 1); createContinuous(1, spect_len, CV_32FC2, image_spect); createContinuous(1, spect_len, CV_32FC2, templ_spect); createContinuous(1, spect_len, CV_32FC2, result_spect); block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width); block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height); } Size cv::gpu::ConvolveBuf::estimateBlockSize(Size result_size, Size templ_size) { int scale = 40; Size bsize_min(1024, 1024); // Check whether we use Fermi generation or newer GPU if (DeviceInfo().majorVersion() >= 2) { bsize_min.width = 2048; bsize_min.height = 2048; } Size bsize(std::max(templ_size.width * scale, bsize_min.width), std::max(templ_size.height * scale, bsize_min.height)); bsize.width = std::min(bsize.width, result_size.width); bsize.height = std::min(bsize.height, result_size.height); return bsize; } void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr) { ConvolveBuf buf; convolve(image, templ, result, ccorr, buf); } void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf) { StaticAssert::check(); StaticAssert::check(); CV_Assert(image.type() == CV_32F); CV_Assert(templ.type() == CV_32F); buf.create(image.size(), templ.size()); result.create(buf.result_size, CV_32F); Size& block_size = buf.block_size; Size& dft_size = buf.dft_size; GpuMat& image_block = buf.image_block; GpuMat& templ_block = buf.templ_block; GpuMat& result_data = buf.result_data; GpuMat& image_spect = buf.image_spect; GpuMat& templ_spect = buf.templ_spect; GpuMat& result_spect = buf.result_spect; cufftHandle planR2C, planC2R; cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R)); cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C)); GpuMat templ_roi(templ.size(), CV_32F, templ.data, templ.step); copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0, templ_block.cols - templ_roi.cols, 0); cufftSafeCall(cufftExecR2C(planR2C, templ_block.ptr(), templ_spect.ptr())); // Process all blocks of the result matrix for (int y = 0; y < result.rows; y += block_size.height) { for (int x = 0; x < result.cols; x += block_size.width) { Size image_roi_size(std::min(x + dft_size.width, image.cols) - x, std::min(y + dft_size.height, image.rows) - y); GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr(y) + x), image.step); copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows, 0, image_block.cols - image_roi.cols, 0); cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr(), image_spect.ptr())); mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0, 1.f / dft_size.area(), ccorr); cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr(), result_data.ptr())); Size result_roi_size(std::min(x + block_size.width, result.cols) - x, std::min(y + block_size.height, result.rows) - y); GpuMat result_roi(result_roi_size, result.type(), (void*)(result.ptr(y) + x), result.step); GpuMat result_block(result_roi_size, result_data.type(), result_data.ptr(), result_data.step); result_block.copyTo(result_roi); } } cufftSafeCall(cufftDestroy(planR2C)); cufftSafeCall(cufftDestroy(planC2R)); } //////////////////////////////////////////////////////////////////// // downsample namespace cv { namespace gpu { namespace imgproc { template void downsampleCaller(const DevMem2D src, DevMem2D dst); }}} void cv::gpu::downsample(const GpuMat& src, GpuMat& dst) { CV_Assert(src.depth() < CV_64F && src.channels() <= 4); typedef void (*Caller)(const DevMem2D, DevMem2D); static const Caller callers[6][4] = {{imgproc::downsampleCaller, imgproc::downsampleCaller, imgproc::downsampleCaller, imgproc::downsampleCaller}, {0,0,0,0}, {0,0,0,0}, {imgproc::downsampleCaller, imgproc::downsampleCaller, imgproc::downsampleCaller, imgproc::downsampleCaller}, {0,0,0,0}, {imgproc::downsampleCaller, imgproc::downsampleCaller, imgproc::downsampleCaller, imgproc::downsampleCaller}}; Caller caller = callers[src.depth()][src.channels()-1]; if (!caller) CV_Error(CV_StsUnsupportedFormat, "bad number of channels"); dst.create((src.rows + 1) / 2, (src.cols + 1) / 2, src.type()); caller(src, dst.reshape(1)); } ////////////////////////////////////////////////////////////////////////////// // upsample namespace cv { namespace gpu { namespace imgproc { template void upsampleCaller(const DevMem2D src, DevMem2D dst); }}} void cv::gpu::upsample(const GpuMat& src, GpuMat& dst) { CV_Assert(src.depth() < CV_64F && src.channels() <= 4); typedef void (*Caller)(const DevMem2D, DevMem2D); static const Caller callers[6][5] = {{imgproc::upsampleCaller, imgproc::upsampleCaller, imgproc::upsampleCaller, imgproc::upsampleCaller}, {0,0,0,0}, {0,0,0,0}, {imgproc::upsampleCaller, imgproc::upsampleCaller, imgproc::upsampleCaller, imgproc::upsampleCaller}, {0,0,0,0}, {imgproc::upsampleCaller, imgproc::upsampleCaller, imgproc::upsampleCaller, imgproc::upsampleCaller}}; Caller caller = callers[src.depth()][src.channels()-1]; if (!caller) CV_Error(CV_StsUnsupportedFormat, "bad number of channels"); dst.create(src.rows*2, src.cols*2, src.type()); caller(src, dst.reshape(1)); } ////////////////////////////////////////////////////////////////////////////// // pyrDown void cv::gpu::pyrDown(const GpuMat& src, GpuMat& dst) { Mat ker = getGaussianKernel(5, 0, std::max(CV_32F, src.depth())); GpuMat buf; sepFilter2D(src, buf, src.depth(), ker, ker); downsample(buf, dst); } ////////////////////////////////////////////////////////////////////////////// // pyrUp void cv::gpu::pyrUp(const GpuMat& src, GpuMat& dst) { GpuMat buf; upsample(src, buf); Mat ker = getGaussianKernel(5, 0, std::max(CV_32F, src.depth())) * 2; sepFilter2D(buf, dst, buf.depth(), ker, ker); } #endif /* !defined (HAVE_CUDA) */