
The OpenCV 1.x C Reference Manual
Release 2.3

June 21, 2011

CONTENTS

1 core. The Core Functionality 1
1.1 Basic Structures . 1
1.2 Operations on Arrays . 10
1.3 Dynamic Structures . 66
1.4 Drawing Functions . 96
1.5 XML/YAML Persistence . 104
1.6 Clustering . 121
1.7 Utility and System Functions and Macros . 125

2 imgproc. Image Processing 133
2.1 Histograms . 133
2.2 Image Filtering . 142
2.3 Geometric Image Transformations . 148
2.4 Miscellaneous Image Transformations . 156
2.5 Structural Analysis and Shape Descriptors . 169
2.6 Planar Subdivisions . 187
2.7 Motion Analysis and Object Tracking . 196
2.8 Feature Detection . 197
2.9 Object Detection . 205

3 features2d. Feature Detection and Descriptor Extraction 207
3.1 Feature detection and description . 207

4 objdetect. Object Detection 211
4.1 Cascade Classification . 211

5 video. Video Analysis 219
5.1 Motion Analysis and Object Tracking . 219

6 highgui. High-level GUI and Media I/O 233
6.1 User Interface . 233
6.2 Reading and Writing Images and Video . 239
6.3 Qt new functions . 245

7 calib3d. Camera Calibration, Pose Estimation and Stereo 253
7.1 Camera Calibration and 3d Reconstruction . 253

i

ii

CHAPTER

ONE

CORE. THE CORE FUNCTIONALITY

1.1 Basic Structures

CvPoint

CvPoint

2D point with integer coordinates (usually zero-based).

typedef struct CvPoint
{

int x;
int y;

}
CvPoint;

x
x-coordinate

y
y-coordinate

/* Constructor */
inline CvPoint cvPoint(int x, int y);

/* Conversion from CvPoint2D32f */
inline CvPoint cvPointFrom32f(CvPoint2D32f point);

CvPoint2D32f

CvPoint2D32f

2D point with floating-point coordinates

typedef struct CvPoint2D32f
{

float x;
float y;

}
CvPoint2D32f;

x
x-coordinate

1

The OpenCV 1.x C Reference Manual, Release 2.3

y
y-coordinate

/* Constructor */
inline CvPoint2D32f cvPoint2D32f(double x, double y);

/* Conversion from CvPoint */
inline CvPoint2D32f cvPointTo32f(CvPoint point);

CvPoint3D32f

CvPoint3D32f

3D point with floating-point coordinates

typedef struct CvPoint3D32f
{

float x;
float y;
float z;

}
CvPoint3D32f;

x
x-coordinate

y
y-coordinate

z
z-coordinate

/* Constructor */
inline CvPoint3D32f cvPoint3D32f(double x, double y, double z);

CvPoint2D64f

CvPoint2D64f

2D point with double precision floating-point coordinates

typedef struct CvPoint2D64f
{

double x;
double y;

}
CvPoint2D64f;

x
x-coordinate

y
y-coordinate

/* Constructor */
inline CvPoint2D64f cvPoint2D64f(double x, double y);

2 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

/* Conversion from CvPoint */
inline CvPoint2D64f cvPointTo64f(CvPoint point);

CvPoint3D64f

CvPoint3D64f

3D point with double precision floating-point coordinates

typedef struct CvPoint3D64f
{

double x;
double y;
double z;

}
CvPoint3D64f;

x
x-coordinate

y
y-coordinate

z
z-coordinate

/* Constructor */
inline CvPoint3D64f cvPoint3D64f(double x, double y, double z);

CvSize

CvSize

Pixel-accurate size of a rectangle.

typedef struct CvSize
{

int width;
int height;

}
CvSize;

width
Width of the rectangle

height
Height of the rectangle

/* Constructor */
inline CvSize cvSize(int width, int height);

CvSize2D32f

CvSize2D32f

Sub-pixel accurate size of a rectangle.

1.1. Basic Structures 3

The OpenCV 1.x C Reference Manual, Release 2.3

typedef struct CvSize2D32f
{

float width;
float height;

}
CvSize2D32f;

width
Width of the rectangle

height
Height of the rectangle

/* Constructor */
inline CvSize2D32f cvSize2D32f(double width, double height);

CvRect

CvRect

Offset (usually the top-left corner) and size of a rectangle.

typedef struct CvRect
{

int x;
int y;
int width;
int height;

}
CvRect;

x
x-coordinate of the top-left corner

y
y-coordinate of the top-left corner (bottom-left for Windows bitmaps)

width
Width of the rectangle

height
Height of the rectangle

/* Constructor */
inline CvRect cvRect(int x, int y, int width, int height);

CvScalar

CvScalar

A container for 1-,2-,3- or 4-tuples of doubles.

typedef struct CvScalar
{

double val[4];
}
CvScalar;

4 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

/* Constructor:
initializes val[0] with val0, val[1] with val1, etc.

*/
inline CvScalar cvScalar(double val0, double val1=0,

double val2=0, double val3=0);
/* Constructor:
initializes all of val[0]...val[3] with val0123

*/
inline CvScalar cvScalarAll(double val0123);

/* Constructor:
initializes val[0] with val0, and all of val[1]...val[3] with zeros

*/
inline CvScalar cvRealScalar(double val0);

CvTermCriteria

CvTermCriteria

Termination criteria for iterative algorithms.

#define CV_TERMCRIT_ITER 1
#define CV_TERMCRIT_NUMBER CV_TERMCRIT_ITER
#define CV_TERMCRIT_EPS 2

typedef struct CvTermCriteria
{

int type;
int max_iter;
double epsilon;

}
CvTermCriteria;

type
A combination of CV _ TERMCRIT _ ITER and CV _ TERMCRIT _ EPS

max_iter
Maximum number of iterations

epsilon
Required accuracy

/* Constructor */
inline CvTermCriteria cvTermCriteria(int type, int max_iter, double epsilon);

/* Check and transform a CvTermCriteria so that
type=CV_TERMCRIT_ITER+CV_TERMCRIT_EPS
and both max_iter and epsilon are valid */

CvTermCriteria cvCheckTermCriteria(CvTermCriteria criteria,
double default_eps,
int default_max_iters);

CvMat

CvMat

A multi-channel matrix.

1.1. Basic Structures 5

The OpenCV 1.x C Reference Manual, Release 2.3

typedef struct CvMat
{

int type;
int step;

int* refcount;

union
{

uchar* ptr;
short* s;
int* i;
float* fl;
double* db;

} data;

#ifdef __cplusplus
union
{

int rows;
int height;

};

union
{

int cols;
int width;

};
#else

int rows;
int cols;

#endif

} CvMat;

type
A CvMat signature (CV _ MAT _ MAGIC _ VAL) containing the type of elements and flags

step
Full row length in bytes

refcount
Underlying data reference counter

data
Pointers to the actual matrix data

rows
Number of rows

cols
Number of columns

Matrices are stored row by row. All of the rows are aligned by 4 bytes.

CvMatND

CvMatND

6 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

Multi-dimensional dense multi-channel array.

typedef struct CvMatND
{

int type;
int dims;

int* refcount;

union
{

uchar* ptr;
short* s;
int* i;
float* fl;
double* db;

} data;

struct
{

int size;
int step;

}
dim[CV_MAX_DIM];

} CvMatND;

type
A CvMatND signature (CV _ MATND _ MAGIC _ VAL), combining the type of elements and flags

dims
The number of array dimensions

refcount
Underlying data reference counter

data
Pointers to the actual matrix data

dim
For each dimension, the pair (number of elements, distance between elements in bytes)

CvSparseMat

CvSparseMat

Multi-dimensional sparse multi-channel array.

typedef struct CvSparseMat
{

int type;
int dims;
int* refcount;
struct CvSet* heap;
void** hashtable;
int hashsize;
int valoffset;
int idxoffset;
int size[CV_MAX_DIM];

1.1. Basic Structures 7

The OpenCV 1.x C Reference Manual, Release 2.3

} CvSparseMat;

type
A CvSparseMat signature (CV _ SPARSE _ MAT _ MAGIC _ VAL), combining the type of elements
and flags.

dims
Number of dimensions

refcount
Underlying reference counter. Not used.

heap
A pool of hash table nodes

hashtable
The hash table. Each entry is a list of nodes.

hashsize
Size of the hash table

valoffset
The value offset of the array nodes, in bytes

idxoffset
The index offset of the array nodes, in bytes

size
Array of dimension sizes

IplImage

IplImage

IPL image header

typedef struct _IplImage
{

int nSize;
int ID;
int nChannels;
int alphaChannel;
int depth;
char colorModel[4];
char channelSeq[4];
int dataOrder;
int origin;
int align;
int width;
int height;
struct _IplROI *roi;
struct _IplImage *maskROI;
void *imageId;
struct _IplTileInfo *tileInfo;
int imageSize;
char *imageData;
int widthStep;
int BorderMode[4];
int BorderConst[4];

8 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

char *imageDataOrigin;
}
IplImage;

nSize
sizeof(IplImage)

ID
Version, always equals 0

nChannels
Number of channels. Most OpenCV functions support 1-4 channels.

alphaChannel
Ignored by OpenCV

depth
Channel depth in bits + the optional sign bit (IPL_DEPTH_SIGN). The supported depths are:

IPL_DEPTH_8U
Unsigned 8-bit integer

IPL_DEPTH_8S
Signed 8-bit integer

IPL_DEPTH_16U
Unsigned 16-bit integer

IPL_DEPTH_16S
Signed 16-bit integer

IPL_DEPTH_32S
Signed 32-bit integer

IPL_DEPTH_32F
Single-precision floating point

IPL_DEPTH_64F
Double-precision floating point

colorModel
Ignored by OpenCV. The OpenCV function CvtColor requires the source and destination color
spaces as parameters.

channelSeq
Ignored by OpenCV

dataOrder
0 = IPL_DATA_ORDER_PIXEL - interleaved color channels, 1 - separate color channels. Cre-
ateImage only creates images with interleaved channels. For example, the usual layout of a color
image is: b00g00r00b10g10r10...

origin
0 - top-left origin, 1 - bottom-left origin (Windows bitmap style)

align
Alignment of image rows (4 or 8). OpenCV ignores this and uses widthStep instead.

width
Image width in pixels

height
Image height in pixels

1.1. Basic Structures 9

The OpenCV 1.x C Reference Manual, Release 2.3

roi
Region Of Interest (ROI). If not NULL, only this image region will be processed.

maskROI
Must be NULL in OpenCV

imageId
Must be NULL in OpenCV

tileInfo
Must be NULL in OpenCV

imageSize
Image data size in bytes. For interleaved data, this equals image->height ·
image->widthStep

imageData
A pointer to the aligned image data

widthStep
The size of an aligned image row, in bytes

BorderMode
Border completion mode, ignored by OpenCV

BorderConst
Border completion mode, ignored by OpenCV

imageDataOrigin
A pointer to the origin of the image data (not necessarily aligned). This is used for image dealloca-
tion.

The IplImage structure was inherited from the Intel Image Processing Library, in which the format is native. OpenCV
only supports a subset of possible IplImage formats, as outlined in the parameter list above.

In addition to the above restrictions, OpenCV handles ROIs differently. OpenCV functions require that the image
size or ROI size of all source and destination images match exactly. On the other hand, the Intel Image Processing
Library processes the area of intersection between the source and destination images (or ROIs), allowing them to vary
independently.

CvArr

CvArr

Arbitrary array

typedef void CvArr;

The metatype CvArr is used only as a function parameter to specify that the function accepts arrays of multiple
types, such as IplImage*, CvMat* or even CvSeq* sometimes. The particular array type is determined at runtime by
analyzing the first 4 bytes of the header.

1.2 Operations on Arrays

AbsDiff

void cvAbsDiff(const CvArr* src1, const CvArr* src2, CvArr* dst)
Calculates absolute difference between two arrays.

10 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

Parameters

• src1 – The first source array

• src2 – The second source array

• dst – The destination array

The function calculates absolute difference between two arrays.

dst(i)c = |src1(I)c − src2(I)c|

All the arrays must have the same data type and the same size (or ROI size).

AbsDiffS

void cvAbsDiffS(const CvArr* src, CvArr* dst, CvScalar value)
Calculates absolute difference between an array and a scalar.

#define cvAbs(src, dst) cvAbsDiffS(src, dst, cvScalarAll(0))

param src The source array

param dst The destination array

param value The scalar

The function calculates absolute difference between an array and a scalar.

dst(i)c = |src(I)c − valuec|

All the arrays must have the same data type and the same size (or ROI size).

Add

void cvAdd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
Computes the per-element sum of two arrays.

Parameters

• src1 – The first source array

• src2 – The second source array

• dst – The destination array

• mask – Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function adds one array to another:

dst(I)=src1(I)+src2(I) if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size). For types that have limited
range this operation is saturating.

1.2. Operations on Arrays 11

The OpenCV 1.x C Reference Manual, Release 2.3

AddS

void cvAddS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Computes the sum of an array and a scalar.

Parameters

• src – The source array

• value – Added scalar

• dst – The destination array

• mask – Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function adds a scalar value to every element in the source array src1 and stores the result in dst . For types
that have limited range this operation is saturating.

dst(I)=src(I)+value if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size).

AddWeighted

void cvAddWeighted(const CvArr* src1, double alpha, const CvArr* src2, double beta, double gamma,
CvArr* dst)

Computes the weighted sum of two arrays.

Parameters

• src1 – The first source array

• alpha – Weight for the first array elements

• src2 – The second source array

• beta – Weight for the second array elements

• dst – The destination array

• gamma – Scalar, added to each sum

The function calculates the weighted sum of two arrays as follows:

dst(I)=src1(I)*alpha+src2(I)*beta+gamma

All the arrays must have the same type and the same size (or ROI size). For types that have limited range this operation
is saturating.

And

void cvAnd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
Calculates per-element bit-wise conjunction of two arrays.

Parameters

• src1 – The first source array

• src2 – The second source array

• dst – The destination array

12 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

• mask – Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function calculates per-element bit-wise logical conjunction of two arrays:

dst(I)=src1(I)&src2(I) if mask(I)!=0

In the case of floating-point arrays their bit representations are used for the operation. All the arrays must have the
same type, except the mask, and the same size.

AndS

void cvAndS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Calculates per-element bit-wise conjunction of an array and a scalar.

Parameters

• src – The source array

• value – Scalar to use in the operation

• dst – The destination array

• mask – Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function calculates per-element bit-wise conjunction of an array and a scalar:

dst(I)=src(I)&value if mask(I)!=0

Prior to the actual operation, the scalar is converted to the same type as that of the array(s). In the case of floating-point
arrays their bit representations are used for the operation. All the arrays must have the same type, except the mask,
and the same size.

The following sample demonstrates how to calculate the absolute value of floating-point array elements by clearing
the most-significant bit:

float a[] = { -1, 2, -3, 4, -5, 6, -7, 8, -9 };
CvMat A = cvMat(3, 3, CV_32F, &a);
int i, absMask = 0x7fffffff;
cvAndS(&A, cvRealScalar(*(float*)&absMask), &A, 0);
for(i = 0; i < 9; i++)

printf("

The code should print:

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Avg

CvScalar cvAvg(const CvArr* arr, const CvArr* mask=NULL)
Calculates average (mean) of array elements.

Parameters

• arr – The array

• mask – The optional operation mask

1.2. Operations on Arrays 13

The OpenCV 1.x C Reference Manual, Release 2.3

The function calculates the average value M of array elements, independently for each channel:

N =
∑

I(mask(I) 6= 0)

Mc =
P

I, mask(I)6=0 arr(I)c

N

If the array is IplImage and COI is set, the function processes the selected channel only and stores the average to
the first scalar component S0 .

AvgSdv

void cvAvgSdv(const CvArr* arr, CvScalar* mean, CvScalar* stdDev, const CvArr* mask=NULL)
Calculates average (mean) of array elements.

Parameters

• arr – The array

• mean – Pointer to the output mean value, may be NULL if it is not needed

• stdDev – Pointer to the output standard deviation

• mask – The optional operation mask

The function calculates the average value and standard deviation of array elements, independently for each channel:

N =
∑

I(mask(I) 6= 0)
meanc = 1

N

∑
I, mask(I)6=0 arr(I)c

stdDevc =
√

1
N

∑
I, mask(I) 6=0(arr(I)c −meanc)2

If the array is IplImage and COI is set, the function processes the selected channel only and stores the average and
standard deviation to the first components of the output scalars (mean0 and stdDev0).

CalcCovarMatrix

void cvCalcCovarMatrix(const CvArr** vects, int count, CvArr* covMat, CvArr* avg, int flags)
Calculates covariance matrix of a set of vectors.

Parameters

• vects – The input vectors, all of which must have the same type and the same size. The
vectors do not have to be 1D, they can be 2D (e.g., images) and so forth

• count – The number of input vectors

• covMat – The output covariance matrix that should be floating-point and square

• avg – The input or output (depending on the flags) array - the mean (average) vector of the
input vectors

• flags – The operation flags, a combination of the following values

– CV_COVAR_SCRAMBLED The output covariance matrix is calculated as:

scale ∗ [vects[0]− avg,vects[1]− avg, ...]T · [vects[0]− avg,vects[1]− avg, ...]

, that is, the covariance matrix is count × count . Such an unusual covariance
matrix is used for fast PCA of a set of very large vectors (see, for example, the
EigenFaces technique for face recognition). Eigenvalues of this “scrambled” matrix
will match the eigenvalues of the true covariance matrix and the “true” eigenvectors
can be easily calculated from the eigenvectors of the “scrambled” covariance matrix.

14 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

– CV_COVAR_NORMAL The output covariance matrix is calculated as:

scale ∗ [vects[0]− avg,vects[1]− avg, ...] · [vects[0]− avg,vects[1]− avg, ...]T

, that is, covMat will be a covariance matrix with the same linear size as
the total number of elements in each input vector. One and only one of
CV_COVAR_SCRAMBLED and CV_COVAR_NORMAL must be specified

– CV_COVAR_USE_AVG If the flag is specified, the function does not calculate avg
from the input vectors, but, instead, uses the passed avg vector. This is useful if avg has
been already calculated somehow, or if the covariance matrix is calculated by parts - in
this case, avg is not a mean vector of the input sub-set of vectors, but rather the mean
vector of the whole set.

– CV_COVAR_SCALE If the flag is specified, the covariance matrix is scaled. In the
“normal” mode scale is ‘1./count’; in the “scrambled” mode scale is the reciprocal
of the total number of elements in each input vector. By default (if the flag is not specified)
the covariance matrix is not scaled (‘scale=1’).

– CV_COVAR_ROWS Means that all the input vectors are stored as rows of a single
matrix, vects[0] . count is ignored in this case, and avg should be a single-row
vector of an appropriate size.

– CV_COVAR_COLS Means that all the input vectors are stored as columns of a single
matrix, vects[0] . count is ignored in this case, and avg should be a single-column
vector of an appropriate size.

The function calculates the covariance matrix and, optionally, the mean vector of the set of input vectors. The function
can be used for PCA, for comparing vectors using Mahalanobis distance and so forth.

CartToPolar

void cvCartToPolar(const CvArr* x, const CvArr* y, CvArr* magnitude, CvArr* angle=NULL, int an-
gleInDegrees=0)

Calculates the magnitude and/or angle of 2d vectors.

Parameters

• x – The array of x-coordinates

• y – The array of y-coordinates

• magnitude – The destination array of magnitudes, may be set to NULL if it is not needed

• angle – The destination array of angles, may be set to NULL if it is not needed. The angles
are measured in radians (0 to 2π) or in degrees (0 to 360 degrees).

• angleInDegrees – The flag indicating whether the angles are measured in radians, which is
default mode, or in degrees

The function calculates either the magnitude, angle, or both of every 2d vector (x(I),y(I)):

magnitude(I)=sqrt(x(I)^2^+y(I)^2^),
angle(I)=atan(y(I)/x(I))

The angles are calculated with 0.1 degree accuracy. For the (0,0) point, the angle is set to 0.

1.2. Operations on Arrays 15

The OpenCV 1.x C Reference Manual, Release 2.3

Cbrt

float cvCbrt(float value)
Calculates the cubic root

Parameters

• value – The input floating-point value

The function calculates the cubic root of the argument, and normally it is faster than pow(value,1./3) . In
addition, negative arguments are handled properly. Special values (±∞ , NaN) are not handled.

ClearND

void cvClearND(CvArr* arr, int* idx)
Clears a specific array element.

Parameters

• arr – Input array

• idx – Array of the element indices

The function ClearND clears (sets to zero) a specific element of a dense array or deletes the element of a sparse array.
If the sparse array element does not exists, the function does nothing.

CloneImage

IplImage* cvCloneImage(const IplImage* image)
Makes a full copy of an image, including the header, data, and ROI.

Parameters

• image – The original image

The returned IplImage* points to the image copy.

CloneMat

CvMat* cvCloneMat(const CvMat* mat)
Creates a full matrix copy.

Parameters

• mat – Matrix to be copied

Creates a full copy of a matrix and returns a pointer to the copy.

CloneMatND

CvMatND* cvCloneMatND(const CvMatND* mat)
Creates full copy of a multi-dimensional array and returns a pointer to the copy.

Parameters

• mat – Input array

16 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

CloneSparseMat

CvSparseMat* cvCloneSparseMat(const CvSparseMat* mat)
Creates full copy of sparse array.

Parameters

• mat – Input array

The function creates a copy of the input array and returns pointer to the copy.

Cmp

void cvCmp(const CvArr* src1, const CvArr* src2, CvArr* dst, int cmpOp)
Performs per-element comparison of two arrays.

Parameters

• src1 – The first source array

• src2 – The second source array. Both source arrays must have a single channel.

• dst – The destination array, must have 8u or 8s type

• cmpOp – The flag specifying the relation between the elements to be checked

– CV_CMP_EQ src1(I) “equal to” value

– CV_CMP_GT src1(I) “greater than” value

– CV_CMP_GE src1(I) “greater or equal” value

– CV_CMP_LT src1(I) “less than” value

– CV_CMP_LE src1(I) “less or equal” value

– CV_CMP_NE src1(I) “not equal” value

The function compares the corresponding elements of two arrays and fills the destination mask array:

dst(I)=src1(I) op src2(I),

dst(I) is set to 0xff (all 1 -bits) if the specific relation between the elements is true and 0 otherwise. All the arrays
must have the same type, except the destination, and the same size (or ROI size)

CmpS

void cvCmpS(const CvArr* src, double value, CvArr* dst, int cmpOp)
Performs per-element comparison of an array and a scalar.

