/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Comuter Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Peng Xiao, pengxiao@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular urpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include "precomp.hpp" using namespace std; using namespace cv; using namespace cv::ocl; #if !defined (HAVE_OPENCL) void cv::ocl::interpolateFrames(const oclMat &frame0, const oclMat &frame1, const oclMat &fu, const oclMat &fv, const oclMat &bu, const oclMat &bv, float pos, oclMat &newFrame, oclMat &buf) { throw_nogpu(); } #else namespace cv { namespace ocl { ///////////////////////////OpenCL kernel strings/////////////////////////// extern const char *interpolate_frames; namespace interpolate { //The following are ported from NPP_staging.cu // As it is not valid to do pointer offset operations on host for default oclMat's native cl_mem pointer, // we may have to do this on kernel void memsetKernel(float val, oclMat &img, int height, int offset); void normalizeKernel(oclMat &buffer, int height, int factor_offset, int dst_offset); void forwardWarpKernel(const oclMat &src, oclMat &buffer, const oclMat &u, const oclMat &v, const float time_scale, int b_offset, int d_offset); // buffer, dst offset //OpenCL conversion of nppiStVectorWarp_PSF2x2_32f_C1 void vectorWarp(const oclMat &src, const oclMat &u, const oclMat &v, oclMat &buffer, int buf_offset, float timeScale, int dst_offset); //OpenCL conversion of BlendFrames void blendFrames(const oclMat &frame0, const oclMat &frame1, const oclMat &buffer, float pos, oclMat &newFrame, cl_mem &, cl_mem &); // bind a buffer to an image void bindImgTex(const oclMat &img, cl_mem &tex); } } } void cv::ocl::interpolateFrames(const oclMat &frame0, const oclMat &frame1, const oclMat &fu, const oclMat &fv, const oclMat &bu, const oclMat &bv, float pos, oclMat &newFrame, oclMat &buf) { CV_Assert(frame0.type() == CV_32FC1); CV_Assert(frame1.size() == frame0.size() && frame1.type() == frame0.type()); CV_Assert(fu.size() == frame0.size() && fu.type() == frame0.type()); CV_Assert(fv.size() == frame0.size() && fv.type() == frame0.type()); CV_Assert(bu.size() == frame0.size() && bu.type() == frame0.type()); CV_Assert(bv.size() == frame0.size() && bv.type() == frame0.type()); newFrame.create(frame0.size(), frame0.type()); buf.create(6 * frame0.rows, frame0.cols, CV_32FC1); buf.setTo(Scalar::all(0)); size_t step = frame0.step; CV_Assert(frame1.step == step && fu.step == step && fv.step == step && bu.step == step && bv.step == step && newFrame.step == step && buf.step == step); cl_mem tex_src0 = 0, tex_src1 = 0; // warp flow using namespace interpolate; bindImgTex(frame0, tex_src0); bindImgTex(frame1, tex_src1); // CUDA Offsets enum { cov0 = 0, cov1, fwdU, fwdV, bwdU, bwdV }; vectorWarp(fu, fu, fv, buf, cov0, pos, fwdU); vectorWarp(fv, fu, fv, buf, cov0, pos, fwdV); vectorWarp(bu, bu, bv, buf, cov1, 1.0f - pos, bwdU); vectorWarp(bv, bu, bv, buf, cov1, 1.0f - pos, bwdU); blendFrames(frame0, frame1, buf, pos, newFrame, tex_src0, tex_src1); openCLFree(tex_src0); openCLFree(tex_src1); } void interpolate::memsetKernel(float val, oclMat &img, int height, int offset) { Context *clCxt = Context::getContext(); string kernelName = "memsetKernel"; vector< pair > args; int step = img.step / sizeof(float); offset = step * height * offset; args.push_back( make_pair( sizeof(cl_float), (void *)&val)); args.push_back( make_pair( sizeof(cl_mem), (void *)&img.data)); args.push_back( make_pair( sizeof(cl_int), (void *)&img.cols)); args.push_back( make_pair( sizeof(cl_int), (void *)&height)); args.push_back( make_pair( sizeof(cl_int), (void *)&step)); args.push_back( make_pair( sizeof(cl_int), (void *)&offset)); size_t globalThreads[3] = {img.cols, height, 1}; size_t localThreads[3] = {16, 16, 1}; openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1); } void interpolate::normalizeKernel(oclMat &buffer, int height, int factor_offset, int dst_offset) { Context *clCxt = Context::getContext(); string kernelName = "normalizeKernel"; vector< pair > args; int step = buffer.step / sizeof(float); factor_offset = step * height * factor_offset; dst_offset = step * height * dst_offset; args.push_back( make_pair( sizeof(cl_mem), (void *)&buffer.data)); args.push_back( make_pair( sizeof(cl_int), (void *)&buffer.cols)); args.push_back( make_pair( sizeof(cl_int), (void *)&height)); args.push_back( make_pair( sizeof(cl_int), (void *)&step)); args.push_back( make_pair( sizeof(cl_int), (void *)&factor_offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset)); size_t globalThreads[3] = {buffer.cols, height, 1}; size_t localThreads[3] = {16, 16, 1}; openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1); } void interpolate::forwardWarpKernel(const oclMat &src, oclMat &buffer, const oclMat &u, const oclMat &v, const float time_scale, int b_offset, int d_offset) { Context *clCxt = Context::getContext(); string kernelName = "forwardWarpKernel"; vector< pair > args; int f_step = u.step / sizeof(float); // flow step int b_step = buffer.step / sizeof(float); b_offset = b_step * src.rows * b_offset; d_offset = b_step * src.rows * d_offset; args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&buffer.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&u.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&v.data)); args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols)); args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows)); args.push_back( make_pair( sizeof(cl_int), (void *)&f_step)); args.push_back( make_pair( sizeof(cl_int), (void *)&b_step)); args.push_back( make_pair( sizeof(cl_int), (void *)&b_offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&d_offset)); args.push_back( make_pair( sizeof(cl_float), (void *)&time_scale)); size_t globalThreads[3] = {src.cols, src.rows, 1}; size_t localThreads[3] = {16, 16, 1}; openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1); } void interpolate::vectorWarp(const oclMat &src, const oclMat &u, const oclMat &v, oclMat &buffer, int b_offset, float timeScale, int d_offset) { memsetKernel(0, buffer, src.rows, b_offset); forwardWarpKernel(src, buffer, u, v, timeScale, b_offset, d_offset); normalizeKernel(buffer, src.rows, b_offset, d_offset); } void interpolate::blendFrames(const oclMat &frame0, const oclMat &frame1, const oclMat &buffer, float pos, oclMat &newFrame, cl_mem &tex_src0, cl_mem &tex_src1) { int step = buffer.step / sizeof(float); Context *clCxt = Context::getContext(); string kernelName = "blendFramesKernel"; vector< pair > args; args.push_back( make_pair( sizeof(cl_mem), (void *)&tex_src0)); args.push_back( make_pair( sizeof(cl_mem), (void *)&tex_src1)); args.push_back( make_pair( sizeof(cl_mem), (void *)&buffer.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&newFrame.data)); args.push_back( make_pair( sizeof(cl_int), (void *)&frame0.cols)); args.push_back( make_pair( sizeof(cl_int), (void *)&frame0.rows)); args.push_back( make_pair( sizeof(cl_int), (void *)&step)); args.push_back( make_pair( sizeof(cl_float), (void *)&pos)); size_t globalThreads[3] = {frame0.cols, frame0.rows, 1}; size_t localThreads[3] = {16, 16, 1}; openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1); } void interpolate::bindImgTex(const oclMat &img, cl_mem &texture) { cl_image_format format; int err; int depth = img.depth(); int channels = img.channels(); switch(depth) { case CV_8U: format.image_channel_data_type = CL_UNSIGNED_INT8; break; case CV_32S: format.image_channel_data_type = CL_UNSIGNED_INT32; break; case CV_32F: format.image_channel_data_type = CL_FLOAT; break; default: throw std::exception(); break; } switch(channels) { case 1: format.image_channel_order = CL_R; break; case 3: format.image_channel_order = CL_RGB; break; case 4: format.image_channel_order = CL_RGBA; break; default: throw std::exception(); break; } if(texture) { openCLFree(texture); } #if CL_VERSION_1_2 cl_image_desc desc; desc.image_type = CL_MEM_OBJECT_IMAGE2D; desc.image_width = img.step / img.elemSize(); desc.image_height = img.rows; desc.image_depth = 0; desc.image_array_size = 1; desc.image_row_pitch = 0; desc.image_slice_pitch = 0; desc.buffer = NULL; desc.num_mip_levels = 0; desc.num_samples = 0; texture = clCreateImage(Context::getContext()->impl->clContext, CL_MEM_READ_WRITE, &format, &desc, NULL, &err); #else texture = clCreateImage2D( Context::getContext()->impl->clContext, CL_MEM_READ_WRITE, &format, img.step / img.elemSize(), img.rows, 0, NULL, &err); #endif size_t origin[] = { 0, 0, 0 }; size_t region[] = { img.step / img.elemSize(), img.rows, 1 }; clEnqueueCopyBufferToImage(img.clCxt->impl->clCmdQueue, (cl_mem)img.data, texture, 0, origin, region, 0, NULL, 0); openCLSafeCall(err); } #endif//(HAVE_OPENCL)