Parameters

• src – The source array, must have a single channel

• value – The scalar value to compare each array element with

• dst – The destination array, must have 8u or 8s type

• cmpOp – The flag specifying the relation between the elements to be checked

– CV_CMP_EQ src1(I) “equal to” value

– CV_CMP_GT src1(I) “greater than” value

1.2. Operations on Arrays 17

The OpenCV 1.x C Reference Manual, Release 2.3

– CV_CMP_GE src1(I) “greater or equal” value

– CV_CMP_LT src1(I) “less than” value

– CV_CMP_LE src1(I) “less or equal” value

– CV_CMP_NE src1(I) “not equal” value

The function compares the corresponding elements of an array and a scalar and fills the destination mask array:

dst(I)=src(I) op scalar

where op is =, >, ≥, <, ≤ or 6= .

dst(I) is set to 0xff (all 1 -bits) if the specific relation between the elements is true and 0 otherwise. All the arrays
must have the same size (or ROI size).

ConvertScale

void cvConvertScale(const CvArr* src, CvArr* dst, double scale=1, double shift=0)
Converts one array to another with optional linear transformation.

#define cvCvtScale cvConvertScale
#define cvScale cvConvertScale
#define cvConvert(src, dst) cvConvertScale((src), (dst), 1, 0)

param src Source array

param dst Destination array

param scale Scale factor

param shift Value added to the scaled source array elements

The function has several different purposes, and thus has several different names. It copies one array to another with
optional scaling, which is performed first, and/or optional type conversion, performed after:

dst(I) = scalesrc(I) + (shift0,shift1, ...)

All the channels of multi-channel arrays are processed independently.

The type of conversion is done with rounding and saturation, that is if the result of scaling + conversion can not be
represented exactly by a value of the destination array element type, it is set to the nearest representable value on the
real axis.

In the case of scale=1, shift=0 no prescaling is done. This is a specially optimized case and it has the appro-
priate Convert name. If source and destination array types have equal types, this is also a special case that can be used
to scale and shift a matrix or an image and that is caled Scale .

ConvertScaleAbs

void cvConvertScaleAbs(const CvArr* src, CvArr* dst, double scale=1, double shift=0)
Converts input array elements to another 8-bit unsigned integer with optional linear transformation.

Parameters

• src – Source array

• dst – Destination array (should have 8u depth)

• scale – ScaleAbs factor

18 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

• shift – Value added to the scaled source array elements

The function is similar to ConvertScale , but it stores absolute values of the conversion results:

dst(I) = |scalesrc(I) + (shift0,shift1, ...)|

The function supports only destination arrays of 8u (8-bit unsigned integers) type; for other types the function can be
emulated by a combination of ConvertScale and Abs functions.

CvtScaleAbs

void cvCvtScaleAbs(const CvArr* src, CvArr* dst, double scale=1, double shift=0)
Converts input array elements to another 8-bit unsigned integer with optional linear transformation.

Parameters

• src – Source array

• dst – Destination array (should have 8u depth)

• scale – ScaleAbs factor

• shift – Value added to the scaled source array elements

The function is similar to ConvertScale , but it stores absolute values of the conversion results:

dst(I) = |scalesrc(I) + (shift0,shift1, ...)|

The function supports only destination arrays of 8u (8-bit unsigned integers) type; for other types the function can be
emulated by a combination of ConvertScale and Abs functions.

Copy

void cvCopy(const CvArr* src, CvArr* dst, const CvArr* mask=NULL)
Copies one array to another.

Parameters

• src – The source array

• dst – The destination array

• mask – Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function copies selected elements from an input array to an output array:

dst(I) = src(I) if mask(I) 6= 0.

If any of the passed arrays is of IplImage type, then its ROI and COI fields are used. Both arrays must have the
same type, the same number of dimensions, and the same size. The function can also copy sparse arrays (mask is not
supported in this case).

CountNonZero

int cvCountNonZero(const CvArr* arr)
Counts non-zero array elements.

Parameters

1.2. Operations on Arrays 19

The OpenCV 1.x C Reference Manual, Release 2.3

• arr – The array must be a single-channel array or a multi-channel image with COI set

The function returns the number of non-zero elements in arr:∑
I

(arr(I) 6= 0)

In the case of IplImage both ROI and COI are supported.

CreateData

void cvCreateData(CvArr* arr)
Allocates array data

Parameters

• arr – Array header

The function allocates image, matrix or multi-dimensional array data. Note that in the case of matrix types OpenCV al-
location functions are used and in the case of IplImage they are used unless CV_TURN_ON_IPL_COMPATIBILITY
was called. In the latter case IPL functions are used to allocate the data.

CreateImage

IplImage* cvCreateImage(CvSize size, int depth, int channels)
Creates an image header and allocates the image data.

Parameters

• size – Image width and height

• depth – Bit depth of image elements. See IplImage for valid depths.

• channels – Number of channels per pixel. See IplImage for details. This function only
creates images with interleaved channels.

This call is a shortened form of

header = cvCreateImageHeader(size, depth, channels);
cvCreateData(header);

CreateImageHeader

IplImage* cvCreateImageHeader(CvSize size, int depth, int channels)
Creates an image header but does not allocate the image data.

Parameters

• size – Image width and height

• depth – Image depth (see CreateImage)

• channels – Number of channels (see CreateImage)

This call is an analogue of

20 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

hdr=iplCreateImageHeader(channels, 0, depth,
channels == 1 ? "GRAY" : "RGB",
channels == 1 ? "GRAY" : channels == 3 ? "BGR" :
channels == 4 ? "BGRA" : "",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL, 4,
size.width, size.height,
0,0,0,0);

but it does not use IPL functions by default (see the CV_TURN_ON_IPL_COMPATIBILITY macro).

CreateMat

CvMat* cvCreateMat(int rows, int cols, int type)
Creates a matrix header and allocates the matrix data.

Parameters

• rows – Number of rows in the matrix

• cols – Number of columns in the matrix

• type – The type of the matrix elements in the form CV_<bit
depth><S|U|F>C<number of channels> , where S=signed, U=unsigned,
F=float. For example, CV _ 8UC1 means the elements are 8-bit unsigned and the there is 1
channel, and CV _ 32SC2 means the elements are 32-bit signed and there are 2 channels.

This is the concise form for:

CvMat* mat = cvCreateMatHeader(rows, cols, type);
cvCreateData(mat);

CreateMatHeader

CvMat* cvCreateMatHeader(int rows, int cols, int type)
Creates a matrix header but does not allocate the matrix data.

Parameters

• rows – Number of rows in the matrix

• cols – Number of columns in the matrix

• type – Type of the matrix elements, see CreateMat

The function allocates a new matrix header and returns a pointer to it. The matrix data can then be allocated using
CreateData or set explicitly to user-allocated data via SetData .

CreateMatND

CvMatND* cvCreateMatND(int dims, const int* sizes, int type)
Creates the header and allocates the data for a multi-dimensional dense array.

Parameters

• dims – Number of array dimensions. This must not exceed CV _ MAX _ DIM (32 by
default, but can be changed at build time).

• sizes – Array of dimension sizes.

1.2. Operations on Arrays 21

The OpenCV 1.x C Reference Manual, Release 2.3

• type – Type of array elements, see CreateMat .

This is a short form for:

CvMatND* mat = cvCreateMatNDHeader(dims, sizes, type);
cvCreateData(mat);

CreateMatNDHeader

CvMatND* cvCreateMatNDHeader(int dims, const int* sizes, int type)
Creates a new matrix header but does not allocate the matrix data.

Parameters

• dims – Number of array dimensions

• sizes – Array of dimension sizes

• type – Type of array elements, see CreateMat

The function allocates a header for a multi-dimensional dense array. The array data can further be allocated using
CreateData or set explicitly to user-allocated data via SetData .

CreateSparseMat

CvSparseMat* cvCreateSparseMat(int dims, const int* sizes, int type)
Creates sparse array.

Parameters

• dims – Number of array dimensions. In contrast to the dense matrix, the number of dimen-
sions is practically unlimited (up to 216).

• sizes – Array of dimension sizes

• type – Type of array elements. The same as for CvMat

The function allocates a multi-dimensional sparse array. Initially the array contain no elements, that is Get or GetReal
returns zero for every index.

CrossProduct

void cvCrossProduct(const CvArr* src1, const CvArr* src2, CvArr* dst)
Calculates the cross product of two 3D vectors.

Parameters

• src1 – The first source vector

• src2 – The second source vector

• dst – The destination vector

The function calculates the cross product of two 3D vectors:

dst = src1× src2

22 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

or:

dst1 = src12src23 − src13src22

dst2 = src13src21 − src11src23

dst3 = src11src22 − src12src21

CvtPixToPlane

Synonym for Split .

DCT

void cvDCT(const CvArr* src, CvArr* dst, int flags)
Performs a forward or inverse Discrete Cosine transform of a 1D or 2D floating-point array.

Parameters

• src – Source array, real 1D or 2D array

• dst – Destination array of the same size and same type as the source

• flags – Transformation flags, a combination of the following values

– CV_DXT_FORWARD do a forward 1D or 2D transform.

– CV_DXT_INVERSE do an inverse 1D or 2D transform.

– CV_DXT_ROWS do a forward or inverse transform of every individual row of the input
matrix. This flag allows user to transform multiple vectors simultaneously and can be used
to decrease the overhead (which is sometimes several times larger than the processing
itself), to do 3D and higher-dimensional transforms and so forth.

The function performs a forward or inverse transform of a 1D or 2D floating-point array:

Forward Cosine transform of 1D vector of N elements:

Y = C(N) ·X

where

C
(N)
jk =

√
αj/N cos

(
π(2k + 1)j

2N

)
and α0 = 1 , αj = 2 for j > 0 .

Inverse Cosine transform of 1D vector of N elements:

X =
(
C(N)

)−1

· Y =
(
C(N)

)T

· Y

(since C(N) is orthogonal matrix, C(N) ·
(
C(N)

)T
= I)

Forward Cosine transform of 2D M ×N matrix:

Y = C(N) ·X ·
(
C(N)

)T

Inverse Cosine transform of 2D vector of M ×N elements:

X =
(
C(N)

)T

·X · C(N)

1.2. Operations on Arrays 23

The OpenCV 1.x C Reference Manual, Release 2.3

DFT

void cvDFT(const CvArr* src, CvArr* dst, int flags, int nonzeroRows=0)
Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.

Parameters

• src – Source array, real or complex

• dst – Destination array of the same size and same type as the source

• flags – Transformation flags, a combination of the following values

– CV_DXT_FORWARD do a forward 1D or 2D transform. The result is not scaled.

– CV_DXT_INVERSE do an inverse 1D or 2D transform. The result is not scaled.
CV_DXT_FORWARD and CV_DXT_INVERSE are mutually exclusive, of course.

– CV_DXT_SCALE scale the result: divide it by the number of array elements.
Usually, it is combined with CV_DXT_INVERSE , and one may use a shortcut
CV_DXT_INV_SCALE .

– CV_DXT_ROWS do a forward or inverse transform of every individual row of the in-
put matrix. This flag allows the user to transform multiple vectors simultaneously and
can be used to decrease the overhead (which is sometimes several times larger than the
processing itself), to do 3D and higher-dimensional transforms and so forth.

– CV_DXT_INVERSE_SCALE same as CV_DXT_INVERSE + CV_DXT_SCALE

• nonzeroRows – Number of nonzero rows in the source array (in the case of a forward 2d
transform), or a number of rows of interest in the destination array (in the case of an inverse
2d transform). If the value is negative, zero, or greater than the total number of rows, it is
ignored. The parameter can be used to speed up 2d convolution/correlation when computing
via DFT. See the example below.

The function performs a forward or inverse transform of a 1D or 2D floating-point array:

Forward Fourier transform of 1D vector of N elements:

y = F (N) · x,whereF (N)
jk = exp(−i · 2π · j · k/N)

,

i = sqrt(−1)

Inverse Fourier transform of 1D vector of N elements:

x′ = (F (N))−1 · y = conj(F (N)) · yx = (1/N) · x

Forward Fourier transform of 2D vector of M × N elements:

Y = F (M) ·X · F (N)

Inverse Fourier transform of 2D vector of M × N elements:

X ′ = conj(F (M)) · Y · conj(F (N))X = (1/(M ·N)) ·X ′

24 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

In the case of real (single-channel) data, the packed format, borrowed from IPL, is used to represent the result of a
forward Fourier transform or input for an inverse Fourier transform:

ReY0,0 ReY0,1 ImY0,1 ReY0,2 ImY0,2 · · · ReY0,N/2−1 ImY0,N/2−1 ReY0,N/2

ReY1,0 ReY1,1 ImY1,1 ReY1,2 ImY1,2 · · · ReY1,N/2−1 ImY1,N/2−1 ReY1,N/2

ImY1,0 ReY2,1 ImY2,1 ReY2,2 ImY2,2 · · · ReY2,N/2−1 ImY2,N/2−1 ImY1,N/2

. .
ReYM/2−1,0 ReYM−3,1 ImYM−3,1 . ReYM−3,N/2−1 ImYM−3,N/2−1 ReYM/2−1,N/2

ImYM/2−1,0 ReYM−2,1 ImYM−2,1 . ReYM−2,N/2−1 ImYM−2,N/2−1 ImYM/2−1,N/2

ReYM/2,0 ReYM−1,1 ImYM−1,1 . ReYM−1,N/2−1 ImYM−1,N/2−1 ReYM/2,N/2

Note: the last column is present if N is even, the last row is present if M is even. In the case of 1D real transform the
result looks like the first row of the above matrix.

Here is the example of how to compute 2D convolution using DFT.

CvMat* A = cvCreateMat(M1, N1, CVg32F);
CvMat* B = cvCreateMat(M2, N2, A->type);

// it is also possible to have only abs(M2-M1)+1 times abs(N2-N1)+1
// part of the full convolution result
CvMat* conv = cvCreateMat(A->rows + B->rows - 1, A->cols + B->cols - 1,

A->type);

// initialize A and B
...

int dftgM = cvGetOptimalDFTSize(A->rows + B->rows - 1);
int dftgN = cvGetOptimalDFTSize(A->cols + B->cols - 1);

CvMat* dftgA = cvCreateMat(dft_M, dft_N, A->type);
CvMat* dftgB = cvCreateMat(dft_M, dft_N, B->type);
CvMat tmp;

// copy A to dftgA and pad dft_A with zeros
cvGetSubRect(dftgA, &tmp, cvRect(0,0,A->cols,A->rows));
cvCopy(A, &tmp);
cvGetSubRect(dftgA, &tmp, cvRect(A->cols,0,dft_A->cols - A->cols,A->rows));
cvZero(&tmp);
// no need to pad bottom part of dftgA with zeros because of
// use nonzerogrows parameter in cvDFT() call below

cvDFT(dftgA, dft_A, CV_DXT_FORWARD, A->rows);

// repeat the same with the second array
cvGetSubRect(dftgB, &tmp, cvRect(0,0,B->cols,B->rows));
cvCopy(B, &tmp);
cvGetSubRect(dftgB, &tmp, cvRect(B->cols,0,dft_B->cols - B->cols,B->rows));
cvZero(&tmp);
// no need to pad bottom part of dftgB with zeros because of
// use nonzerogrows parameter in cvDFT() call below

cvDFT(dftgB, dft_B, CV_DXT_FORWARD, B->rows);

cvMulSpectrums(dftgA, dft_B, dft_A, 0 /* or CV_DXT_MUL_CONJ to get
correlation rather than convolution */);

cvDFT(dftgA, dft_A, CV_DXT_INV_SCALE, conv->rows); // calculate only
// the top part

1.2. Operations on Arrays 25

The OpenCV 1.x C Reference Manual, Release 2.3

cvGetSubRect(dftgA, &tmp, cvRect(0,0,conv->cols,conv->rows));

cvCopy(&tmp, conv);

DecRefData

void cvDecRefData(CvArr* arr)
Decrements an array data reference counter.

Parameters

• arr – Pointer to an array header

The function decrements the data reference counter in a CvMat or CvMatND if the reference counter pointer is not
NULL. If the counter reaches zero, the data is deallocated. In the current implementation the reference counter is not
NULL only if the data was allocated using the CreateData function. The counter will be NULL in other cases such
as: external data was assigned to the header using SetData , the matrix header is part of a larger matrix or image, or
the header was converted from an image or n-dimensional matrix header.

Det

double cvDet(const CvArr* mat)
Returns the determinant of a matrix.

Parameters

• mat – The source matrix

The function returns the determinant of the square matrix mat . The direct method is used for small matrices and
Gaussian elimination is used for larger matrices. For symmetric positive-determined matrices, it is also possible to run
SVD with U = V = 0 and then calculate the determinant as a product of the diagonal elements of W .

Div

void cvDiv(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1)
Performs per-element division of two arrays.

Parameters

• src1 – The first source array. If the pointer is NULL, the array is assumed to be all 1’s.

• src2 – The second source array

• dst – The destination array

• scale – Optional scale factor

The function divides one array by another:

dst(I) =
{

scale · src1(I)/src2(I) if src1 is not NULL
scale/src2(I) otherwise

All the arrays must have the same type and the same size (or ROI size).

26 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

DotProduct

double cvDotProduct(const CvArr* src1, const CvArr* src2)
Calculates the dot product of two arrays in Euclidian metrics.

Parameters

• src1 – The first source array

• src2 – The second source array

The function calculates and returns the Euclidean dot product of two arrays.

src1 • src2 =
∑

I

(src1(I)src2(I))

In the case of multiple channel arrays, the results for all channels are accumulated. In particular,
cvDotProduct(a,a) where a is a complex vector, will return ||a||2 . The function can process multi-dimensional
arrays, row by row, layer by layer, and so on.

EigenVV

void cvEigenVV(CvArr* mat, CvArr* evects, CvArr* evals, double eps=0, int lowindex = -1, int highindex
= -1)

Computes eigenvalues and eigenvectors of a symmetric matrix.

Parameters

• mat – The input symmetric square matrix, modified during the processing

• evects – The output matrix of eigenvectors, stored as subsequent rows

• evals – The output vector of eigenvalues, stored in the descending order (order of eigenval-
ues and eigenvectors is syncronized, of course)

• eps – Accuracy of diagonalization. Typically, DBL_EPSILON (about 10−15) works well.
THIS PARAMETER IS CURRENTLY IGNORED.

• lowindex – Optional index of largest eigenvalue/-vector to calculate. (See below.)

• highindex – Optional index of smallest eigenvalue/-vector to calculate. (See below.)

The function computes the eigenvalues and eigenvectors of matrix A :

mat*evects(i,:)’ = evals(i)*evects(i,:)’ (in MATLAB notation)

If either low- or highindex is supplied the other is required, too. Indexing is 0-based. Example: To cal-
culate the largest eigenvector/-value set lowindex=highindex=0 . To calculate all the eigenvalues, leave
lowindex=highindex=-1 . For legacy reasons this function always returns a square matrix the same size as
the source matrix with eigenvectors and a vector the length of the source matrix with eigenvalues. The selected
eigenvectors/-values are always in the first highindex - lowindex + 1 rows.

The contents of matrix A is destroyed by the function.

Currently the function is slower than SVD yet less accurate, so if A is known to be positively-defined (for example, it is
a covariance matrix)it is recommended to use SVD to find eigenvalues and eigenvectors of A , especially if eigenvectors
are not required.

1.2. Operations on Arrays 27

The OpenCV 1.x C Reference Manual, Release 2.3

Exp

void cvExp(const CvArr* src, CvArr* dst)
Calculates the exponent of every array element.

Parameters

• src – The source array

• dst – The destination array, it should have double type or the same type as the source

The function calculates the exponent of every element of the input array:

dst[I] = esrc(I)

The maximum relative error is about 7 × 10−6 . Currently, the function converts denormalized values to zeros on
output.

FastArctan

float cvFastArctan(float y, float x)
Calculates the angle of a 2D vector.

Parameters

• x – x-coordinate of 2D vector

• y – y-coordinate of 2D vector

The function calculates the full-range angle of an input 2D vector. The angle is measured in degrees and varies from
0 degrees to 360 degrees. The accuracy is about 0.1 degrees.

Flip

void cvFlip(const CvArr* src, CvArr* dst=NULL, int flipMode=0)
Flip a 2D array around vertical, horizontal or both axes.

Parameters

• src – Source array

• dst – Destination array. If dst = NULL the flipping is done in place.

• flipMode – Specifies how to flip the array: 0 means flipping around the x-axis, positive
(e.g., 1) means flipping around y-axis, and negative (e.g., -1) means flipping around both
axes. See also the discussion below for the formulas:

The function flips the array in one of three different ways (row and column indices are 0-based):

dst(i, j) =

 src(rows(src)− i− 1, j) if flipMode = 0
src(i, cols(src)− j − 1) if flipMode > 0
src(rows(src)− i− 1, cols(src)− j − 1) if flipMode < 0

The example scenarios of function use are:

• vertical flipping of the image (flipMode = 0) to switch between top-left and bottom-left image origin, which is
a typical operation in video processing under Win32 systems.

• horizontal flipping of the image with subsequent horizontal shift and absolute difference calculation to check
for a vertical-axis symmetry (flipMode > 0)

28 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

• simultaneous horizontal and vertical flipping of the image with subsequent shift and absolute difference calcu-
lation to check for a central symmetry (flipMode < 0)

• reversing the order of 1d point arrays (flipMode > 0)

GEMM

void cvGEMM(const CvArr* src1, const CvArr* src2, double alpha, const CvArr* src3, double beta,
CvArr* dst, int tABC=0)

#define cvMatMulAdd(src1, src2, src3, dst) cvGEMM(src1, src2, 1, src3, 1, dst, 0)#define cvMatMul(src1,
src2, dst) cvMatMulAdd(src1, src2, 0, dst)

Performs generalized matrix multiplication.

Parameters

• src1 – The first source array

• src2 – The second source array

• src3 – The third source array (shift). Can be NULL, if there is no shift.

• dst – The destination array

• tABC – The operation flags that can be 0 or a combination of the following values

– CV_GEMM_A_T transpose src1

– CV_GEMM_B_T transpose src2

– CV_GEMM_C_T transpose src3

For example, CV_GEMM_A_T+CV_GEMM_C_T corresponds to

alphasrc1T src2+ betasrc3T

The function performs generalized matrix multiplication:

dst = alpha op(src1) op(src2) + beta op(src3) where op(X) is X or XT

All the matrices should have the same data type and coordinated sizes. Real or complex floating-point matrices are
supported.

Get?D

CvScalar cvGet1D(const CvArr* arr, int idx0) CvScalar cvGet2D(const CvArr* arr, int idx0, int idx1) CvS-
calar cvGet3D(const CvArr* arr, int idx0, int idx1, int idx2) CvScalar cvGetND(const
CvArr* arr, int* idx)

Return a specific array element.

Parameters

• arr – Input array

• idx0 – The first zero-based component of the element index

• idx1 – The second zero-based component of the element index

• idx2 – The third zero-based component of the element index

• idx – Array of the element indices

The functions return a specific array element. In the case of a sparse array the functions return 0 if the requested node
does not exist (no new node is created by the functions).

1.2. Operations on Arrays 29

The OpenCV 1.x C Reference Manual, Release 2.3

GetCol(s)

CvMat* cvGetCol(const CvArr* arr, CvMat* submat, int col)
Returns array column or column span.

CvMat* cvGetCols(const CvArr* arr, CvMat* submat, int startCol, int endCol)

Parameters

• arr – Input array

• submat – Pointer to the resulting sub-array header

• col – Zero-based index of the selected column

• startCol – Zero-based index of the starting column (inclusive) of the span

• endCol – Zero-based index of the ending column (exclusive) of the span

The functions GetCol and GetCols return the header, corresponding to a specified column span of the input array.
GetCol is a shortcut for GetCols :

cvGetCol(arr, submat, col); // ~ cvGetCols(arr, submat, col, col + 1);

GetDiag

CvMat* cvGetDiag(const CvArr* arr, CvMat* submat, int diag=0)
Returns one of array diagonals.

Parameters

• arr – Input array

• submat – Pointer to the resulting sub-array header

• diag – Array diagonal. Zero corresponds to the main diagonal, -1 corresponds to the diago-
nal above the main , 1 corresponds to the diagonal below the main, and so forth.

The function returns the header, corresponding to a specified diagonal of the input array.

cvGetDims, cvGetDimSize

Return number of array dimensions and their sizes or the size of a particular dimension.

int cvGetDims(const CvArr* arr, int* sizes=NULL)

int cvGetDimSize(const CvArr* arr, int index)

Parameters

• arr – Input array

• sizes – Optional output vector of the array dimension sizes. For 2d arrays the number of
rows (height) goes first, number of columns (width) next.

• index – Zero-based dimension index (for matrices 0 means number of rows, 1 means number
of columns; for images 0 means height, 1 means width)

The function cvGetDims returns the array dimensionality and the array of dimension sizes. In the case of IplImage
or CvMat it always returns 2 regardless of number of image/matrix rows. The function cvGetDimSize returns the
particular dimension size (number of elements per that dimension). For example, the following code calculates total
number of array elements in two ways:

30 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

// via cvGetDims()
int sizes[CV_MAX_DIM];
int i, total = 1;
int dims = cvGetDims(arr, size);
for(i = 0; i < dims; i++)

total *= sizes[i];

// via cvGetDims() and cvGetDimSize()
int i, total = 1;
int dims = cvGetDims(arr);
for(i = 0; i < dims; i++)

total *= cvGetDimsSize(arr, i);

GetElemType

int cvGetElemType(const CvArr* arr)
Returns type of array elements.

Parameters

• arr – Input array

The function returns type of the array elements as described in CreateMat discussion: CV_8UC1 ... CV_64FC4 .

GetImage

IplImage* cvGetImage(const CvArr* arr, IplImage* imageHeader)
Returns image header for arbitrary array.

Parameters

• arr – Input array

• imageHeader – Pointer to IplImage structure used as a temporary buffer

The function returns the image header for the input array that can be a matrix - CvMat , or an image - IplImage* . In
the case of an image the function simply returns the input pointer. In the case of CvMat it initializes an imageHeader
structure with the parameters of the input matrix. Note that if we transform IplImage to CvMat and then transform
CvMat back to IplImage, we can get different headers if the ROI is set, and thus some IPL functions that calculate
image stride from its width and align may fail on the resultant image.

GetImageCOI

int cvGetImageCOI(const IplImage* image)
Returns the index of the channel of interest.

Parameters

• image – A pointer to the image header

Returns the channel of interest of in an IplImage. Returned values correspond to the coi in SetImageCOI .

GetImageROI

CvRect cvGetImageROI(const IplImage* image)
Returns the image ROI.

1.2. Operations on Arrays 31

The OpenCV 1.x C Reference Manual, Release 2.3

Parameters

• image – A pointer to the image header

If there is no ROI set, cvRect(0,0,image->width,image->height) is returned.

GetMat

CvMat* cvGetMat(const CvArr* arr, CvMat* header, int* coi=NULL, int allowND=0)
Returns matrix header for arbitrary array.

Parameters

• arr – Input array

• header – Pointer to CvMat structure used as a temporary buffer

• coi – Optional output parameter for storing COI

• allowND – If non-zero, the function accepts multi-dimensional dense arrays (CvMatND*)
and returns 2D (if CvMatND has two dimensions) or 1D matrix (when CvMatND has 1
dimension or more than 2 dimensions). The array must be continuous.

The function returns a matrix header for the input array that can be a matrix -

CvMat , an image - IplImage or a multi-dimensional dense array - CvMatND (latter case is allowed only if
allowND != 0) . In the case of matrix the function simply returns the input pointer. In the case of IplImage*
or CvMatND it initializes the header structure with parameters of the current image ROI and returns the pointer to
this temporary structure. Because COI is not supported by CvMat , it is returned separately.

The function provides an easy way to handle both types of arrays - IplImage and CvMat - using the same code.
Reverse transform from CvMat to IplImage can be done using the GetImage function.

Input array must have underlying data allocated or attached, otherwise the function fails.

If the input array is IplImage with planar data layout and COI set, the function returns the pointer to the selected
plane and COI = 0. It enables per-plane processing of multi-channel images with planar data layout using OpenCV
functions.

GetNextSparseNode

CvSparseNode* cvGetNextSparseNode(CvSparseMatIterator* matIterator)
Returns the next sparse matrix element

Parameters

• matIterator – Sparse array iterator

The function moves iterator to the next sparse matrix element and returns pointer to it. In the current version there is
no any particular order of the elements, because they are stored in the hash table. The sample below demonstrates how
to iterate through the sparse matrix:

Using InitSparseMatIterator and GetNextSparseNode to calculate sum of floating-point sparse array.

double sum;
int i, dims = cvGetDims(array);
CvSparseMatIterator mat_iterator;
CvSparseNode* node = cvInitSparseMatIterator(array, &mat_iterator);

for(; node != 0; node = cvGetNextSparseNode(&mat_iterator))
{

32 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

/* get pointer to the element indices */
int* idx = CV_NODE_IDX(array, node);
/* get value of the element (assume that the type is CV_32FC1) */
float val = *(float*)CV_NODE_VAL(array, node);
printf("(");
for(i = 0; i < dims; i++)

printf("
printf("

sum += val;
}

printf("nTotal sum =

GetOptimalDFTSize

int cvGetOptimalDFTSize(int size0)
Returns optimal DFT size for a given vector size.

Parameters

• size0 – Vector size

The function returns the minimum number N that is greater than or equal to size0 , such that the DFT of a vector of
size N can be computed fast. In the current implementation N = 2p × 3q × 5r , for some p , q , r .

The function returns a negative number if size0 is too large (very close to INT_MAX)

GetRawData

void cvGetRawData(const CvArr* arr, uchar** data, int* step=NULL, CvSize* roiSize=NULL)
Retrieves low-level information about the array.

Parameters

• arr – Array header

• data – Output pointer to the whole image origin or ROI origin if ROI is set

• step – Output full row length in bytes

• roiSize – Output ROI size

The function fills output variables with low-level information about the array data. All output parameters are optional,
so some of the pointers may be set to NULL . If the array is IplImage with ROI set, the parameters of ROI are
returned.

The following example shows how to get access to array elements. GetRawData calculates the absolute value of the
elements in a single-channel, floating-point array.

float* data;
int step;

CvSize size;
int x, y;

cvGetRawData(array, (uchar**)&data, &step, &size);
step /= sizeof(data[0]);

1.2. Operations on Arrays 33

The OpenCV 1.x C Reference Manual, Release 2.3

for(y = 0; y < size.height; y++, data += step)
for(x = 0; x < size.width; x++)

data[x] = (float)fabs(data[x]);

GetReal1D

double cvGetReal1D(const CvArr* arr, int idx0)
Return a specific element of single-channel 1D array.

Parameters

• arr – Input array. Must have a single channel.

• idx0 – The first zero-based component of the element index

Returns a specific element of a single-channel array. If the array has multiple channels, a runtime error is raised. Note
that Get function can be used safely for both single-channel and multiple-channel arrays though they are a bit slower.

In the case of a sparse array the functions return 0 if the requested node does not exist (no new node is created by the
functions).

GetReal2D

double cvGetReal2D(const CvArr* arr, int idx0, int idx1)
Return a specific element of single-channel 2D array.

Parameters

• arr – Input array. Must have a single channel.

• idx0 – The first zero-based component of the element index

• idx1 – The second zero-based component of the element index

Returns a specific element of a single-channel array. If the array has multiple channels, a runtime error is raised. Note
that Get function can be used safely for both single-channel and multiple-channel arrays though they are a bit slower.

In the case of a sparse array the functions return 0 if the requested node does not exist (no new node is created by the
functions).

GetReal3D

double cvGetReal3D(const CvArr* arr, int idx0, int idx1, int idx2)
Return a specific element of single-channel array.

Parameters

• arr – Input array. Must have a single channel.

• idx0 – The first zero-based component of the element index

• idx1 – The second zero-based component of the element index

• idx2 – The third zero-based component of the element index

Returns a specific element of a single-channel array. If the array has multiple channels, a runtime error is raised. Note
that Get function can be used safely for both single-channel and multiple-channel arrays though they are a bit slower.

In the case of a sparse array the functions return 0 if the requested node does not exist (no new node is created by the
functions).

34 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

GetRealND

double cvGetRealND(const CvArr* arr, int* idx)->float
Return a specific element of single-channel array.

Parameters

• arr – Input array. Must have a single channel.

• idx – Array of the element indices

Returns a specific element of a single-channel array. If the array has multiple channels, a runtime error is raised. Note
that Get function can be used safely for both single-channel and multiple-channel arrays though they are a bit slower.

In the case of a sparse array the functions return 0 if the requested node does not exist (no new node is created by the
functions).

GetRow(s)

CvMat* cvGetRow(const CvArr* arr, CvMat* submat, int row)
Returns array row or row span.

CvMat* cvGetRows(const CvArr* arr, CvMat* submat, int startRow, int endRow, int deltaRow=1)

Parameters

• arr – Input array

• submat – Pointer to the resulting sub-array header

• row – Zero-based index of the selected row

• startRow – Zero-based index of the starting row (inclusive) of the span

• endRow – Zero-based index of the ending row (exclusive) of the span

• deltaRow – Index step in the row span. That is, the function extracts every deltaRow -th
row from startRow and up to (but not including) endRow .

The functions return the header, corresponding to a specified row/row span of the input array. Note that GetRow is a
shortcut for GetRows :

cvGetRow(arr, submat, row) ~ cvGetRows(arr, submat, row, row + 1, 1);

GetSize

CvSize cvGetSize(const CvArr* arr)
Returns size of matrix or image ROI.

Parameters

• arr – array header

The function returns number of rows (CvSize::height) and number of columns (CvSize::width) of the input matrix or
image. In the case of image the size of ROI is returned.

1.2. Operations on Arrays 35

The OpenCV 1.x C Reference Manual, Release 2.3

GetSubRect

CvMat* cvGetSubRect(const CvArr* arr, CvMat* submat, CvRect rect)
Returns matrix header corresponding to the rectangular sub-array of input image or matrix.

Parameters

• arr – Input array

• submat – Pointer to the resultant sub-array header

• rect – Zero-based coordinates of the rectangle of interest

The function returns header, corresponding to a specified rectangle of the input array. In other words, it allows the
user to treat a rectangular part of input array as a stand-alone array. ROI is taken into account by the function so the
sub-array of ROI is actually extracted.

InRange

void cvInRange(const CvArr* src, const CvArr* lower, const CvArr* upper, CvArr* dst)
Checks that array elements lie between the elements of two other arrays.

Parameters

• src – The first source array

• lower – The inclusive lower boundary array

• upper – The exclusive upper boundary array

• dst – The destination array, must have 8u or 8s type

The function does the range check for every element of the input array:

dst(I) = lower(I)0 <= src(I)0 < upper(I)0

For single-channel arrays,

dst(I) = lower(I)0 <= src(I)0 < upper(I)0 ∧ lower(I)1 <= src(I)1 < upper(I)1

For two-channel arrays and so forth,

dst(I) is set to 0xff (all 1 -bits) if src(I) is within the range and 0 otherwise. All the arrays must have the same type,
except the destination, and the same size (or ROI size).

InRangeS

void cvInRangeS(const CvArr* src, CvScalar lower, CvScalar upper, CvArr* dst)
Checks that array elements lie between two scalars.

Parameters

• src – The first source array

• lower – The inclusive lower boundary

• upper – The exclusive upper boundary

• dst – The destination array, must have 8u or 8s type

36 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

The function does the range check for every element of the input array:

dst(I) = lower0 <= src(I)0 < upper0

For single-channel arrays,

dst(I) = lower0 <= src(I)0 < upper0 ∧ lower1 <= src(I)1 < upper1

For two-channel arrays nd so forth,

‘dst(I)’ is set to 0xff (all 1 -bits) if ‘src(I)’ is within the range and 0 otherwise. All the arrays must have the same size
(or ROI size).

IncRefData

int cvIncRefData(CvArr* arr)
Increments array data reference counter.

Parameters

• arr – Array header

The function increments CvMat or CvMatND data reference counter and returns the new counter value if the reference
counter pointer is not NULL, otherwise it returns zero.

InitImageHeader

IplImage* cvInitImageHeader(IplImage* image, CvSize size, int depth, int channels, int origin=0,
int align=4)

Initializes an image header that was previously allocated.

Parameters

• image – Image header to initialize

• size – Image width and height

• depth – Image depth (see CreateImage)

• channels – Number of channels (see CreateImage)

• origin – Top-left IPL_ORIGIN_TL or bottom-left IPL_ORIGIN_BL

• align – Alignment for image rows, typically 4 or 8 bytes

The returned IplImage* points to the initialized header.

InitMatHeader

CvMat* cvInitMatHeader(CvMat* mat, int rows, int cols, int type, void* data=NULL,
int step=CV_AUTOSTEP)

Initializes a pre-allocated matrix header.

Parameters

• mat – A pointer to the matrix header to be initialized

• rows – Number of rows in the matrix

• cols – Number of columns in the matrix

1.2. Operations on Arrays 37

The OpenCV 1.x C Reference Manual, Release 2.3

• type – Type of the matrix elements, see CreateMat .

• data – Optional: data pointer assigned to the matrix header

• step – Optional: full row width in bytes of the assigned data. By default, the minimal
possible step is used which assumes there are no gaps between subsequent rows of the
matrix.

This function is often used to process raw data with OpenCV matrix functions. For example, the following code
computes the matrix product of two matrices, stored as ordinary arrays:

double a[] = { 1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12 };

double b[] = { 1, 5, 9,
2, 6, 10,
3, 7, 11,
4, 8, 12 };

double c[9];
CvMat Ma, Mb, Mc ;

cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a);
cvInitMatHeader(&Mb, 4, 3, CV_64FC1, b);
cvInitMatHeader(&Mc, 3, 3, CV_64FC1, c);

cvMatMulAdd(&Ma, &Mb, 0, &Mc);
// the c array now contains the product of a (3x4) and b (4x3)

InitMatNDHeader

CvMatND* cvInitMatNDHeader(CvMatND* mat, int dims, const int* sizes, int type, void* data=NULL)
Initializes a pre-allocated multi-dimensional array header.

Parameters

• mat – A pointer to the array header to be initialized

• dims – The number of array dimensions

• sizes – An array of dimension sizes

• type – Type of array elements, see CreateMat

• data – Optional data pointer assigned to the matrix header

InitSparseMatIterator

CvSparseNode* cvInitSparseMatIterator(const CvSparseMat* mat, CvSparseMatIterator* matItera-
tor)

Initializes sparse array elements iterator.

Parameters

• mat – Input array

• matIterator – Initialized iterator

The function initializes iterator of sparse array elements and returns pointer to the first element, or NULL if the array
is empty.

38 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

InvSqrt

float cvInvSqrt(float value)
Calculates the inverse square root.

Parameters

• value – The input floating-point value

The function calculates the inverse square root of the argument, and normally it is faster than 1./sqrt(value) . If
the argument is zero or negative, the result is not determined. Special values (±∞ , NaN) are not handled.

Inv

Invert

double cvInvert(const CvArr* src, CvArr* dst, int method=CV_LU)
Finds the inverse or pseudo-inverse of a matrix.

Parameters

• src – The source matrix

• dst – The destination matrix

• method – Inversion method

– CV_LU Gaussian elimination with optimal pivot element chosen

– CV_SVD Singular value decomposition (SVD) method

– CV_SVD_SYM SVD method for a symmetric positively-defined matrix

The function inverts matrix src1 and stores the result in src2 .

In the case of LU method, the function returns the src1 determinant (src1 must be square). If it is 0, the matrix is not
inverted and src2 is filled with zeros.

In the case of SVD methods, the function returns the inversed condition of src1 (ratio of the smallest singular value
to the largest singular value) and 0 if src1 is all zeros. The SVD methods calculate a pseudo-inverse matrix if src1
is singular.

IsInf

int cvIsInf(double value)
Determines if the argument is Infinity.

Parameters

• value – The input floating-point value

The function returns 1 if the argument is ±∞ (as defined by IEEE754 standard), 0 otherwise.

IsNaN

int cvIsNaN(double value)
Determines if the argument is Not A Number.

Parameters

• value – The input floating-point value

1.2. Operations on Arrays 39

The OpenCV 1.x C Reference Manual, Release 2.3

The function returns 1 if the argument is Not A Number (as defined by IEEE754 standard), 0 otherwise.

LUT

void cvLUT(const CvArr* src, CvArr* dst, const CvArr* lut)
Performs a look-up table transform of an array.

Parameters

• src – Source array of 8-bit elements

• dst – Destination array of a given depth and of the same number of channels as the source
array

• lut – Look-up table of 256 elements; should have the same depth as the destination array.
In the case of multi-channel source and destination arrays, the table should either have a
single-channel (in this case the same table is used for all channels) or the same number of
channels as the source/destination array.

The function fills the destination array with values from the look-up table. Indices of the entries are taken from the
source array. That is, the function processes each element of src as follows:

dsti ← lutsrci+d

where

d =
{

0 if src has depth CV_8U
128 if src has depth CV_8S

Log

void cvLog(const CvArr* src, CvArr* dst)
Calculates the natural logarithm of every array element’s absolute value.

Parameters

• src – The source array

• dst – The destination array, it should have double type or the same type as the source

The function calculates the natural logarithm of the absolute value of every element of the input array:

dst[I] =
{

log |src(I) if src[I] 6= 0
C otherwise

Where C is a large negative number (about -700 in the current implementation).

Mahalanobis

double cvMahalanobis(const CvArr* vec1, const CvArr* vec2, CvArr* mat)
Calculates the Mahalanobis distance between two vectors.

Parameters

• vec1 – The first 1D source vector

• vec2 – The second 1D source vector

40 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

• mat – The inverse covariance matrix

The function calculates and returns the weighted distance between two vectors:

d(vec1,vec2) =
√∑

i,j

icovar(i,j) · (vec1(I)− vec2(I)) · (vec1(j)− vec2(j))

The covariance matrix may be calculated using the CalcCovarMatrix function and further inverted using the Invert
function (CV _ SVD method is the prefered one because the matrix might be singular).

Mat

CvMat cvMat(int rows, int cols, int type, void* data=NULL)
Initializes matrix header (lightweight variant).

Parameters

• rows – Number of rows in the matrix

• cols – Number of columns in the matrix

• type – Type of the matrix elements - see CreateMat

• data – Optional data pointer assigned to the matrix header

Initializes a matrix header and assigns data to it. The matrix is filled row -wise (the first cols elements of data form
the first row of the matrix, etc.)

This function is a fast inline substitution for InitMatHeader . Namely, it is equivalent to:

CvMat mat;
cvInitMatHeader(&mat, rows, cols, type, data, CV_AUTOSTEP);

Max

void cvMax(const CvArr* src1, const CvArr* src2, CvArr* dst)
Finds per-element maximum of two arrays.

Parameters

• src1 – The first source array

• src2 – The second source array

• dst – The destination array

The function calculates per-element maximum of two arrays:

dst(I) = max(src1(I),src2(I))

All the arrays must have a single channel, the same data type and the same size (or ROI size).

MaxS

void cvMaxS(const CvArr* src, double value, CvArr* dst)
Finds per-element maximum of array and scalar.

Parameters

• src – The first source array

1.2. Operations on Arrays 41

The OpenCV 1.x C Reference Manual, Release 2.3

• value – The scalar value

• dst – The destination array

The function calculates per-element maximum of array and scalar:

dst(I) = max(src(I),value)

All the arrays must have a single channel, the same data type and the same size (or ROI size).

Merge

void cvMerge(const CvArr* src0, const CvArr* src1, const CvArr* src2, const CvArr* src3, CvArr* dst)
Composes a multi-channel array from several single-channel arrays or inserts a single channel into the array.

#define cvCvtPlaneToPix cvMerge

param src0 Input channel 0

param src1 Input channel 1

param src2 Input channel 2

param src3 Input channel 3

param dst Destination array

The function is the opposite to Split . If the destination array has N channels then if the first N input channels are not
NULL, they all are copied to the destination array; if only a single source channel of the first N is not NULL, this
particular channel is copied into the destination array; otherwise an error is raised. The rest of the source channels
(beyond the first N) must always be NULL. For IplImage Copy with COI set can be also used to insert a single channel
into the image.

Min

void cvMin(const CvArr* src1, const CvArr* src2, CvArr* dst)
Finds per-element minimum of two arrays.

Parameters

• src1 – The first source array

• src2 – The second source array

• dst – The destination array

The function calculates per-element minimum of two arrays:

dst(I) = min(src1(I),src2(I))

All the arrays must have a single channel, the same data type and the same size (or ROI size).

MinMaxLoc

void cvMinMaxLoc(const CvArr* arr, double* minVal, double* maxVal, CvPoint* minLoc=NULL, Cv-
Point* maxLoc=NULL, const CvArr* mask=NULL)

Finds global minimum and maximum in array or subarray.

Parameters

42 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

• arr – The source array, single-channel or multi-channel with COI set

• minVal – Pointer to returned minimum value

• maxVal – Pointer to returned maximum value

• minLoc – Pointer to returned minimum location

• maxLoc – Pointer to returned maximum location

• mask – The optional mask used to select a subarray

The function finds minimum and maximum element values and their positions. The extremums are searched across
the whole array, selected ROI (in the case of IplImage) or, if mask is not NULL , in the specified array region. If
the array has more than one channel, it must be IplImage with COI set. In the case of multi-dimensional arrays,
minLoc->x and maxLoc->x will contain raw (linear) positions of the extremums.

MinS

void cvMinS(const CvArr* src, double value, CvArr* dst)
Finds per-element minimum of an array and a scalar.

Parameters

• src – The first source array

• value – The scalar value

• dst – The destination array

The function calculates minimum of an array and a scalar:

dst(I) = min(src(I),value)

All the arrays must have a single channel, the same data type and the same size (or ROI size).

Mirror

Synonym for Flip .

MixChannels

void cvMixChannels(const CvArr** src, int srcCount, CvArr** dst, int dstCount, const int* fromTo,
int pairCount)

Copies several channels from input arrays to certain channels of output arrays

Parameters

• src – Input arrays

• srcCount – The number of input arrays.

• dst – Destination arrays

• dstCount – The number of output arrays.

• fromTo – The array of pairs of indices of the planes copied. fromTo[k*2] is the 0-
based index of the input channel in src and fromTo[k*2+1] is the index of the out-
put channel in dst . Here the continuous channel numbering is used, that is, the first
input image channels are indexed from 0 to channels(src[0])-1 , the second in-
put image channels are indexed from channels(src[0]) to channels(src[0]) +

1.2. Operations on Arrays 43

The OpenCV 1.x C Reference Manual, Release 2.3

channels(src[1])-1 etc., and the same scheme is used for the output image channels.
As a special case, when fromTo[k*2] is negative, the corresponding output channel is
filled with zero.

The function is a generalized form of cvSplit and Merge and some forms of CvtColor . It can be used to change the
order of the planes, add/remove alpha channel, extract or insert a single plane or multiple planes etc.

As an example, this code splits a 4-channel RGBA image into a 3-channel BGR (i.e. with R and B swapped) and
separate alpha channel image:

CvMat* rgba = cvCreateMat(100, 100, CV_8UC4);
CvMat* bgr = cvCreateMat(rgba->rows, rgba->cols, CV_8UC3);
CvMat* alpha = cvCreateMat(rgba->rows, rgba->cols, CV_8UC1);
cvSet(rgba, cvScalar(1,2,3,4));

CvArr* out[] = { bgr, alpha };
int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
cvMixChannels(&bgra, 1, out, 2, from_to, 4);

MulAddS

Synonym for ScaleAdd .

Mul

void cvMul(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1)
Calculates the per-element product of two arrays.

Parameters

• src1 – The first source array

• src2 – The second source array

• dst – The destination array

• scale – Optional scale factor

The function calculates the per-element product of two arrays:

dst(I) = scale · src1(I) · src2(I)

All the arrays must have the same type and the same size (or ROI size). For types that have limited range this operation
is saturating.

MulSpectrums

void cvMulSpectrums(const CvArr* src1, const CvArr* src2, CvArr* dst, int flags)
Performs per-element multiplication of two Fourier spectrums.

Parameters

• src1 – The first source array

• src2 – The second source array

• dst – The destination array of the same type and the same size as the source arrays

• flags – A combination of the following values;

44 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

– CV_DXT_ROWS treats each row of the arrays as a separate spectrum (see DFT param-
eters description).

– CV_DXT_MUL_CONJ conjugate the second source array before the multiplication.

The function performs per-element multiplication of the two CCS-packed or complex matrices that are results of a real
or complex Fourier transform.

The function, together with DFT , may be used to calculate convolution of two arrays rapidly.

MulTransposed

void cvMulTransposed(const CvArr* src, CvArr* dst, int order, const CvArr* delta=NULL, dou-
ble scale=1.0)

Calculates the product of an array and a transposed array.

Parameters

• src – The source matrix

• dst – The destination matrix. Must be CV_32F or CV_64F .

• order – Order of multipliers

• delta – An optional array, subtracted from src before multiplication

• scale – An optional scaling

The function calculates the product of src and its transposition:

dst = scale(src− delta)(src− delta)T

if order = 0 , and

dst = scale(src− delta)T (src− delta)

otherwise.

Norm

double cvNorm(const CvArr* arr1, const CvArr* arr2=NULL, int normType=CV_L2, const
CvArr* mask=NULL)

Calculates absolute array norm, absolute difference norm, or relative difference norm.

Parameters

• arr1 – The first source image

• arr2 – The second source image. If it is NULL, the absolute norm of arr1 is calculated,
otherwise the absolute or relative norm of arr1 - arr2 is calculated.

• normType – Type of norm, see the discussion

• mask – The optional operation mask

The function calculates the absolute norm of arr1 if arr2 is NULL:

norm =

||arr1||C = maxI |arr1(I)| if normType = CV_C
||arr1||L1 =

∑
I |arr1(I)| if normType = CV_L1

||arr1||L2 =
√∑

I arr1(I)2 if normType = CV_L2

1.2. Operations on Arrays 45

The OpenCV 1.x C Reference Manual, Release 2.3

or the absolute difference norm if arr2 is not NULL:

norm =

||arr1− arr2||C = maxI |arr1(I)− arr2(I)| if normType = CV_C
||arr1− arr2||L1 =

∑
I |arr1(I)− arr2(I)| if normType = CV_L1

||arr1− arr2||L2 =
√∑

I(arr1(I)− arr2(I))2 if normType = CV_L2

or the relative difference norm if arr2 is not NULL and (normType & CV_RELATIVE) != 0 :

norm =

||arr1−arr2||C
||arr2||C if normType = CV_RELATIVE_C

||arr1−arr2||L1
||arr2||L1

if normType = CV_RELATIVE_L1
||arr1−arr2||L2
||arr2||L2

if normType = CV_RELATIVE_L2

The function returns the calculated norm. A multiple-channel array is treated as a single-channel, that is, the results
for all channels are combined.

Not

void cvNot(const CvArr* src, CvArr* dst)
Performs per-element bit-wise inversion of array elements.

Parameters

• src – The source array

• dst – The destination array

The function Not inverses every bit of every array element:

dst(I)=~src(I)

Or

void cvOr(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
Calculates per-element bit-wise disjunction of two arrays.

Parameters

• src1 – The first source array

• src2 – The second source array

• dst – The destination array

• mask – Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function calculates per-element bit-wise disjunction of two arrays:

dst(I)=src1(I)|src2(I)

In the case of floating-point arrays their bit representations are used for the operation. All the arrays must have the
same type, except the mask, and the same size.

OrS

void cvOrS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Calculates a per-element bit-wise disjunction of an array and a scalar.

46 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

Parameters

• src – The source array

• value – Scalar to use in the operation

• dst – The destination array

• mask – Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function OrS calculates per-element bit-wise disjunction of an array and a scalar:

dst(I)=src(I)|value if mask(I)!=0

Prior to the actual operation, the scalar is converted to the same type as that of the array(s). In the case of floating-point
arrays their bit representations are used for the operation. All the arrays must have the same type, except the mask,
and the same size.

PerspectiveTransform

void cvPerspectiveTransform(const CvArr* src, CvArr* dst, const CvMat* mat)
Performs perspective matrix transformation of a vector array.

Parameters

• src – The source three-channel floating-point array

• dst – The destination three-channel floating-point array

• mat – 3× 3 or 4× 4 transformation matrix

The function transforms every element of src (by treating it as 2D or 3D vector) in the following way:

(x, y, z)→ (x′/w, y′/w, z′/w)

where

(x′, y′, z′, w′) = mat ·
[
x y z 1

]
and

w =
{
w′ if w′ 6= 0
∞ otherwise

PolarToCart

void cvPolarToCart(const CvArr* magnitude, const CvArr* angle, CvArr* x, CvArr* y, int angleInDe-
grees=0)

Calculates Cartesian coordinates of 2d vectors represented in polar form.

Parameters

• magnitude – The array of magnitudes. If it is NULL, the magnitudes are assumed to be all
1’s.

• angle – The array of angles, whether in radians or degrees

• x – The destination array of x-coordinates, may be set to NULL if it is not needed

• y – The destination array of y-coordinates, mau be set to NULL if it is not needed

1.2. Operations on Arrays 47

The OpenCV 1.x C Reference Manual, Release 2.3

• angleInDegrees – The flag indicating whether the angles are measured in radians, which is
default mode, or in degrees

The function calculates either the x-coodinate, y-coordinate or both of every vector
magnitude(I)*exp(angle(I)*j), j=sqrt(-1) :

x(I)=magnitude(I)*cos(angle(I)),
y(I)=magnitude(I)*sin(angle(I))

Pow

void cvPow(const CvArr* src, CvArr* dst, double power)
Raises every array element to a power.

Parameters

• src – The source array

• dst – The destination array, should be the same type as the source

• power – The exponent of power

The function raises every element of the input array to p :

dst[I] =
{

src(I)p if p is integer
|src(I)p| otherwise

That is, for a non-integer power exponent the absolute values of input array elements are used. However, it is possible
to get true values for negative values using some extra operations, as the following example, computing the cube root
of array elements, shows:

CvSize size = cvGetSize(src);
CvMat* mask = cvCreateMat(size.height, size.width, CV_8UC1);
cvCmpS(src, 0, mask, CV_CMP_LT); /* find negative elements */
cvPow(src, dst, 1./3);
cvSubRS(dst, cvScalarAll(0), dst, mask); /* negate the results of negative inputs */
cvReleaseMat(&mask);

For some values of power , such as integer values, 0.5, and -0.5, specialized faster algorithms are used.

Ptr?D

uchar* cvPtr1D(const CvArr* arr, int idx0, int* type=NULL)

uchar* cvPtr2D(const CvArr* arr, int idx0, int idx1, int* type=NULL)

uchar* cvPtr3D(const CvArr* arr, int idx0, int idx1, int idx2, int* type=NULL)

uchar* cvPtrND(const CvArr* arr, int* idx, int* type=NULL, int createNode=1, unsigned* precalcHash-
val=NULL)

Return pointer to a particular array element.

Parameters

• arr – Input array

• idx0 – The first zero-based component of the element index

• idx1 – The second zero-based component of the element index

• idx2 – The third zero-based component of the element index

48 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

• idx – Array of the element indices

• type – Optional output parameter: type of matrix elements

• createNode – Optional input parameter for sparse matrices. Non-zero value of the parame-
ter means that the requested element is created if it does not exist already.

• precalcHashval – Optional input parameter for sparse matrices. If the pointer is not NULL,
the function does not recalculate the node hash value, but takes it from the specified location.
It is useful for speeding up pair-wise operations (TODO: provide an example)

The functions return a pointer to a specific array element. Number of array dimension should match to the number of
indices passed to the function except for cvPtr1D function that can be used for sequential access to 1D, 2D or nD
dense arrays.

The functions can be used for sparse arrays as well - if the requested node does not exist they create it and set it to
zero.

All these as well as other functions accessing array elements (Get , GetReal , Set , SetReal) raise an error in case if
the element index is out of range.

RNG

CvRNG cvRNG(int64 seed=-1)
Initializes a random number generator state.

Parameters

• seed – 64-bit value used to initiate a random sequence

The function initializes a random number generator and returns the state. The pointer to the state can be then passed
to the RandInt , RandReal and RandArr functions. In the current implementation a multiply-with-carry generator is
used.

RandArr

void cvRandArr(CvRNG* rng, CvArr* arr, int distType, CvScalar param1, CvScalar param2)
Fills an array with random numbers and updates the RNG state.

Parameters

• rng – RNG state initialized by RNG

• arr – The destination array

• distType – Distribution type

– CV_RAND_UNI uniform distribution

– CV_RAND_NORMAL normal or Gaussian distribution

• param1 – The first parameter of the distribution. In the case of a uniform distribution it
is the inclusive lower boundary of the random numbers range. In the case of a normal
distribution it is the mean value of the random numbers.

• param2 – The second parameter of the distribution. In the case of a uniform distribution
it is the exclusive upper boundary of the random numbers range. In the case of a normal
distribution it is the standard deviation of the random numbers.

1.2. Operations on Arrays 49

The OpenCV 1.x C Reference Manual, Release 2.3

The function fills the destination array with uniformly or normally distributed random numbers.

In the example below, the function is used to add a few normally distributed floating-point numbers to random locations
within a 2d array.

/* let noisy_screen be the floating-point 2d array that is to be "crapped" */
CvRNG rng_state = cvRNG(0xffffffff);
int i, pointCount = 1000;
/* allocate the array of coordinates of points */
CvMat* locations = cvCreateMat(pointCount, 1, CV_32SC2);
/* arr of random point values */
CvMat* values = cvCreateMat(pointCount, 1, CV_32FC1);
CvSize size = cvGetSize(noisy_screen);

/* initialize the locations */
cvRandArr(&rng_state, locations, CV_RAND_UNI, cvScalar(0,0,0,0),

cvScalar(size.width,size.height,0,0));

/* generate values */
cvRandArr(&rng_state, values, CV_RAND_NORMAL,

cvRealScalar(100), // average intensity
cvRealScalar(30) // deviation of the intensity

);

/* set the points */
for(i = 0; i < pointCount; i++)
{

CvPoint pt = *(CvPoint*)cvPtr1D(locations, i, 0);
float value = *(float*)cvPtr1D(values, i, 0);

((float)cvPtr2D(noisy_screen, pt.y, pt.x, 0)) += value;
}

/* not to forget to release the temporary arrays */
cvReleaseMat(&locations);
cvReleaseMat(&values);

/* RNG state does not need to be deallocated */

RandInt

unsigned cvRandInt(CvRNG* rng)
Returns a 32-bit unsigned integer and updates RNG.

Parameters

• rng – RNG state initialized by RandInit and, optionally, customized by
RandSetRange (though, the latter function does not affect the discussed function out-
come)

The function returns a uniformly-distributed random 32-bit unsigned integer and updates the RNG state. It is similar
to the rand() function from the C runtime library, but it always generates a 32-bit number whereas rand() returns a
number in between 0 and RAND_MAX which is 216 or 232 , depending on the platform.

The function is useful for generating scalar random numbers, such as points, patch sizes, table indices, etc., where
integer numbers of a certain range can be generated using a modulo operation and floating-point numbers can be
generated by scaling from 0 to 1 or any other specific range.

Here is the example from the previous function discussion rewritten using RandInt :

50 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

/* the input and the task is the same as in the previous sample. */
CvRNG rnggstate = cvRNG(0xffffffff);
int i, pointCount = 1000;
/* ... - no arrays are allocated here */
CvSize size = cvGetSize(noisygscreen);
/* make a buffer for normally distributed numbers to reduce call overhead */
#define bufferSize 16
float normalValueBuffer[bufferSize];
CvMat normalValueMat = cvMat(bufferSize, 1, CVg32F, normalValueBuffer);
int valuesLeft = 0;

for(i = 0; i < pointCount; i++)
{

CvPoint pt;
/* generate random point */
pt.x = cvRandInt(&rnggstate)
pt.y = cvRandInt(&rnggstate)

if(valuesLeft <= 0)
{

/* fulfill the buffer with normally distributed numbers
if the buffer is empty */

cvRandArr(&rnggstate, &normalValueMat, CV_RAND_NORMAL,
cvRealScalar(100), cvRealScalar(30));

valuesLeft = bufferSize;
}

((float)cvPtr2D(noisygscreen, pt.y, pt.x, 0) =
normalValueBuffer[--valuesLeft];

}

/* there is no need to deallocate normalValueMat because we have
both the matrix header and the data on stack. It is a common and efficient
practice of working with small, fixed-size matrices */

RandReal

double cvRandReal(CvRNG* rng)
Returns a floating-point random number and updates RNG.

Parameters

• rng – RNG state initialized by RNG

The function returns a uniformly-distributed random floating-point number between 0 and 1 (1 is not included).

Reduce

void cvReduce(const CvArr* src, CvArr* dst, int dim = -1, int op=CV_REDUCE_SUM)
Reduces a matrix to a vector.

Parameters

• src – The input matrix.

• dst – The output single-row/single-column vector that accumulates somehow all the matrix
rows/columns.

1.2. Operations on Arrays 51

The OpenCV 1.x C Reference Manual, Release 2.3

• dim – The dimension index along which the matrix is reduced. 0 means that the matrix is
reduced to a single row, 1 means that the matrix is reduced to a single column and -1 means
that the dimension is chosen automatically by analysing the dst size.

• op – The reduction operation. It can take of the following values:

– CV_REDUCE_SUM The output is the sum of all of the matrix’s rows/columns.

– CV_REDUCE_AVG The output is the mean vector of all of the matrix’s rows/columns.

– CV_REDUCE_MAX The output is the maximum (column/row-wise) of all of the ma-
trix’s rows/columns.

– CV_REDUCE_MIN The output is the minimum (column/row-wise) of all of the ma-
trix’s rows/columns.

The function reduces matrix to a vector by treating the matrix rows/columns as a set of 1D vectors and performing the
specified operation on the vectors until a single row/column is obtained. For example, the function can be used to com-
pute horizontal and vertical projections of an raster image. In the case of CV_REDUCE_SUM and CV_REDUCE_AVG
the output may have a larger element bit-depth to preserve accuracy. And multi-channel arrays are also supported in
these two reduction modes.

ReleaseData

void cvReleaseData(CvArr* arr)
Releases array data.

Parameters

• arr – Array header

The function releases the array data. In the case of CvMat or CvMatND it simply calls cvDecRefData(), that is the
function can not deallocate external data. See also the note to CreateData .

ReleaseImage

void cvReleaseImage(IplImage** image)
Deallocates the image header and the image data.

Parameters

• image – Double pointer to the image header

This call is a shortened form of

if(*image)
{

cvReleaseData(*image);
cvReleaseImageHeader(image);

}

ReleaseImageHeader

void cvReleaseImageHeader(IplImage** image)
Deallocates an image header.

Parameters

• image – Double pointer to the image header

52 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

This call is an analogue of

if(image)
{

iplDeallocate(*image, IPL_IMAGE_HEADER | IPL_IMAGE_ROI);

*image = 0;
}

but it does not use IPL functions by default (see the CV_TURN_ON_IPL_COMPATIBILITY macro).

ReleaseMat

void cvReleaseMat(CvMat** mat)
Deallocates a matrix.

Parameters

• mat – Double pointer to the matrix

The function decrements the matrix data reference counter and deallocates matrix header. If the data reference counter
is 0, it also deallocates the data.

if(*mat)
cvDecRefData(*mat);

cvFree((void**)mat);

ReleaseMatND

void cvReleaseMatND(CvMatND** mat)
Deallocates a multi-dimensional array.

Parameters

• mat – Double pointer to the array

The function decrements the array data reference counter and releases the array header. If the reference counter reaches
0, it also deallocates the data.

if(*mat)
cvDecRefData(*mat);

cvFree((void**)mat);

ReleaseSparseMat

void cvReleaseSparseMat(CvSparseMat** mat)
Deallocates sparse array.

Parameters

• mat – Double pointer to the array

The function releases the sparse array and clears the array pointer upon exit.

Repeat

void cvRepeat(const CvArr* src, CvArr* dst)
Fill the destination array with repeated copies of the source array.

1.2. Operations on Arrays 53

The OpenCV 1.x C Reference Manual, Release 2.3

Parameters

• src – Source array, image or matrix

• dst – Destination array, image or matrix

The function fills the destination array with repeated copies of the source array:

dst(i,j)=src(i mod rows(src), j mod cols(src))

So the destination array may be as larger as well as smaller than the source array.

ResetImageROI

void cvResetImageROI(IplImage* image)
Resets the image ROI to include the entire image and releases the ROI structure.

Parameters

• image – A pointer to the image header

This produces a similar result to the following , but in addition it releases the ROI structure.

cvSetImageROI(image, cvRect(0, 0, image->width, image->height));
cvSetImageCOI(image, 0);

Reshape

CvMat* cvReshape(const CvArr* arr, CvMat* header, int newCn, int newRows=0)
Changes shape of matrix/image without copying data.

Parameters

• arr – Input array

• header – Output header to be filled

• newCn – New number of channels. ‘newCn = 0’ means that the number of channels remains
unchanged.

• newRows – New number of rows. ‘newRows = 0’ means that the number of rows remains
unchanged unless it needs to be changed according to newCn value.

The function initializes the CvMat header so that it points to the same data as the original array but has a different
shape - different number of channels, different number of rows, or both.

The following example code creates one image buffer and two image headers, the first is for a 320x240x3 image and
the second is for a 960x240x1 image:

IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);
CvMat gray_mat_hdr;
IplImage gray_img_hdr, *gray_img;
cvReshape(color_img, &gray_mat_hdr, 1);
gray_img = cvGetImage(&gray_mat_hdr, &gray_img_hdr);

And the next example converts a 3x3 matrix to a single 1x9 vector:

CvMat* mat = cvCreateMat(3, 3, CV_32F);
CvMat row_header, *row;
row = cvReshape(mat, &row_header, 0, 1);

54 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

ReshapeMatND

CvArr* cvReshapeMatND(const CvArr* arr, int sizeofHeader, CvArr* header, int newCn, int newDims,
int* newSizes)

Changes the shape of a multi-dimensional array without copying the data.

#define cvReshapeND(arr, header, newCn, newDims, newSizes) \
cvReshapeMatND((arr), sizeof(*(header)), (header), \

(newCn), (newDims), (newSizes))

param arr Input array

param sizeofHeader Size of output header to distinguish between IplImage, CvMat and Cv-
MatND output headers

param header Output header to be filled

param newCn New number of channels. newCn = 0 means that the number of channels
remains unchanged.

param newDims New number of dimensions. newDims = 0 means that the number of
dimensions remains the same.

param newSizes Array of new dimension sizes. Only newDims−1 values are used, because
the total number of elements must remain the same. Thus, if newDims = 1 , newSizes
array is not used.

The function is an advanced version of Reshape that can work with multi-dimensional arrays as well (though it can
work with ordinary images and matrices) and change the number of dimensions.

Below are the two samples from the Reshape description rewritten using ReshapeMatND :

IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);
IplImage gray_img_hdr, *gray_img;
gray_img = (IplImage*)cvReshapeND(color_img, &gray_img_hdr, 1, 0, 0);

...

/* second example is modified to convert 2x2x2 array to 8x1 vector */
int size[] = { 2, 2, 2 };
CvMatND* mat = cvCreateMatND(3, size, CV_32F);
CvMat row_header, *row;
row = (CvMat*)cvReshapeND(mat, &row_header, 0, 1, 0);

cvRound, cvFloor, cvCeil

int cvRound(double value) int cvFloor(double value) int cvCeil(double value)
Converts a floating-point number to an integer.

Parameters

• value – The input floating-point value

The functions convert the input floating-point number to an integer using one of the rounding modes. Round returns
the nearest integer value to the argument. Floor returns the maximum integer value that is not larger than the
argument. Ceil returns the minimum integer value that is not smaller than the argument. On some architectures the
functions work much faster than the standard cast operations in C. If the absolute value of the argument is greater than
231 , the result is not determined. Special values (±∞ , NaN) are not handled.

1.2. Operations on Arrays 55

The OpenCV 1.x C Reference Manual, Release 2.3

ScaleAdd

void cvScaleAdd(const CvArr* src1, CvScalar scale, const CvArr* src2, CvArr* dst)
Calculates the sum of a scaled array and another array.

Parameters

• src1 – The first source array

• scale – Scale factor for the first array

• src2 – The second source array

• dst – The destination array

The function calculates the sum of a scaled array and another array:

dst(I) = scalesrc1(I) + src2(I)

All array parameters should have the same type and the same size.

Set

void cvSet(CvArr* arr, CvScalar value, const CvArr* mask=NULL)
Sets every element of an array to a given value.

Parameters

• arr – The destination array

• value – Fill value

• mask – Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function copies the scalar value to every selected element of the destination array:

arr(I) = value if mask(I) 6= 0

If array arr is of IplImage type, then is ROI used, but COI must not be set.

Set?D

void cvSet1D(CvArr* arr, int idx0, CvScalar value)

void cvSet2D(CvArr* arr, int idx0, int idx1, CvScalar value)

void cvSet3D(CvArr* arr, int idx0, int idx1, int idx2, CvScalar value)

void cvSetND(CvArr* arr, int* idx, CvScalar value)
Change the particular array element.

Parameters

• arr – Input array

• idx0 – The first zero-based component of the element index

• idx1 – The second zero-based component of the element index

• idx2 – The third zero-based component of the element index

• idx – Array of the element indices

56 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

• value – The assigned value

The functions assign the new value to a particular array element. In the case of a sparse array the functions create the
node if it does not exist yet.

SetData

void cvSetData(CvArr* arr, void* data, int step)
Assigns user data to the array header.

Parameters

• arr – Array header

• data – User data

• step – Full row length in bytes

The function assigns user data to the array header. Header should be initialized before using cvCreate*Header ,
cvInit*Header or Mat (in the case of matrix) function.

SetIdentity

void cvSetIdentity(CvArr* mat, CvScalar value=cvRealScalar(1))
Initializes a scaled identity matrix.

Parameters

• mat – The matrix to initialize (not necesserily square)

• value – The value to assign to the diagonal elements

The function initializes a scaled identity matrix:

arr(i, j) =
{

value if i = j
0 otherwise

SetImageCOI

void cvSetImageCOI(IplImage* image, int coi)
Sets the channel of interest in an IplImage.

Parameters

• image – A pointer to the image header

• coi – The channel of interest. 0 - all channels are selected, 1 - first channel is selected, etc.
Note that the channel indices become 1-based.

If the ROI is set to NULL and the coi is not 0, the ROI is allocated. Most OpenCV functions do not support the COI
setting, so to process an individual image/matrix channel one may copy (via Copy or Split) the channel to a separate
image/matrix, process it and then copy the result back (via Copy or Merge) if needed.

1.2. Operations on Arrays 57

The OpenCV 1.x C Reference Manual, Release 2.3

SetImageROI

void cvSetImageROI(IplImage* image, CvRect rect)
Sets an image Region Of Interest (ROI) for a given rectangle.

Parameters

• image – A pointer to the image header

• rect – The ROI rectangle

If the original image ROI was NULL and the rect is not the whole image, the ROI structure is allocated.

Most OpenCV functions support the use of ROI and treat the image rectangle as a separate image. For example, all of
the pixel coordinates are counted from the top-left (or bottom-left) corner of the ROI, not the original image.

SetReal?D

void cvSetReal1D(CvArr* arr, int idx0, double value)

void cvSetReal2D(CvArr* arr, int idx0, int idx1, double value)

void cvSetReal3D(CvArr* arr, int idx0, int idx1, int idx2, double value)

void cvSetRealND(CvArr* arr, int* idx, double value)
Change a specific array element.

Parameters

• arr – Input array

• idx0 – The first zero-based component of the element index

• idx1 – The second zero-based component of the element index

• idx2 – The third zero-based component of the element index

• idx – Array of the element indices

• value – The assigned value

The functions assign a new value to a specific element of a single-channel array. If the array has multiple channels, a
runtime error is raised. Note that the Set*D function can be used safely for both single-channel and multiple-channel
arrays, though they are a bit slower.

In the case of a sparse array the functions create the node if it does not yet exist.

SetZero

void cvSetZero(CvArr* arr)
Clears the array.

#define cvZero cvSetZero

param arr Array to be cleared

The function clears the array. In the case of dense arrays (CvMat, CvMatND or IplImage), cvZero(array) is equivalent
to cvSet(array,cvScalarAll(0),0). In the case of sparse arrays all the elements are removed.

58 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

Solve

int cvSolve(const CvArr* src1, const CvArr* src2, CvArr* dst, int method=CV_LU)
Solves a linear system or least-squares problem.

Parameters

• A – The source matrix

• B – The right-hand part of the linear system

• X – The output solution

• method – The solution (matrix inversion) method

– CV_LU Gaussian elimination with optimal pivot element chosen

– CV_SVD Singular value decomposition (SVD) method

– CV_SVD_SYM SVD method for a symmetric positively-defined matrix.

The function solves a linear system or least-squares problem (the latter is possible with SVD methods):

dst = argminX ||src1X− src2||

If CV_LU method is used, the function returns 1 if src1 is non-singular and 0 otherwise; in the latter case dst is not
valid.

SolveCubic

void cvSolveCubic(const CvArr* coeffs, CvArr* roots)
Finds the real roots of a cubic equation.

Parameters

• coeffs – The equation coefficients, an array of 3 or 4 elements

• roots – The output array of real roots which should have 3 elements

The function finds the real roots of a cubic equation:

If coeffs is a 4-element vector:

coeffs[0]x3 + coeffs[1]x2 + coeffs[2]x+ coeffs[3] = 0

or if coeffs is 3-element vector:

x3 + coeffs[0]x2 + coeffs[1]x+ coeffs[2] = 0

The function returns the number of real roots found. The roots are stored to root array, which is padded with zeros
if there is only one root.

Split

void cvSplit(const CvArr* src, CvArr* dst0, CvArr* dst1, CvArr* dst2, CvArr* dst3)
Divides multi-channel array into several single-channel arrays or extracts a single channel from the array.

Parameters

• src – Source array

• dst0 – Destination channel 0

1.2. Operations on Arrays 59

The OpenCV 1.x C Reference Manual, Release 2.3

• dst1 – Destination channel 1

• dst2 – Destination channel 2

• dst3 – Destination channel 3

The function divides a multi-channel array into separate single-channel arrays. Two modes are available for the
operation. If the source array has N channels then if the first N destination channels are not NULL, they all are
extracted from the source array; if only a single destination channel of the first N is not NULL, this particular channel
is extracted; otherwise an error is raised. The rest of the destination channels (beyond the first N) must always be
NULL. For IplImage Copy with COI set can be also used to extract a single channel from the image.

Sqrt

float cvSqrt(float value)
Calculates the square root.

Parameters

• value – The input floating-point value

The function calculates the square root of the argument. If the argument is negative, the result is not determined.

Sub

void cvSub(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
Computes the per-element difference between two arrays.

Parameters

• src1 – The first source array

• src2 – The second source array

• dst – The destination array

• mask – Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function subtracts one array from another one:

dst(I)=src1(I)-src2(I) if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size). For types that have limited
range this operation is saturating.

SubRS

void cvSubRS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Computes the difference between a scalar and an array.

Parameters

• src – The first source array

• value – Scalar to subtract from

• dst – The destination array

60 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

• mask – Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function subtracts every element of source array from a scalar:

dst(I)=value-src(I) if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size). For types that have limited
range this operation is saturating.

SubS

void cvSubS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Computes the difference between an array and a scalar.

Parameters

• src – The source array

• value – Subtracted scalar

• dst – The destination array

• mask – Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function subtracts a scalar from every element of the source array:

dst(I)=src(I)-value if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size). For types that have limited
range this operation is saturating.

Sum

CvScalar cvSum(const CvArr* arr)
Adds up array elements.

Parameters

• arr – The array

The function calculates the sum S of array elements, independently for each channel:∑
I

arr(I)c

If the array is IplImage and COI is set, the function processes the selected channel only and stores the sum to the
first scalar component.

SVBkSb

void cvSVBkSb(const CvArr* W, const CvArr* U, const CvArr* V, const CvArr* B, CvArr* X, int flags)
Performs singular value back substitution.

Parameters

• W – Matrix or vector of singular values

• U – Left orthogonal matrix (tranposed, perhaps)

1.2. Operations on Arrays 61

The OpenCV 1.x C Reference Manual, Release 2.3

• V – Right orthogonal matrix (tranposed, perhaps)

• B – The matrix to multiply the pseudo-inverse of the original matrix A by. This is an optional
parameter. If it is omitted then it is assumed to be an identity matrix of an appropriate size
(so that X will be the reconstructed pseudo-inverse of A).

• X – The destination matrix: result of back substitution

• flags – Operation flags, should match exactly to the flags passed to SVD

The function calculates back substitution for decomposed matrix A (see SVD description) and matrix B :

X = VW−1UTB

where

W−1
(i,i) =

{
1/W(i,i) if W(i,i) > ε

∑
iW(i,i)

0 otherwise

and ε is a small number that depends on the matrix data type.

This function together with SVD is used inside Invert and Solve , and the possible reason to use these (svd and bksb)
“low-level” function, is to avoid allocation of temporary matrices inside the high-level counterparts (inv and solve).

SVD

void cvSVD(CvArr* A, CvArr* W, CvArr* U=NULL, CvArr* V=NULL, int flags=0)
Performs singular value decomposition of a real floating-point matrix.

Parameters

• A – Source M× N matrix

• W – Resulting singular value diagonal matrix (M × N or min(M,N) × min(M,N)) or
min(M,N)× 1 vector of the singular values

• U – Optional left orthogonal matrix, M × min(M,N) (when CV_SVD_U_T is not set), or
min(M,N)× M (when CV_SVD_U_T is set), or M× M (regardless of CV_SVD_U_T flag).

• V – Optional right orthogonal matrix, N × min(M,N) (when CV_SVD_V_T is not set), or
min(M,N)× N (when CV_SVD_V_T is set), or N× N (regardless of CV_SVD_V_T flag).

• flags – Operation flags; can be 0 or a combination of the following values:

– CV_SVD_MODIFY_A enables modification of matrix A during the operation. It speeds
up the processing.

– CV_SVD_U_T means that the transposed matrix U is returned. Specifying the flag speeds
up the processing.

– CV_SVD_V_T means that the transposed matrix V is returned. Specifying the flag speeds
up the processing.

The function decomposes matrix A into the product of a diagonal matrix and two

orthogonal matrices:

A = U W V T

where W is a diagonal matrix of singular values that can be coded as a 1D vector of singular values and U and V . All
the singular values are non-negative and sorted (together with U and V columns) in descending order.

An SVD algorithm is numerically robust and its typical applications include:

62 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

• accurate eigenvalue problem solution when matrix A is a square, symmetric, and positively defined matrix, for
example, when

it is a covariance matrix.

W in this case will be a vector/matrix

of the eigenvalues, and

U = V will be a matrix of the eigenvectors.

• accurate solution of a poor-conditioned linear system.

• least-squares solution of an overdetermined linear system. This and the preceeding is done by using the Solve
function with the CV_SVD method.

• accurate calculation of different matrix characteristics such as the matrix rank (the number of non-zero singular
values), condition number (ratio of the largest singular value to the smallest one), and determinant (absolute
value of the determinant is equal to the product of singular values).

Trace

CvScalar cvTrace(const CvArr* mat)
Returns the trace of a matrix.

Parameters

• mat – The source matrix

The function returns the sum of the diagonal elements of the matrix src1 .

tr(mat) =
∑

i

mat(i, i)

Transform

void cvTransform(const CvArr* src, CvArr* dst, const CvMat* transmat, const CvMat* shiftvec=NULL)
Performs matrix transformation of every array element.

Parameters

• src – The first source array

• dst – The destination array

• transmat – Transformation matrix

• shiftvec – Optional shift vector

The function performs matrix transformation of every element of array src and stores the results in dst :

dst(I) = transmat · src(I) + shiftvec

That is, every element of an N -channel array src is considered as an N -element vector which is transformed using a
M × N matrix transmat and shift vector shiftvec into an element of M -channel array dst . There is an option
to embedd shiftvec into transmat . In this case transmat should be a M× (N + 1) matrix and the rightmost
column is treated as the shift vector.

Both source and destination arrays should have the same depth and the same size or selected ROI size. transmat
and shiftvec should be real floating-point matrices.

1.2. Operations on Arrays 63

The OpenCV 1.x C Reference Manual, Release 2.3

The function may be used for geometrical transformation of n dimensional point set, arbitrary linear color space
transformation, shuffling the channels and so forth.

Transpose

void cvTranspose(const CvArr* src, CvArr* dst)
Transposes a matrix.

Parameters

• src – The source matrix

• dst – The destination matrix

The function transposes matrix src1 :

dst(i, j) = src(j, i)

Note that no complex conjugation is done in the case of a complex matrix. Conjugation should be done separately:
look at the sample code in XorS for an example.

Xor

void cvXor(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
Performs per-element bit-wise “exclusive or” operation on two arrays.

Parameters

• src1 – The first source array

• src2 – The second source array

• dst – The destination array

• mask – Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function calculates per-element bit-wise logical conjunction of two arrays:

dst(I)=src1(I)^src2(I) if mask(I)!=0

In the case of floating-point arrays their bit representations are used for the operation. All the arrays must have the
same type, except the mask, and the same size.

XorS

void cvXorS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Performs per-element bit-wise “exclusive or” operation on an array and a scalar.

Parameters

• src – The source array

• value – Scalar to use in the operation

• dst – The destination array

• mask – Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

64 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

The function XorS calculates per-element bit-wise conjunction of an array and a scalar:

dst(I)=src(I)^value if mask(I)!=0

Prior to the actual operation, the scalar is converted to the same type as that of the array(s). In the case of floating-point
arrays their bit representations are used for the operation. All the arrays must have the same type, except the mask,
and the same size

The following sample demonstrates how to conjugate complex vector by switching the most-significant bit of imaging
part:

float a[] = { 1, 0, 0, 1, -1, 0, 0, -1 }; /* 1, j, -1, -j */
CvMat A = cvMat(4, 1, CV_32FC2, &a);
int i, negMask = 0x80000000;
cvXorS(&A, cvScalar(0, *(float*)&negMask, 0, 0), &A, 0);
for(i = 0; i < 4; i++)

printf("(%.1f, %.1f) ", a[i*2], a[i*2+1]);

The code should print:

(1.0,0.0) (0.0,-1.0) (-1.0,0.0) (0.0,1.0)

mGet

double cvmGet(const CvMat* mat, int row, int col)
Returns the particular element of single-channel floating-point matrix.

Parameters

• mat – Input matrix

• row – The zero-based index of row

• col – The zero-based index of column

The function is a fast replacement for GetReal2D in the case of single-channel floating-point matrices. It is faster
because it is inline, it does fewer checks for array type and array element type, and it checks for the row and column
ranges only in debug mode.

mSet

void cvmSet(CvMat* mat, int row, int col, double value)
Returns a specific element of a single-channel floating-point matrix.

Parameters

• mat – The matrix

• row – The zero-based index of row

• col – The zero-based index of column

• value – The new value of the matrix element

The function is a fast replacement for SetReal2D in the case of single-channel floating-point matrices. It is faster
because it is inline, it does fewer checks for array type and array element type, and it checks for the row and column
ranges only in debug mode.

1.2. Operations on Arrays 65

The OpenCV 1.x C Reference Manual, Release 2.3

1.3 Dynamic Structures

CvMemStorage

CvMemStorage

Growing memory storage.

typedef struct CvMemStorage
{

struct CvMemBlock* bottom;/* first allocated block */
struct CvMemBlock* top; /* the current memory block - top of the stack */
struct CvMemStorage* parent; /* borrows new blocks from */
int block_size; /* block size */
int free_space; /* free space in the ‘‘top‘‘ block (in bytes) */

} CvMemStorage;

Memory storage is a low-level structure used to store dynamicly growing data structures such as sequences, contours,
graphs, subdivisions, etc. It is organized as a list of memory blocks of equal size - bottom field is the beginning of
the list of blocks and top is the currently used block, but not necessarily the last block of the list. All blocks between
bottom and top , not including the latter, are considered fully occupied; all blocks between top and the last block,
not including top , are considered free and top itself is partly ocupied - free_space contains the number of free
bytes left in the end of top .

A new memory buffer that may be allocated explicitly by MemStorageAlloc function or implicitly by higher-level
functions, such as SeqPush , GraphAddEdge , etc., always starts in the end of the current block if it fits there. After
allocation, free_space is decremented by the size of the allocated buffer plus some padding to keep the proper
alignment. When the allocated buffer does not fit into the available portion of top , the next storage block from the
list is taken as top and free_space is reset to the whole block size prior to the allocation.

If there are no more free blocks, a new block is allocated (or borrowed from the parent, see CreateChildMemStorage
) and added to the end of list. Thus, the storage behaves as a stack with bottom indicating bottom of the stack and
the pair (top , free_space) indicating top of the stack. The stack top may be saved via SaveMemStoragePos ,
restored via RestoreMemStoragePos , or reset via ClearStorage .

CvMemBlock

CvMemBlock

Memory storage block.

typedef struct CvMemBlock
{

struct CvMemBlock* prev;
struct CvMemBlock* next;

} CvMemBlock;

The structure CvMemBlock represents a single block of memory storage. The actual data in the memory
blocks follows the header, that is, the ith byte of the memory block can be retrieved with the expression
((char*)(mem_block_ptr+1))[i] . However, there is normally no need to access the storage structure fields
directly.

CvMemStoragePos

CvMemStoragePos

66 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

Memory storage position.

typedef struct CvMemStoragePos
{

CvMemBlock* top;
int free_space;

} CvMemStoragePos;

The structure described above stores the position of the stack top that can be saved via SaveMemStoragePos and
restored via RestoreMemStoragePos .

CvSeq

CvSeq

Growable sequence of elements.

#define CV_SEQUENCE_FIELDS() \
int flags; /* micsellaneous flags */ \
int header_size; /* size of sequence header */ \
struct CvSeq* h_prev; /* previous sequence */ \
struct CvSeq* h_next; /* next sequence */ \
struct CvSeq* v_prev; /* 2nd previous sequence */ \
struct CvSeq* v_next; /* 2nd next sequence */ \
int total; /* total number of elements */ \
int elem_size;/* size of sequence element in bytes */ \
char* block_max;/* maximal bound of the last block */ \
char* ptr; /* current write pointer */ \
int delta_elems; /* how many elements allocated when the sequence grows

(sequence granularity) */ \
CvMemStorage* storage; /* where the seq is stored */ \
CvSeqBlock* free_blocks; /* free blocks list */ \
CvSeqBlock* first; /* pointer to the first sequence block */

typedef struct CvSeq
{

CV_SEQUENCE_FIELDS()
} CvSeq;

The structure CvSeq is a base for all of OpenCV dynamic data structures.

Such an unusual definition via a helper macro simplifies the extension of the structure CvSeq with additional param-
eters. To extend CvSeq the user may define a new structure and put user-defined fields after all CvSeq fields that are
included via the macro CV_SEQUENCE_FIELDS() .

There are two types of sequences - dense and sparse. The base type for dense sequences is CvSeq and such sequences
are used to represent growable 1d arrays - vectors, stacks, queues, and deques. They have no gaps in the middle - if an
element is removed from the middle or inserted into the middle of the sequence, the elements from the closer end are
shifted. Sparse sequences have CvSet as a base class and they are discussed later in more detail. They are sequences
of nodes; each may be either occupied or free as indicated by the node flag. Such sequences are used for unordered
data structures such as sets of elements, graphs, hash tables and so forth.

The field header_size contains the actual size of the sequence header and should be greater than or equal to
sizeof(CvSeq) .

The fields h_prev , h_next , v_prev , v_next can be used to create hierarchical structures from separate se-
quences. The fields h_prev and h_next point to the previous and the next sequences on the same hierarchical level,
while the fields v_prev and v_next point to the previous and the next sequences in the vertical direction, that is,
the parent and its first child. But these are just names and the pointers can be used in a different way.

1.3. Dynamic Structures 67

The OpenCV 1.x C Reference Manual, Release 2.3

The field first points to the first sequence block, whose structure is described below.

The field total contains the actual number of dense sequence elements and number of allocated nodes in a sparse
sequence.

The field flags contains the particular dynamic type signature (CV_SEQ_MAGIC_VAL for dense sequences and
CV_SET_MAGIC_VAL for sparse sequences) in the highest 16 bits and miscellaneous information about the se-
quence. The lowest CV_SEQ_ELTYPE_BITS bits contain the ID of the element type. Most of sequence processing
functions do not use element type but rather element size stored in elem_size . If a sequence contains the nu-
meric data for one of the CvMat type then the element type matches to the corresponding CvMat element type, e.g.,
CV_32SC2 may be used for a sequence of 2D points, CV_32FC1 for sequences of floating-point values, etc. A
CV_SEQ_ELTYPE(seq_header_ptr) macro retrieves the type of sequence elements. Processing functions that
work with numerical sequences check that elem_size is equal to that calculated from the type element size. Besides
CvMat compatible types, there are few extra element types defined in the cvtypes.h header:

Standard Types of Sequence Elements

#define CV_SEQ_ELTYPE_POINT CV_32SC2 /* (x,y) */
#define CV_SEQ_ELTYPE_CODE CV_8UC1 /* freeman code: 0..7 */
#define CV_SEQ_ELTYPE_GENERIC 0 /* unspecified type of

sequence elements */
#define CV_SEQ_ELTYPE_PTR CV_USRTYPE1 /* =6 */
#define CV_SEQ_ELTYPE_PPOINT CV_SEQ_ELTYPE_PTR /* &elem: pointer to

element of other sequence */
#define CV_SEQ_ELTYPE_INDEX CV_32SC1 /* #elem: index of element of

some other sequence */
#define CV_SEQ_ELTYPE_GRAPH_EDGE CV_SEQ_ELTYPE_GENERIC /* &next_o,

&next_d, &vtx_o, &vtx_d */
#define CV_SEQ_ELTYPE_GRAPH_VERTEX CV_SEQ_ELTYPE_GENERIC /* first_edge,

&(x,y) */
#define CV_SEQ_ELTYPE_TRIAN_ATR CV_SEQ_ELTYPE_GENERIC /* vertex of the

binary tree */
#define CV_SEQ_ELTYPE_CONNECTED_COMP CV_SEQ_ELTYPE_GENERIC /* connected

component */
#define CV_SEQ_ELTYPE_POINT3D CV_32FC3 /* (x,y,z) */

The next CV_SEQ_KIND_BITS bits specify the kind of sequence:

Standard Kinds of Sequences

/* generic (unspecified) kind of sequence */
#define CV_SEQ_KIND_GENERIC (0 << CV_SEQ_ELTYPE_BITS)

/* dense sequence suntypes */
#define CV_SEQ_KIND_CURVE (1 << CV_SEQ_ELTYPE_BITS)
#define CV_SEQ_KIND_BIN_TREE (2 << CV_SEQ_ELTYPE_BITS)

/* sparse sequence (or set) subtypes */
#define CV_SEQ_KIND_GRAPH (3 << CV_SEQ_ELTYPE_BITS)
#define CV_SEQ_KIND_SUBDIV2D (4 << CV_SEQ_ELTYPE_BITS)

The remaining bits are used to identify different features specific to certain sequence kinds and element types. For
example, curves made of points (CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE_POINT) , together with the flag
CV_SEQ_FLAG_CLOSED , belong to the type CV_SEQ_POLYGON or, if other flags are used, to its subtype. Many
contour processing functions check the type of the input sequence and report an error if they do not support this type.
The file cvtypes.h stores the complete list of all supported predefined sequence types and helper macros designed
to get the sequence type of other properties. The definition of the building blocks of sequences can be found below.

68 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

CvSeqBlock

CvSeqBlock

Continuous sequence block.

typedef struct CvSeqBlock
{

struct CvSeqBlock* prev; /* previous sequence block */
struct CvSeqBlock* next; /* next sequence block */
int start_index; /* index of the first element in the block +
sequence->first->start_index */
int count; /* number of elements in the block */
char* data; /* pointer to the first element of the block */

} CvSeqBlock;

Sequence blocks make up a circular double-linked list, so the pointers prev and next are never NULL and point to
the previous and the next sequence blocks within the sequence. It means that next of the last block is the first block
and prev of the first block is the last block. The fields startIndex and count help to track the block location
within the sequence. For example, if the sequence consists of 10 elements and splits into three blocks of 3, 5, and
2 elements, and the first block has the parameter startIndex = 2 , then pairs (startIndex, count) for
the sequence blocks are (2,3), (5, 5), and (10, 2) correspondingly. The parameter startIndex of the first block is
usually 0 unless some elements have been inserted at the beginning of the sequence.

CvSlice

CvSlice

A sequence slice.

typedef struct CvSlice
{

int start_index;
int end_index;

} CvSlice;

inline CvSlice cvSlice(int start, int end);
#define CV_WHOLE_SEQ_END_INDEX 0x3fffffff
#define CV_WHOLE_SEQ cvSlice(0, CV_WHOLE_SEQ_END_INDEX)

/* calculates the sequence slice length */
int cvSliceLength(CvSlice slice, const CvSeq* seq);

Some of functions that operate on sequences take a CvSlice slice parameter that is often set to the whole se-
quence (CV _ WHOLE _ SEQ) by default. Either of the startIndex and endIndex may be negative or exceed
the sequence length, startIndex is inclusive, and endIndex is an exclusive boundary. If they are equal, the
slice is considered empty (i.e., contains no elements). Because sequences are treated as circular structures, the slice
may select a few elements in the end of a sequence followed by a few elements at the beginning of the sequence.
For example, cvSlice(-2, 3) in the case of a 10-element sequence will select a 5-element slice, containing the
pre-last (8th), last (9th), the very first (0th), second (1th) and third (2nd) elements. The functions normalize the slice
argument in the following way: first, SliceLength is called to determine the length of the slice, then, startIndex of
the slice is normalized similarly to the argument of GetSeqElem (i.e., negative indices are allowed). The actual slice
to process starts at the normalized startIndex and lasts SliceLength elements (again, assuming the sequence is a
circular structure).

If a function does not accept a slice argument, but you want to process only a part of the sequence, the sub-sequence
may be extracted using the SeqSlice function, or stored into a continuous buffer with CvtSeqToArray (optionally,

1.3. Dynamic Structures 69

The OpenCV 1.x C Reference Manual, Release 2.3

followed by MakeSeqHeaderForArray).

CvSet

CvSet

Collection of nodes.

typedef struct CvSetElem
{

int flags; /* it is negative if the node is free and zero or positive otherwise */
struct CvSetElem* next_free; /* if the node is free, the field is a

pointer to next free node */
}
CvSetElem;

#define CV_SET_FIELDS() \
CV_SEQUENCE_FIELDS() /* inherits from [#CvSeq CvSeq] */ \
struct CvSetElem* free_elems; /* list of free nodes */

typedef struct CvSet
{

CV_SET_FIELDS()
} CvSet;

The structure CvSet is a base for OpenCV sparse data structures.

As follows from the above declaration, CvSet inherits from CvSeq and it adds the free_elems field, which is a list
of free nodes, to it. Every set node, whether free or not, is an element of the underlying sequence. While there are
no restrictions on elements of dense sequences, the set (and derived structures) elements must start with an integer
field and be able to fit CvSetElem structure, because these two fields (an integer followed by a pointer) are required
for the organization of a node set with the list of free nodes. If a node is free, the flags field is negative (the
most-significant bit, or MSB, of the field is set), and the next_free points to the next free node (the first free
node is referenced by the free_elems field of CvSet). And if a node is occupied, the flags field is positive and
contains the node index that may be retrieved using the (set_elem->flags & CV_SET_ELEM_IDX_MASK)
expressions, the rest of the node content is determined by the user. In particular, the occupied nodes are not linked as
the free nodes are, so the second field can be used for such a link as well as for some different purpose. The macro
CV_IS_SET_ELEM(set_elem_ptr) can be used to determined whether the specified node is occupied or not.

Initially the set and the list are empty. When a new node is requested from the set, it is taken from the list of free
nodes, which is then updated. If the list appears to be empty, a new sequence block is allocated and all the nodes
within the block are joined in the list of free nodes. Thus, the total field of the set is the total number of nodes both
occupied and free. When an occupied node is released, it is added to the list of free nodes. The node released last will
be occupied first.

In OpenCV CvSet is used for representing graphs (CvGraph), sparse multi-dimensional arrays (CvSparseMat), and
planar subdivisions CvSubdiv2D .

CvGraph

CvGraph

Oriented or unoriented weighted graph.

#define CV_GRAPH_VERTEX_FIELDS() \
int flags; /* vertex flags */ \
struct CvGraphEdge* first; /* the first incident edge */

70 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

typedef struct CvGraphVtx
{

CV_GRAPH_VERTEX_FIELDS()
}
CvGraphVtx;

#define CV_GRAPH_EDGE_FIELDS() \
int flags; /* edge flags */ \
float weight; /* edge weight */ \
struct CvGraphEdge* next[2]; /* the next edges in the incidence lists for staring (0) */ \

/* and ending (1) vertices */ \
struct CvGraphVtx* vtx[2]; /* the starting (0) and ending (1) vertices */

typedef struct CvGraphEdge
{

CV_GRAPH_EDGE_FIELDS()
}
CvGraphEdge;

#define CV_GRAPH_FIELDS() \
CV_SET_FIELDS() /* set of vertices */ \
CvSet* edges; /* set of edges */

typedef struct CvGraph
{

CV_GRAPH_FIELDS()
}
CvGraph;

The structure CvGraph is a base for graphs used in OpenCV.

The graph structure inherits from CvSet - which describes common graph properties and the graph vertices, and
contains another set as a member - which describes the graph edges.

The vertex, edge, and the graph header structures are declared using the same technique as other extendible OpenCV
structures - via macros, which simplify extension and customization of the structures. While the vertex and edge
structures do not inherit from CvSetElem explicitly, they satisfy both conditions of the set elements: having an integer
field in the beginning and fitting within the CvSetElem structure. The flags fields are used as for indicating occupied
vertices and edges as well as for other purposes, for example, for graph traversal (see CreateGraphScanner et al.), so
it is better not to use them directly.

The graph is represented as a set of edges each of which has a list of incident edges. The incidence lists for different
vertices are interleaved to avoid information duplication as much as posssible.

The graph may be oriented or unoriented. In the latter case there is no distiction between the edge connecting vertex
A with vertex B and the edge connecting vertex B with vertex A - only one of them can exist in the graph at the same
moment and it represents both A→ B and B → A edges.

CvGraphScanner

CvGraphScanner

Graph traversal state.

typedef struct CvGraphScanner
{

CvGraphVtx* vtx; /* current graph vertex (or current edge origin) */
CvGraphVtx* dst; /* current graph edge destination vertex */

1.3. Dynamic Structures 71

The OpenCV 1.x C Reference Manual, Release 2.3

CvGraphEdge* edge; /* current edge */

CvGraph* graph; /* the graph */
CvSeq* stack; /* the graph vertex stack */
int index; /* the lower bound of certainly visited vertices */
int mask; /* event mask */

}
CvGraphScanner;

The structure CvGraphScanner is used for depth-first graph traversal. See discussion of the functions below.

cvmacro Helper macro for a tree node type declaration.

The macro CV_TREE_NODE_FIELDS() is used to declare structures that can be organized into hierarchical strucu-
tures (trees), such as CvSeq - the basic type for all dynamic structures. The trees created with nodes declared using
this macro can be processed using the functions described below in this section.

CvTreeNodeIterator

CvTreeNodeIterator

Opens existing or creates new file storage.

typedef struct CvTreeNodeIterator
{

const void* node;
int level;
int max_level;

}
CvTreeNodeIterator;

#define CV_TREE_NODE_FIELDS(node_type) \
int flags; /* micsellaneous flags */ \
int header_size; /* size of sequence header */ \
struct node_type* h_prev; /* previous sequence */ \
struct node_type* h_next; /* next sequence */ \
struct node_type* v_prev; /* 2nd previous sequence */ \
struct node_type* v_next; /* 2nd next sequence */

The structure CvTreeNodeIterator is used to traverse trees. Each tree node should start with the certain fields which are
defined by CV_TREE_NODE_FIELDS(...) macro. In C++ terms, each tree node should be a structure “derived”
from

struct _BaseTreeNode
{

CV_TREE_NODE_FIELDS(_BaseTreeNode);
}

CvSeq , CvSet , CvGraph and other dynamic structures derived from CvSeq comply with the requirement.

ClearGraph

void cvClearGraph(CvGraph* graph)
Clears a graph.

Parameters

• graph – Graph

72 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

The function removes all vertices and edges from a graph. The function has O(1) time complexity.

ClearMemStorage

void cvClearMemStorage(CvMemStorage* storage)
Clears memory storage.

Parameters

• storage – Memory storage

The function resets the top (free space boundary) of the storage to the very beginning. This function does not deallocate
any memory. If the storage has a parent, the function returns all blocks to the parent.

ClearSeq

void cvClearSeq(CvSeq* seq)
Clears a sequence.

Parameters

• seq – Sequence

The function removes all elements from a sequence. The function does not return the memory to the storage block, but
this memory is reused later when new elements are added to the sequence. The function has ‘O(1)’ time complexity.

ClearSet

void cvClearSet(CvSet* setHeader)
Clears a set.

Parameters

• setHeader – Cleared set

The function removes all elements from set. It has O(1) time complexity.

CloneGraph

CvGraph* cvCloneGraph(const CvGraph* graph, CvMemStorage* storage)
Clones a graph.

Parameters

• graph – The graph to copy

• storage – Container for the copy

The function creates a full copy of the specified graph. If the graph vertices or edges have pointers to some external
data, it can still be shared between the copies. The vertex and edge indices in the new graph may be different from the
original because the function defragments the vertex and edge sets.

1.3. Dynamic Structures 73

The OpenCV 1.x C Reference Manual, Release 2.3

CloneSeq

CvSeq* cvCloneSeq(const CvSeq* seq, CvMemStorage* storage=NULL)
Creates a copy of a sequence.

Parameters

• seq – Sequence

• storage – The destination storage block to hold the new sequence header and the copied
data, if any. If it is NULL, the function uses the storage block containing the input sequence.

The function makes a complete copy of the input sequence and returns it.

The call

cvCloneSeq(seq, storage)

is equivalent to

cvSeqSlice(seq, CV_WHOLE_SEQ, storage, 1)

CreateChildMemStorage

CvMemStorage* cvCreateChildMemStorage(CvMemStorage* parent)
Creates child memory storage.

Parameters

• parent – Parent memory storage

The function creates a child memory storage that is similar to simple memory storage except for the differences in the
memory allocation/deallocation mechanism. When a child storage needs a new block to add to the block list, it tries to
get this block from the parent. The first unoccupied parent block available is taken and excluded from the parent block
list. If no blocks are available, the parent either allocates a block or borrows one from its own parent, if any. In other
words, the chain, or a more complex structure, of memory storages where every storage is a child/parent of another is
possible. When a child storage is released or even cleared, it returns all blocks to the parent. In other aspects, child
storage is the same as simple storage.

Child storage is useful in the following situation. Imagine that the user needs to process dynamic data residing in a
given storage area and put the result back to that same storage area. With the simplest approach, when temporary data
is resided in the same storage area as the input and output data, the storage area will look as follows after processing:

Dynamic data processing without using child storage

74 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

That is, garbage appears in the middle of the storage. However, if one creates a child memory storage at the beginning
of processing, writes temporary data there, and releases the child storage at the end, no garbage will appear in the
source/destination storage:

Dynamic data processing using a child storage

CreateGraph

CvGraph* cvCreateGraph(int graph_flags, int header_size, int vtx_size, int edge_size, CvMemStor-
age* storage)

Creates an empty graph.

Parameters

• graph_flags – Type of the created graph. Usually, it is either
CV_SEQ_KIND_GRAPH for generic unoriented graphs and CV_SEQ_KIND_GRAPH
| CV_GRAPH_FLAG_ORIENTED for generic oriented graphs.

• header_size – Graph header size; may not be less than sizeof(CvGraph)

1.3. Dynamic Structures 75

The OpenCV 1.x C Reference Manual, Release 2.3

• vtx_size – Graph vertex size; the custom vertex structure must start with CvGraphVtx (use
CV_GRAPH_VERTEX_FIELDS())

• edge_size – Graph edge size; the custom edge structure must start with CvGraphEdge (use
CV_GRAPH_EDGE_FIELDS())

• storage – The graph container

The function creates an empty graph and returns a pointer to it.

CreateGraphScanner

CvGraphScanner* cvCreateGraphScanner(CvGraph* graph, CvGraphVtx* vtx=NULL,
int mask=CV_GRAPH_ALL_ITEMS)

Creates structure for depth-first graph traversal.

Parameters

• graph – Graph

• vtx – Initial vertex to start from. If NULL, the traversal starts from the first vertex (a vertex
with the minimal index in the sequence of vertices).

• mask – Event mask indicating which events are of interest to the user (where NextGraphItem
function returns control to the user) It can be CV_GRAPH_ALL_ITEMS (all events are of
interest) or a combination of the following flags:

– CV_GRAPH_VERTEX stop at the graph vertices visited for the first time

– CV_GRAPH_TREE_EDGE stop at tree edges (tree edge is the edge connecting
the last visited vertex and the vertex to be visited next)

– CV_GRAPH_BACK_EDGE stop at back edges (back edge is an edge connecting
the last visited vertex with some of its ancestors in the search tree)

– CV_GRAPH_FORWARD_EDGE stop at forward edges (forward edge is an edge
conecting the last visited vertex with some of its descendants in the search tree. The
forward edges are only possible during oriented graph traversal)

– CV_GRAPH_CROSS_EDGE stop at cross edges (cross edge is an edge connect-
ing different search trees or branches of the same tree. The cross edges are only
possible during oriented graph traversal)

– CV_GRAPH_ANY_EDGE stop at any edge (tree, back, forward , and cross
edges)

– CV_GRAPH_NEW_TREE stop in the beginning of every new search tree. When the
traversal procedure visits all vertices and edges reachable from the initial vertex (the vis-
ited vertices together with tree edges make up a tree), it searches for some unvisited
vertex in the graph and resumes the traversal process from that vertex. Before starting a
new tree (including the very first tree when cvNextGraphItem is called for the first
time) it generates a CV_GRAPH_NEW_TREE event. For unoriented graphs, each search
tree corresponds to a connected component of the graph.

– CV_GRAPH_BACKTRACKING stop at every already visited vertex during backtrack-
ing - returning to already visited vertexes of the traversal tree.

The function creates a structure for depth-first graph traversal/search. The initialized structure is used in the
NextGraphItem function - the incremental traversal procedure.

76 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

CreateMemStorage

CvMemStorage* cvCreateMemStorage(int blockSize=0)
Creates memory storage.

Parameters

• blockSize – Size of the storage blocks in bytes. If it is 0, the block size is set to a default
value - currently it is about 64K.

The function creates an empty memory storage. See CvMemStorage description.

CreateSeq

CvSeq* cvCreateSeq(int seqFlags, int headerSize, int elemSize, CvMemStorage* storage)
Creates a sequence.

Parameters

• seqFlags – Flags of the created sequence. If the sequence is not passed to any function
working with a specific type of sequences, the sequence value may be set to 0, otherwise the
appropriate type must be selected from the list of predefined sequence types.

• headerSize – Size of the sequence header; must be greater than or equal to
sizeof(CvSeq) . If a specific type or its extension is indicated, this type must fit the
base type header.

• elemSize – Size of the sequence elements in bytes. The size must be consistent with the
sequence type. For example, for a sequence of points to be created, the element type
CV_SEQ_ELTYPE_POINT should be specified and the parameter elemSize must be
equal to sizeof(CvPoint) .

• storage – Sequence location

The function creates a sequence and returns the pointer to it. The function allocates the sequence header in the storage
block as one continuous chunk and sets the structure fields flags , elemSize , headerSize , and storage to
passed values, sets delta_elems to the default value (that may be reassigned using the SetSeqBlockSize function),
and clears other header fields, including the space following the first sizeof(CvSeq) bytes.

CreateSet

CvSet* cvCreateSet(int set_flags, int header_size, int elem_size, CvMemStorage* storage)
Creates an empty set.

Parameters

• set_flags – Type of the created set

• header_size – Set header size; may not be less than sizeof(CvSet)

• elem_size – Set element size; may not be less than CvSetElem

• storage – Container for the set

The function creates an empty set with a specified header size and element size, and returns the pointer to the set. This
function is just a thin layer on top of CreateSeq .

1.3. Dynamic Structures 77

The OpenCV 1.x C Reference Manual, Release 2.3

CvtSeqToArray

void* cvCvtSeqToArray(const CvSeq* seq, void* elements, CvSlice slice=CV_WHOLE_SEQ)
Copies a sequence to one continuous block of memory.

Parameters

• seq – Sequence

• elements – Pointer to the destination array that must be large enough. It should be a pointer
to data, not a matrix header.

• slice – The sequence portion to copy to the array

The function copies the entire sequence or subsequence to the specified buffer and returns the pointer to the buffer.

EndWriteSeq

CvSeq* cvEndWriteSeq(CvSeqWriter* writer)
Finishes the process of writing a sequence.

Parameters

• writer – Writer state

The function finishes the writing process and returns the pointer to the written sequence. The function also truncates
the last incomplete sequence block to return the remaining part of the block to memory storage. After that, the
sequence can be read and modified safely. See cvStartWriteSeq and cvStartAppendToSeq

FindGraphEdge

CvGraphEdge* cvFindGraphEdge(const CvGraph* graph, int start_idx, int end_idx)
Finds an edge in a graph.

#define cvGraphFindEdge cvFindGraphEdge

param graph Graph

param start_idx Index of the starting vertex of the edge

param end_idx Index of the ending vertex of the edge. For an unoriented graph, the order of
the vertex parameters does not matter.

The function finds the graph edge connecting two specified vertices and returns a pointer to it or NULL if the edge
does not exist.

FindGraphEdgeByPtr

CvGraphEdge* cvFindGraphEdgeByPtr(const CvGraph* graph, const CvGraphVtx* startVtx, const Cv-
GraphVtx* endVtx)

Finds an edge in a graph by using its pointer.

#define cvGraphFindEdgeByPtr cvFindGraphEdgeByPtr

param graph Graph

param startVtx Pointer to the starting vertex of the edge

78 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

param endVtx Pointer to the ending vertex of the edge. For an unoriented graph, the order of
the vertex parameters does not matter.

The function finds the graph edge connecting two specified vertices and returns pointer to it or NULL if the edge does
not exists.

FlushSeqWriter

void cvFlushSeqWriter(CvSeqWriter* writer)
Updates sequence headers from the writer.

Parameters

• writer – Writer state

The function is intended to enable the user to read sequence elements, whenever required, during the writing process,
e.g., in order to check specific conditions. The function updates the sequence headers to make reading from the
sequence possible. The writer is not closed, however, so that the writing process can be continued at any time. If an
algorithm requires frequent flushes, consider using SeqPush instead.

GetGraphVtx

CvGraphVtx* cvGetGraphVtx(CvGraph* graph, int vtx_idx)
Finds a graph vertex by using its index.

Parameters

• graph – Graph

• vtx_idx – Index of the vertex

The function finds the graph vertex by using its index and returns the pointer to it or NULL if the vertex does not
belong to the graph.

GetSeqElem

char* cvGetSeqElem(const CvSeq* seq, int index)
Returns a pointer to a sequence element according to its index.

#define CV_GET_SEQ_ELEM(TYPE, seq, index) (TYPE*)cvGetSeqElem((CvSeq*)(seq), (index))

param seq Sequence

param index Index of element

The function finds the element with the given index in the sequence and returns the pointer to it. If the element is not
found, the function returns 0. The function supports negative indices, where -1 stands for the last sequence element,
-2 stands for the one before last, etc. If the sequence is most likely to consist of a single sequence block or the
desired element is likely to be located in the first block, then the macro CV_GET_SEQ_ELEM(elemType, seq,
index) should be used, where the parameter elemType is the type of sequence elements (CvPoint for example),
the parameter seq is a sequence, and the parameter index is the index of the desired element. The macro checks
first whether the desired element belongs to the first block of the sequence and returns it if it does; otherwise the macro
calls the main function GetSeqElem . Negative indices always cause the GetSeqElem call. The function has O(1)
time complexity assuming that the number of blocks is much smaller than the number of elements.

1.3. Dynamic Structures 79

The OpenCV 1.x C Reference Manual, Release 2.3

GetSeqReaderPos

int cvGetSeqReaderPos(CvSeqReader* reader)
Returns the current reader position.

Parameters

• reader – Reader state

The function returns the current reader position (within 0 ... reader->seq->total - 1).

GetSetElem

CvSetElem* cvGetSetElem(const CvSet* setHeader, int index)
Finds a set element by its index.

Parameters

• setHeader – Set

• index – Index of the set element within a sequence

The function finds a set element by its index. The function returns the pointer to it or 0 if the index is invalid or the
corresponding node is free. The function supports negative indices as it uses GetSeqElem to locate the node.

GraphAddEdge

int cvGraphAddEdge(CvGraph* graph, int start_idx, int end_idx, const CvGraphEdge* edge=NULL, Cv-
GraphEdge** inserted_edge=NULL)

Adds an edge to a graph.

Parameters

• graph – Graph

• start_idx – Index of the starting vertex of the edge

• end_idx – Index of the ending vertex of the edge. For an unoriented graph, the order of the
vertex parameters does not matter.

• edge – Optional input parameter, initialization data for the edge

• inserted_edge – Optional output parameter to contain the address of the inserted edge

The function connects two specified vertices. The function returns 1 if the edge has been added successfully, 0 if
the edge connecting the two vertices exists already and -1 if either of the vertices was not found, the starting and the
ending vertex are the same, or there is some other critical situation. In the latter case (i.e., when the result is negative),
the function also reports an error by default.

GraphAddEdgeByPtr

int cvGraphAddEdgeByPtr(CvGraph* graph, CvGraphVtx* start_vtx, CvGraphVtx* end_vtx, const Cv-
GraphEdge* edge=NULL, CvGraphEdge** inserted_edge=NULL)

Adds an edge to a graph by using its pointer.

Parameters

• graph – Graph

• start_vtx – Pointer to the starting vertex of the edge

80 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

• end_vtx – Pointer to the ending vertex of the edge. For an unoriented graph, the order of
the vertex parameters does not matter.

• edge – Optional input parameter, initialization data for the edge

• inserted_edge – Optional output parameter to contain the address of the inserted edge
within the edge set

The function connects two specified vertices. The function returns 1 if the edge has been added successfully, 0 if the
edge connecting the two vertices exists already, and -1 if either of the vertices was not found, the starting and the
ending vertex are the same or there is some other critical situation. In the latter case (i.e., when the result is negative),
the function also reports an error by default.

GraphAddVtx

int cvGraphAddVtx(CvGraph* graph, const CvGraphVtx* vtx=NULL, CvGraphVtx** in-
serted_vtx=NULL)

Adds a vertex to a graph.

Parameters

• graph – Graph

• vtx – Optional input argument used to initialize the added vertex (only user-defined fields
beyond sizeof(CvGraphVtx) are copied)

• inserted_vertex – Optional output argument. If not NULL , the address of the new vertex is
written here.

The function adds a vertex to the graph and returns the vertex index.

GraphEdgeIdx

int cvGraphEdgeIdx(CvGraph* graph, CvGraphEdge* edge)
Returns the index of a graph edge.

Parameters

• graph – Graph

• edge – Pointer to the graph edge

The function returns the index of a graph edge.

GraphRemoveEdge

void cvGraphRemoveEdge(CvGraph* graph, int start_idx, int end_idx)
Removes an edge from a graph.

Parameters

• graph – Graph

• start_idx – Index of the starting vertex of the edge

• end_idx – Index of the ending vertex of the edge. For an unoriented graph, the order of the
vertex parameters does not matter.

The function removes the edge connecting two specified vertices. If the vertices are not connected [in that order], the
function does nothing.

1.3. Dynamic Structures 81

The OpenCV 1.x C Reference Manual, Release 2.3

GraphRemoveEdgeByPtr

void cvGraphRemoveEdgeByPtr(CvGraph* graph, CvGraphVtx* start_vtx, CvGraphVtx* end_vtx)
Removes an edge from a graph by using its pointer.

Parameters

• graph – Graph

• start_vtx – Pointer to the starting vertex of the edge

• end_vtx – Pointer to the ending vertex of the edge. For an unoriented graph, the order of
the vertex parameters does not matter.

The function removes the edge connecting two specified vertices. If the vertices are not connected [in that order], the
function does nothing.

GraphRemoveVtx

int cvGraphRemoveVtx(CvGraph* graph, int index)
Removes a vertex from a graph.

Parameters

• graph – Graph

• vtx_idx – Index of the removed vertex

The function removes a vertex from a graph together with all the edges incident to it. The function reports an error if
the input vertex does not belong to the graph. The return value is the number of edges deleted, or -1 if the vertex does
not belong to the graph.

GraphRemoveVtxByPtr

int cvGraphRemoveVtxByPtr(CvGraph* graph, CvGraphVtx* vtx)
Removes a vertex from a graph by using its pointer.

Parameters

• graph – Graph

• vtx – Pointer to the removed vertex

The function removes a vertex from the graph by using its pointer together with all the edges incident to it. The
function reports an error if the vertex does not belong to the graph. The return value is the number of edges deleted,
or -1 if the vertex does not belong to the graph.

GraphVtxDegree

int cvGraphVtxDegree(const CvGraph* graph, int vtxIdx)
Counts the number of edges indicent to the vertex.

Parameters

• graph – Graph

• vtxIdx – Index of the graph vertex

82 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

The function returns the number of edges incident to the specified vertex, both incoming and outgoing. To count the
edges, the following code is used:

CvGraphEdge* edge = vertex->first; int count = 0;
while(edge)
{

edge = CV_NEXT_GRAPH_EDGE(edge, vertex);
count++;

}

The macro CV_NEXT_GRAPH_EDGE(edge, vertex) returns the edge incident to vertex that follows after
edge .

GraphVtxDegreeByPtr

int cvGraphVtxDegreeByPtr(const CvGraph* graph, const CvGraphVtx* vtx)
Finds an edge in a graph.

Parameters

• graph – Graph

• vtx – Pointer to the graph vertex

The function returns the number of edges incident to the specified vertex, both incoming and outcoming.

GraphVtxIdx

int cvGraphVtxIdx(CvGraph* graph, CvGraphVtx* vtx)
Returns the index of a graph vertex.

Parameters

• graph – Graph

• vtx – Pointer to the graph vertex

The function returns the index of a graph vertex.

InitTreeNodeIterator

void cvInitTreeNodeIterator(CvTreeNodeIterator* tree_iterator, const void* first, int max_level)
Initializes the tree node iterator.

Parameters

• tree_iterator – Tree iterator initialized by the function

• first – The initial node to start traversing from

• max_level – The maximal level of the tree (first node assumed to be at the first level) to
traverse up to. For example, 1 means that only nodes at the same level as first should be
visited, 2 means that the nodes on the same level as first and their direct children should
be visited, and so forth.

The function initializes the tree iterator. The tree is traversed in depth-first order.

1.3. Dynamic Structures 83

The OpenCV 1.x C Reference Manual, Release 2.3

InsertNodeIntoTree

void cvInsertNodeIntoTree(void* node, void* parent, void* frame)
Adds a new node to a tree.

Parameters

• node – The inserted node

• parent – The parent node that is already in the tree

• frame – The top level node. If parent and frame are the same, the v_prev field of
node is set to NULL rather than parent .

The function adds another node into tree. The function does not allocate any memory, it can only modify links of the
tree nodes.

MakeSeqHeaderForArray

CvSeq* cvMakeSeqHeaderForArray(int seq_type, int header_size, int elem_size, void* elements, int to-
tal, CvSeq* seq, CvSeqBlock* block)

Constructs a sequence header for an array.

Parameters

• seq_type – Type of the created sequence

• header_size – Size of the header of the sequence. Parameter sequence must point to the
structure of that size or greater

• elem_size – Size of the sequence elements

• elements – Elements that will form a sequence

• total – Total number of elements in the sequence. The number of array elements must be
equal to the value of this parameter.

• seq – Pointer to the local variable that is used as the sequence header

• block – Pointer to the local variable that is the header of the single sequence block

The function initializes a sequence header for an array. The sequence header as well as the sequence block are allocated
by the user (for example, on stack). No data is copied by the function. The resultant sequence will consists of a single
block and have NULL storage pointer; thus, it is possible to read its elements, but the attempts to add elements to the
sequence will raise an error in most cases.

MemStorageAlloc

void* cvMemStorageAlloc(CvMemStorage* storage, size_t size)
Allocates a memory buffer in a storage block.

Parameters

• storage – Memory storage

• size – Buffer size

The function allocates a memory buffer in a storage block. The buffer size must not exceed the storage block size,
otherwise a runtime error is raised. The buffer address is aligned by CV_STRUCT_ALIGN=sizeof(double) (for
the moment) bytes.

84 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

MemStorageAllocString

CvString cvMemStorageAllocString(CvMemStorage* storage, const char* ptr, int len=-1)
Allocates a text string in a storage block.

typedef struct CvString
{

int len;
char* ptr;

}
CvString;

param storage Memory storage

param ptr The string

param len Length of the string (not counting the ending NUL) . If the parameter is negative,
the function computes the length.

The function creates copy of the string in memory storage. It returns the structure that contains user-passed or com-
puted length of the string and pointer to the copied string.

NextGraphItem

int cvNextGraphItem(CvGraphScanner* scanner)
Executes one or more steps of the graph traversal procedure.

Parameters

• scanner – Graph traversal state. It is updated by this function.

The function traverses through the graph until an event of interest to the user (that is, an event, specified in the mask
in the CreateGraphScanner call) is met or the traversal is completed. In the first case, it returns one of the events
listed in the description of the mask parameter above and with the next call it resumes the traversal. In the latter
case, it returns CV_GRAPH_OVER (-1). When the event is CV_GRAPH_VERTEX , CV_GRAPH_BACKTRACKING
, or CV_GRAPH_NEW_TREE , the currently observed vertex is stored in scanner-:math:‘>‘vtx . And if the
event is edge-related, the edge itself is stored at scanner-:math:‘>‘edge , the previously visited vertex - at
scanner-:math:‘>‘vtx and the other ending vertex of the edge - at scanner-:math:‘>‘dst .

NextTreeNode

void* cvNextTreeNode(CvTreeNodeIterator* tree_iterator)
Returns the currently observed node and moves the iterator toward the next node.

Parameters

• tree_iterator – Tree iterator initialized by the function

The function returns the currently observed node and then updates the iterator - moving it toward the next node. In
other words, the function behavior is similar to the *p++ expression on a typical C pointer or C++ collection iterator.
The function returns NULL if there are no more nodes.

PrevTreeNode

void* cvPrevTreeNode(CvTreeNodeIterator* tree_iterator)
Returns the currently observed node and moves the iterator toward the previous node.

1.3. Dynamic Structures 85

The OpenCV 1.x C Reference Manual, Release 2.3

Parameters

• tree_iterator – Tree iterator initialized by the function

The function returns the currently observed node and then updates the iterator - moving it toward the previous node. In
other words, the function behavior is similar to the *p-- expression on a typical C pointer or C++ collection iterator.
The function returns NULL if there are no more nodes.

ReleaseGraphScanner

void cvReleaseGraphScanner(CvGraphScanner** scanner)
Completes the graph traversal procedure.

Parameters

• scanner – Double pointer to graph traverser

The function completes the graph traversal procedure and releases the traverser state.

ReleaseMemStorage

void cvReleaseMemStorage(CvMemStorage** storage)
Releases memory storage.

Parameters

• storage – Pointer to the released storage

The function deallocates all storage memory blocks or returns them to the parent, if any. Then it deallocates the storage
header and clears the pointer to the storage. All child storage associated with a given parent storage block must be
released before the parent storage block is released.

RestoreMemStoragePos

void cvRestoreMemStoragePos(CvMemStorage* storage, CvMemStoragePos* pos)
Restores memory storage position.

Parameters

• storage – Memory storage

• pos – New storage top position

The function restores the position of the storage top from the parameter pos . This function and the function
cvClearMemStorage are the only methods to release memory occupied in memory blocks. Note again that there
is no way to free memory in the middle of an occupied portion of a storage block.

SaveMemStoragePos

void cvSaveMemStoragePos(const CvMemStorage* storage, CvMemStoragePos* pos)
Saves memory storage position.

Parameters

• storage – Memory storage

• pos – The output position of the storage top

86 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

The function saves the current position of the storage top to the parameter pos . The function
cvRestoreMemStoragePos can further retrieve this position.

SeqElemIdx

int cvSeqElemIdx(const CvSeq* seq, const void* element, CvSeqBlock** block=NULL)
Returns the index of a specific sequence element.

Parameters

• seq – Sequence

• element – Pointer to the element within the sequence

• block – Optional argument. If the pointer is not NULL , the address of the sequence block
that contains the element is stored in this location.

The function returns the index of a sequence element or a negative number if the element is not found.

SeqInsert

char* cvSeqInsert(CvSeq* seq, int beforeIndex, void* element=NULL)
Inserts an element in the middle of a sequence.

Parameters

• seq – Sequence

• beforeIndex – Index before which the element is inserted. Inserting before 0 (the min-
imal allowed value of the parameter) is equal to SeqPushFront and inserting before
seq->total (the maximal allowed value of the parameter) is equal to SeqPush .

• element – Inserted element

The function shifts the sequence elements from the inserted position to the nearest end of the sequence and copies the
element content there if the pointer is not NULL. The function returns a pointer to the inserted element.

SeqInsertSlice

void cvSeqInsertSlice(CvSeq* seq, int beforeIndex, const CvArr* fromArr)
Inserts an array in the middle of a sequence.

Parameters

• seq – Sequence

• beforeIndex – Index before which the array is inserted

• fromArr – The array to take elements from

The function inserts all fromArr array elements at the specified position of the sequence. The array fromArr can
be a matrix or another sequence.

SeqInvert

void cvSeqInvert(CvSeq* seq)
Reverses the order of sequence elements.

1.3. Dynamic Structures 87

The OpenCV 1.x C Reference Manual, Release 2.3

Parameters

• seq – Sequence

The function reverses the sequence in-place - the first element becomes the last one, the last element becomes the first
one and so forth.

SeqPop

void cvSeqPop(CvSeq* seq, void* element=NULL)
Removes an element from the end of a sequence.

Parameters

• seq – Sequence

• element – Optional parameter . If the pointer is not zero, the function copies the removed
element to this location.

The function removes an element from a sequence. The function reports an error if the sequence is already empty. The
function has O(1) complexity.

SeqPopFront

void cvSeqPopFront(CvSeq* seq, void* element=NULL)
Removes an element from the beginning of a sequence.

Parameters

• seq – Sequence

• element – Optional parameter. If the pointer is not zero, the function copies the removed
element to this location.

The function removes an element from the beginning of a sequence. The function reports an error if the sequence is
already empty. The function has O(1) complexity.

SeqPopMulti

void cvSeqPopMulti(CvSeq* seq, void* elements, int count, int in_front=0)
Removes several elements from either end of a sequence.

Parameters

• seq – Sequence

• elements – Removed elements

• count – Number of elements to pop

• in_front – The flags specifying which end of the modified sequence.

– CV_BACK the elements are added to the end of the sequence

– CV_FRONT the elements are added to the beginning of the sequence

The function removes several elements from either end of the sequence. If the number of the elements to be removed
exceeds the total number of elements in the sequence, the function removes as many elements as possible.

88 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

SeqPush

char* cvSeqPush(CvSeq* seq, void* element=NULL)
Adds an element to the end of a sequence.

Parameters

• seq – Sequence

• element – Added element

The function adds an element to the end of a sequence and returns a pointer to the allocated element. If the input
element is NULL, the function simply allocates a space for one more element.

The following code demonstrates how to create a new sequence using this function:

CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* seq = cvCreateSeq(CV_32SC1, /* sequence of integer elements */

sizeof(CvSeq), /* header size - no extra fields */
sizeof(int), /* element size */
storage /* the container storage */);

int i;
for(i = 0; i < 100; i++)
{

int* added = (int*)cvSeqPush(seq, &i);
printf("

}

...
/* release memory storage in the end */
cvReleaseMemStorage(&storage);

The function has O(1) complexity, but there is a faster method for writing large sequences (see StartWriteSeq and
related functions).

SeqPushFront

char* cvSeqPushFront(CvSeq* seq, void* element=NULL)
Adds an element to the beginning of a sequence.

Parameters

• seq – Sequence

• element – Added element

The function is similar to SeqPush but it adds the new element to the beginning of the sequence. The function has
O(1) complexity.

SeqPushMulti

void cvSeqPushMulti(CvSeq* seq, void* elements, int count, int in_front=0)
Pushes several elements to either end of a sequence.

Parameters

• seq – Sequence

• elements – Added elements

1.3. Dynamic Structures 89

The OpenCV 1.x C Reference Manual, Release 2.3

• count – Number of elements to push

• in_front – The flags specifying which end of the modified sequence.

– CV_BACK the elements are added to the end of the sequence

– CV_FRONT the elements are added to the beginning of the sequence

The function adds several elements to either end of a sequence. The elements are added to the sequence in the same
order as they are arranged in the input array but they can fall into different sequence blocks.

SeqRemove

void cvSeqRemove(CvSeq* seq, int index)
Removes an element from the middle of a sequence.

Parameters

• seq – Sequence

• index – Index of removed element

The function removes elements with the given index. If the index is out of range the function reports an error. An
attempt to remove an element from an empty sequence is a special case of this situation. The function removes an
element by shifting the sequence elements between the nearest end of the sequence and the index -th position, not
counting the latter.

SeqRemoveSlice

void cvSeqRemoveSlice(CvSeq* seq, CvSlice slice)
Removes a sequence slice.

Parameters

• seq – Sequence

• slice – The part of the sequence to remove

The function removes a slice from the sequence.

SeqSearch

char* cvSeqSearch(CvSeq* seq, const void* elem, CvCmpFunc func, int is_sorted, int* elem_idx,
void* userdata=NULL)

Searches for an element in a sequence.

Parameters

• seq – The sequence

• elem – The element to look for

• func – The comparison function that returns negative, zero or positive value depending on
the relationships among the elements (see also SeqSort)

• is_sorted – Whether the sequence is sorted or not

• elem_idx – Output parameter; index of the found element

• userdata – The user parameter passed to the compasion function; helps to avoid global
variables in some cases

90 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

/* a < b ? -1 : a > b ? 1 : 0 */
typedef int (CV_CDECL* CvCmpFunc)(const void* a, const void* b, void* userdata);

The function searches for the element in the sequence. If the sequence is sorted, a binary O(log(N)) search is used;
otherwise, a simple linear search is used. If the element is not found, the function returns a NULL pointer and the
index is set to the number of sequence elements if a linear search is used, or to the smallest index i, seq(i)>elem
.

SeqSlice

CvSeq* cvSeqSlice(const CvSeq* seq, CvSlice slice, CvMemStorage* storage=NULL, int copy_data=0)
Makes a separate header for a sequence slice.

Parameters

• seq – Sequence

• slice – The part of the sequence to be extracted

• storage – The destination storage block to hold the new sequence header and the copied
data, if any. If it is NULL, the function uses the storage block containing the input sequence.

• copy_data – The flag that indicates whether to copy the elements of the extracted slice (
copy_data!=0) or not (copy_data=0)

The function creates a sequence that represents the specified slice of the input sequence. The new sequence either
shares the elements with the original sequence or has its own copy of the elements. So if one needs to process a part
of sequence but the processing function does not have a slice parameter, the required sub-sequence may be extracted
using this function.

SeqSort

void cvSeqSort(CvSeq* seq, CvCmpFunc func, void* userdata=NULL)
Sorts sequence element using the specified comparison function.

/* a < b ? -1 : a > b ? 1 : 0 */
typedef int (CV_CDECL* CvCmpFunc)(const void* a, const void* b, void* userdata);

param seq The sequence to sort

param func The comparison function that returns a negative, zero, or positive value depend-
ing on the relationships among the elements (see the above declaration and the example
below) - a similar function is used by qsort from C runline except that in the latter,
userdata is not used

param userdata The user parameter passed to the compasion function; helps to avoid global
variables in some cases

The function sorts the sequence in-place using the specified criteria. Below is an example of using this function:

/* Sort 2d points in top-to-bottom left-to-right order */
static int cmp_func(const void* _a, const void* _b, void* userdata)
{

CvPoint* a = (CvPoint*)_a;
CvPoint* b = (CvPoint*)_b;
int y_diff = a->y - b->y;
int x_diff = a->x - b->x;
return y_diff ? y_diff : x_diff;

1.3. Dynamic Structures 91

The OpenCV 1.x C Reference Manual, Release 2.3

}

...

CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* seq = cvCreateSeq(CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), storage);
int i;

for(i = 0; i < 10; i++)
{

CvPoint pt;
pt.x = rand()
pt.y = rand()
cvSeqPush(seq, &pt);

}

cvSeqSort(seq, cmp_func, 0 /* userdata is not used here */);

/* print out the sorted sequence */
for(i = 0; i < seq->total; i++)
{

CvPoint* pt = (CvPoint*)cvSeqElem(seq, i);
printf("(

}

cvReleaseMemStorage(&storage);

SetAdd

int cvSetAdd(CvSet* setHeader, CvSetElem* elem=NULL, CvSetElem** inserted_elem=NULL)
Occupies a node in the set.

Parameters

• setHeader – Set

• elem – Optional input argument, an inserted element. If not NULL, the function copies the
data to the allocated node (the MSB of the first integer field is cleared after copying).

• inserted_elem – Optional output argument; the pointer to the allocated cell

The function allocates a new node, optionally copies input element data to it, and returns the pointer and the index
to the node. The index value is taken from the lower bits of the flags field of the node. The function has O(1)
complexity; however, there exists a faster function for allocating set nodes (see SetNew).

SetNew

CvSetElem* cvSetNew(CvSet* setHeader)
Adds an element to a set (fast variant).

Parameters

• setHeader – Set

The function is an inline lightweight variant of SetAdd . It occupies a new node and returns a pointer to it rather than
an index.

92 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

SetRemove

void cvSetRemove(CvSet* setHeader, int index)
Removes an element from a set.

Parameters

• setHeader – Set

• index – Index of the removed element

The function removes an element with a specified index from the set. If the node at the specified location is not
occupied, the function does nothing. The function has O(1) complexity; however, SetRemoveByPtr provides a quicker
way to remove a set element if it is located already.

SetRemoveByPtr

void cvSetRemoveByPtr(CvSet* setHeader, void* elem)
Removes a set element based on its pointer.

Parameters

• setHeader – Set

• elem – Removed element

The function is an inline lightweight variant of SetRemove that requires an element pointer. The function does not
check whether the node is occupied or not - the user should take care of that.

SetSeqBlockSize

void cvSetSeqBlockSize(CvSeq* seq, int deltaElems)
Sets up sequence block size.

Parameters

• seq – Sequence

• deltaElems – Desirable sequence block size for elements

The function affects memory allocation granularity. When the free space in the sequence buffers has run out, the func-
tion allocates the space for deltaElems sequence elements. If this block immediately follows the one previously
allocated, the two blocks are concatenated; otherwise, a new sequence block is created. Therefore, the bigger the
parameter is, the lower the possible sequence fragmentation, but the more space in the storage block is wasted. When
the sequence is created, the parameter deltaElems is set to the default value of about 1K. The function can be called
any time after the sequence is created and affects future allocations. The function can modify the passed value of the
parameter to meet memory storage constraints.

SetSeqReaderPos

void cvSetSeqReaderPos(CvSeqReader* reader, int index, int is_relative=0)
Moves the reader to the specified position.

Parameters

• reader – Reader state

• index – The destination position. If the positioning mode is used (see the next parameter),
the actual position will be index mod reader->seq->total .

1.3. Dynamic Structures 93

The OpenCV 1.x C Reference Manual, Release 2.3

• is_relative – If it is not zero, then index is a relative to the current position

The function moves the read position to an absolute position or relative to the current position.

StartAppendToSeq

void cvStartAppendToSeq(CvSeq* seq, CvSeqWriter* writer)
Initializes the process of writing data to a sequence.

Parameters

• seq – Pointer to the sequence

• writer – Writer state; initialized by the function

The function initializes the process of writing data to a sequence. Written elements are added to the end of the se-
quence by using the CV_WRITE_SEQ_ELEM(written_elem, writer) macro. Note that during the writing
process, other operations on the sequence may yield an incorrect result or even corrupt the sequence (see description
of FlushSeqWriter , which helps to avoid some of these problems).

StartReadSeq

void cvStartReadSeq(const CvSeq* seq, CvSeqReader* reader, int reverse=0)
Initializes the process of sequential reading from a sequence.

Parameters

• seq – Sequence

• reader – Reader state; initialized by the function

• reverse – Determines the direction of the sequence traversal. If reverse is 0, the reader
is positioned at the first sequence element; otherwise it is positioned at the last element.

The function initializes the reader state. After that, all the sequence elements from the first one down to the last
one can be read by subsequent calls of the macro CV_READ_SEQ_ELEM(read_elem, reader) in the case
of forward reading and by using CV_REV_READ_SEQ_ELEM(read_elem, reader) in the case of reverse
reading. Both macros put the sequence element to read_elem and move the reading pointer toward the next element.
A circular structure of sequence blocks is used for the reading process, that is, after the last element has been read
by the macro CV_READ_SEQ_ELEM , the first element is read when the macro is called again. The same applies to
CV_REV_READ_SEQ_ELEM . There is no function to finish the reading process, since it neither changes the sequence
nor creates any temporary buffers. The reader field ptr points to the current element of the sequence that is to be read
next. The code below demonstrates how to use the sequence writer and reader.

CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* seq = cvCreateSeq(CV_32SC1, sizeof(CvSeq), sizeof(int), storage);
CvSeqWriter writer;
CvSeqReader reader;
int i;

cvStartAppendToSeq(seq, &writer);
for(i = 0; i < 10; i++)
{

int val = rand()
CV_WRITE_SEQ_ELEM(val, writer);
printf("

}
cvEndWriteSeq(&writer);

94 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

cvStartReadSeq(seq, &reader, 0);
for(i = 0; i < seq->total; i++)
{

int val;
#if 1

CV_READ_SEQ_ELEM(val, reader);
printf("

#else /* alternative way, that is prefferable if sequence elements are large,
or their size/type is unknown at compile time */

printf("
CV_NEXT_SEQ_ELEM(seq->elem_size, reader);

#endif
}
...

cvReleaseStorage(&storage);

StartWriteSeq

void cvStartWriteSeq(int seq_flags, int header_size, int elem_size, CvMemStorage* storage, CvSe-
qWriter* writer)

Creates a new sequence and initializes a writer for it.

Parameters

• seq_flags – Flags of the created sequence. If the sequence is not passed to any function
working with a specific type of sequences, the sequence value may be equal to 0; otherwise
the appropriate type must be selected from the list of predefined sequence types.

• header_size – Size of the sequence header. The parameter value may not be less than
sizeof(CvSeq) . If a certain type or extension is specified, it must fit within the base
type header.

• elem_size – Size of the sequence elements in bytes; must be consistent with the
sequence type. For example, if a sequence of points is created (element type
CV_SEQ_ELTYPE_POINT), then the parameter elem_size must be equal to
sizeof(CvPoint) .

• storage – Sequence location

• writer – Writer state; initialized by the function

The function is a combination of CreateSeq and StartAppendToSeq . The pointer to the created sequence is stored at
writer->seq and is also returned by the EndWriteSeq function that should be called at the end.

TreeToNodeSeq

CvSeq* cvTreeToNodeSeq(const void* first, int header_size, CvMemStorage* storage)
Gathers all node pointers to a single sequence.

Parameters

• first – The initial tree node

• header_size – Header size of the created sequence (sizeof(CvSeq) is the most frequently
used value)

• storage – Container for the sequence

1.3. Dynamic Structures 95

The OpenCV 1.x C Reference Manual, Release 2.3

The function puts pointers of all nodes reacheable from first into a single sequence. The pointers are written
sequentially in the depth-first order.

1.4 Drawing Functions

Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be rendered with
antialiasing (implemented only for 8-bit images for now). All the functions include the parameter color that uses a rgb
value (that may be constructed with CV_RGB macro or the cvScalar() function) for color images and brightness
for grayscale images. For color images the order channel is normally Blue, Green, Red , this is what imshow() ,
imread() and imwrite() expect , so if you form a color using cvScalar() , it should look like:

cvScalar(blue_component, green_component, red_component[, alpha_component])

If you are using your own image rendering and I/O functions, you can use any channel ordering, the drawing functions
process each channel independently and do not depend on the channel order or even on the color space used. The
whole image can be converted from BGR to RGB or to a different color space using cvtColor() .

If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also, many drawing
functions can handle pixel coordinates specified with sub-pixel accuracy, that is, the coordinates can be passed as
fixed-point numbers, encoded as integers. The number of fractional bits is specified by the shift parameter and the
real point coordinates are calculated as Point(x, y)→ Point2f(x∗2−shift, y∗2−shift) . This feature is especially
effective wehn rendering antialiased shapes.

Also, note that the functions do not support alpha-transparency - when the target image is 4-channnel, then the
color[3] is simply copied to the repainted pixels. Thus, if you want to paint semi-transparent shapes, you can
paint them in a separate buffer and then blend it with the main image.

Circle

void cvCircle(CvArr* img, CvPoint center, int radius, CvScalar color, int thickness=1, int lineType=8,
int shift=0)

Draws a circle.

Parameters

• img – Image where the circle is drawn

• center – Center of the circle

• radius – Radius of the circle

• color – Circle color

• thickness – Thickness of the circle outline if positive, otherwise this indicates that a filled
circle is to be drawn

• lineType – Type of the circle boundary, see Line description

• shift – Number of fractional bits in the center coordinates and radius value

The function draws a simple or filled circle with a given center and radius.

ClipLine

int cvClipLine(CvSize imgSize, CvPoint* pt1, CvPoint* pt2)
Clips the line against the image rectangle.

96 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

Parameters

• imgSize – Size of the image

• pt1 – First ending point of the line segment. It is modified by the function.

• pt2 – Second ending point of the line segment. It is modified by the function.

The function calculates a part of the line segment which is entirely within the image. It returns 0 if the line segment is
completely outside the image and 1 otherwise.

DrawContours

void cvDrawContours(CvArr *img, CvSeq* contour, CvScalar external_color, CvScalar hole_color,
int max_level, int thickness=1, int lineType=8)

Draws contour outlines or interiors in an image.

Parameters

• img – Image where the contours are to be drawn. As with any other drawing function, the
contours are clipped with the ROI.

• contour – Pointer to the first contour

• external_color – Color of the external contours

• hole_color – Color of internal contours (holes)

• max_level – Maximal level for drawn contours. If 0, only contour is drawn. If 1, the
contour and all contours following it on the same level are drawn. If 2, all contours follow-
ing and all contours one level below the contours are drawn, and so forth. If the value is
negative, the function does not draw the contours following after contour but draws the
child contours of contour up to the |max_level| − 1 level.

• thickness – Thickness of lines the contours are drawn with. If it is negative (For example,
=CV _ FILLED), the contour interiors are drawn.

• lineType – Type of the contour segments, see Line description

The function draws contour outlines in the image if thickness ≥ 0 or fills the area bounded by the contours if
thickness < 0 .

Example: Connected component detection via contour functions

#include "cv.h"
#include "highgui.h"

int main(int argc, char** argv)
{

IplImage* src;
// the first command line parameter must be file name of binary
// (black-n-white) image
if(argc == 2 && (src=cvLoadImage(argv[1], 0))!= 0)
{

IplImage* dst = cvCreateImage(cvGetSize(src), 8, 3);
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* contour = 0;

cvThreshold(src, src, 1, 255, CV_THRESH_BINARY);
cvNamedWindow("Source", 1);
cvShowImage("Source", src);

1.4. Drawing Functions 97

The OpenCV 1.x C Reference Manual, Release 2.3

cvFindContours(src, storage, &contour, sizeof(CvContour),
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);

cvZero(dst);

for(; contour != 0; contour = contour->h_next)
{

CvScalar color = CV_RGB(rand()&255, rand()&255, rand()&255);
/* replace CV_FILLED with 1 to see the outlines */
cvDrawContours(dst, contour, color, color, -1, CV_FILLED, 8);

}

cvNamedWindow("Components", 1);
cvShowImage("Components", dst);
cvWaitKey(0);

}
}

Ellipse

void cvEllipse(CvArr* img, CvPoint center, CvSize axes, double angle, double start_angle, dou-
ble end_angle, CvScalar color, int thickness=1, int lineType=8, int shift=0)

Draws a simple or thick elliptic arc or an fills ellipse sector.

Parameters

• img – The image

• center – Center of the ellipse

• axes – Length of the ellipse axes

• angle – Rotation angle

• start_angle – Starting angle of the elliptic arc

• end_angle – Ending angle of the elliptic arc.

• color – Ellipse color

• thickness – Thickness of the ellipse arc outline if positive, otherwise this indicates that a
filled ellipse sector is to be drawn

• lineType – Type of the ellipse boundary, see Line description

• shift – Number of fractional bits in the center coordinates and axes’ values

The function draws a simple or thick elliptic arc or fills an ellipse sector. The arc is clipped by the ROI rectangle. A
piecewise-linear approximation is used for antialiased arcs and thick arcs. All the angles are given in degrees. The
picture below explains the meaning of the parameters.

Parameters of Elliptic Arc

98 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

EllipseBox

void cvEllipseBox(CvArr* img, CvBox2D box, CvScalar color, int thickness=1, int lineType=8,
int shift=0)

Draws a simple or thick elliptic arc or fills an ellipse sector.

Parameters

• img – Image

• box – The enclosing box of the ellipse drawn

• thickness – Thickness of the ellipse boundary

• lineType – Type of the ellipse boundary, see Line description

• shift – Number of fractional bits in the box vertex coordinates

The function draws a simple or thick ellipse outline, or fills an ellipse. The functions provides a convenient way to
draw an ellipse approximating some shape; that is what CamShift and FitEllipse do. The ellipse drawn is clipped by
ROI rectangle. A piecewise-linear approximation is used for antialiased arcs and thick arcs.

FillConvexPoly

void cvFillConvexPoly(CvArr* img, CvPoint* pts, int npts, CvScalar color, int lineType=8, int shift=0)
Fills a convex polygon.

Parameters

• img – Image

• pts – Array of pointers to a single polygon

• npts – Polygon vertex counter

• color – Polygon color

1.4. Drawing Functions 99

The OpenCV 1.x C Reference Manual, Release 2.3

• lineType – Type of the polygon boundaries, see Line description

• shift – Number of fractional bits in the vertex coordinates

The function fills a convex polygon’s interior. This function is much faster than the function cvFillPoly and can
fill not only convex polygons but any monotonic polygon, i.e., a polygon whose contour intersects every horizontal
line (scan line) twice at the most.

FillPoly

void cvFillPoly(CvArr* img, CvPoint** pts, int* npts, int contours, CvScalar color, int lineType=8,
int shift=0)

Fills a polygon’s interior.

Parameters

• img – Image

• pts – Array of pointers to polygons

• npts – Array of polygon vertex counters

• contours – Number of contours that bind the filled region

• color – Polygon color

• lineType – Type of the polygon boundaries, see Line description

• shift – Number of fractional bits in the vertex coordinates

The function fills an area bounded by several polygonal contours. The function fills complex areas, for example, areas
with holes, contour self-intersection, and so forth.

GetTextSize

void cvGetTextSize(const char* textString, const CvFont* font, CvSize* textSize, int* baseline)
Retrieves the width and height of a text string.

Parameters

• font – Pointer to the font structure

• textString – Input string

• textSize – Resultant size of the text string. Height of the text does not include the height of
character parts that are below the baseline.

• baseline – y-coordinate of the baseline relative to the bottom-most text point

The function calculates the dimensions of a rectangle to enclose a text string when a specified font is used.

InitFont

void cvInitFont(CvFont* font, int fontFace, double hscale, double vscale, double shear=0, int thickness=1,
int lineType=8)

Initializes font structure.

Parameters

• font – Pointer to the font structure initialized by the function

100 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

• fontFace – Font name identifier. Only a subset of Hershey fonts
http://sources.isc.org/utils/misc/hershey-font.txt are supported now:

– CV_FONT_HERSHEY_SIMPLEX normal size sans-serif font

– CV_FONT_HERSHEY_PLAIN small size sans-serif font

– CV_FONT_HERSHEY_DUPLEX normal size sans-serif font (more complex than
CV_FONT_HERSHEY_SIMPLEX)

– CV_FONT_HERSHEY_COMPLEX normal size serif font

– CV_FONT_HERSHEY_TRIPLEX normal size serif font (more complex than
CV_FONT_HERSHEY_COMPLEX)

– CV_FONT_HERSHEY_COMPLEX_SMALL smaller version of
CV_FONT_HERSHEY_COMPLEX

– CV_FONT_HERSHEY_SCRIPT_SIMPLEX hand-writing style font

– CV_FONT_HERSHEY_SCRIPT_COMPLEX more complex variant of
CV_FONT_HERSHEY_SCRIPT_SIMPLEX

The parameter can be composited from one of the values above and an optional
CV_FONT_ITALIC flag, which indicates italic or oblique font.

• hscale – Horizontal scale. If equal to 1.0f , the characters have the original width depend-
ing on the font type. If equal to 0.5f , the characters are of half the original width.

• vscale – Vertical scale. If equal to 1.0f , the characters have the original height depending
on the font type. If equal to 0.5f , the characters are of half the original height.

• shear – Approximate tangent of the character slope relative to the vertical line. A zero value
means a non-italic font, 1.0f means about a 45 degree slope, etc.

• thickness – Thickness of the text strokes

• lineType – Type of the strokes, see Line description

The function initializes the font structure that can be passed to text rendering functions.

InitLineIterator

int cvInitLineIterator(const CvArr* image, CvPoint pt1, CvPoint pt2, CvLineIterator* line_iterator,
int connectivity=8, int left_to_right=0)

Initializes the line iterator.

Parameters

• image – Image to sample the line from

• pt1 – First ending point of the line segment

• pt2 – Second ending point of the line segment

• line_iterator – Pointer to the line iterator state structure

• connectivity – The scanned line connectivity, 4 or 8.

• left_to_right – If (left_to_right = 0) then the line is scanned in the specified order,
from pt1 to pt2 . If (left_to_right 6= 0) the line is scanned from left-most point to
right-most.

1.4. Drawing Functions 101

http://sources.isc.org/utils/misc/hershey-font.txt

The OpenCV 1.x C Reference Manual, Release 2.3

The function initializes the line iterator and returns the number of pixels between the two end points. Both points must
be inside the image. After the iterator has been initialized, all the points on the raster line that connects the two ending
points may be retrieved by successive calls of CV_NEXT_LINE_POINT point. The points on the line are calculated
one by one using a 4-connected or 8-connected Bresenham algorithm.

Example: Using line iterator to calculate the sum of pixel values along the color line.

CvScalar sum_line_pixels(IplImage* image, CvPoint pt1, CvPoint pt2)
{

CvLineIterator iterator;
int blue_sum = 0, green_sum = 0, red_sum = 0;
int count = cvInitLineIterator(image, pt1, pt2, &iterator, 8, 0);

for(int i = 0; i < count; i++){
blue_sum += iterator.ptr[0];
green_sum += iterator.ptr[1];
red_sum += iterator.ptr[2];
CV_NEXT_LINE_POINT(iterator);

/* print the pixel coordinates: demonstrates how to calculate the
coordinates */

{
int offset, x, y;
/* assume that ROI is not set, otherwise need to take it

into account. */
offset = iterator.ptr - (uchar*)(image->imageData);
y = offset/image->widthStep;
x = (offset - y*image->widthStep)/(3*sizeof(uchar)

/* size of pixel */);
printf("(
}

}
return cvScalar(blue_sum, green_sum, red_sum);

}

Line

void cvLine(CvArr* img, CvPoint pt1, CvPoint pt2, CvScalar color, int thickness=1, int lineType=8,
int shift=0)

Draws a line segment connecting two points.

Parameters

• img – The image

• pt1 – First point of the line segment

• pt2 – Second point of the line segment

• color – Line color

• thickness – Line thickness

• lineType – Type of the line:

– 8 (or omitted) 8-connected line.

– 4 4-connected line.

– CV_AA antialiased line.

• shift – Number of fractional bits in the point coordinates

102 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

The function draws the line segment between pt1 and pt2 points in the image. The line is clipped by the image or
ROI rectangle. For non-antialiased lines with integer coordinates the 8-connected or 4-connected Bresenham algorithm
is used. Thick lines are drawn with rounding endings. Antialiased lines are drawn using Gaussian filtering. To specify
the line color, the user may use the macro CV_RGB(r, g, b) .

PolyLine

void cvPolyLine(CvArr* img, CvPoint** pts, int* npts, int contours, int is_closed, CvScalar color, int thick-
ness=1, int lineType=8, int shift=0)

Draws simple or thick polygons.

Parameters

• pts – Array of pointers to polygons

• npts – Array of polygon vertex counters

• contours – Number of contours that bind the filled region

• img – Image

• is_closed – Indicates whether the polylines must be drawn closed. If closed, the function
draws the line from the last vertex of every contour to the first vertex.

• color – Polyline color

• thickness – Thickness of the polyline edges

• lineType – Type of the line segments, see Line description

• shift – Number of fractional bits in the vertex coordinates

The function draws single or multiple polygonal curves.

PutText

void cvPutText(CvArr* img, const char* text, CvPoint org, const CvFont* font, CvScalar color)
Draws a text string.

Parameters

• img – Input image

• text – String to print

• org – Coordinates of the bottom-left corner of the first letter

• font – Pointer to the font structure

• color – Text color

The function renders the text in the image with the specified font and color. The printed text is clipped by the ROI
rectangle. Symbols that do not belong to the specified font are replaced with the symbol for a rectangle.

Rectangle

void cvRectangle(CvArr* img, CvPoint pt1, CvPoint pt2, CvScalar color, int thickness=1, int lineType=8,
int shift=0)

Draws a simple, thick, or filled rectangle.

Parameters

1.4. Drawing Functions 103

The OpenCV 1.x C Reference Manual, Release 2.3

• img – Image

• pt1 – One of the rectangle’s vertices

• pt2 – Opposite rectangle vertex

• color – Line color (RGB) or brightness (grayscale image)

• thickness – Thickness of lines that make up the rectangle. Negative values, e.g., CV _
FILLED, cause the function to draw a filled rectangle.

• lineType – Type of the line, see Line description

• shift – Number of fractional bits in the point coordinates

The function draws a rectangle with two opposite corners pt1 and pt2 .

CV_RGB

#define CV_RGB(r, g, b) cvScalar((b), (g), (r))
Constructs a color value.

Parameters

• red – Red component

• grn – Green component

• blu – Blue component

1.5 XML/YAML Persistence

CvFileStorage

CvFileStorage

File Storage.

typedef struct CvFileStorage
{

... // hidden fields
} CvFileStorage;

The structure CvFileStorage is a “black box” representation of the file storage associated with a file on disk. Several
functions that are described below take CvFileStorage as inputs and allow theuser to save or to load hierarchical
collections that consist of scalar values, standard CXCore objects (such as matrices, sequences, graphs), and user-
defined objects.

CXCore can read and write data in XML (http://www.w3c.org/XML) or YAML (http://www.yaml.org) formats. Below
is an example of 3× 3 floating-point identity matrix A , stored in XML and YAML files using CXCore functions:

XML:

<?xml version="1.0">
<opencv_storage>
<A type_id="opencv-matrix">

<rows>3</rows>
<cols>3</cols>
<dt>f</dt>
<data>1. 0. 0. 0. 1. 0. 0. 0. 1.</data>

104 Chapter 1. core. The Core Functionality

http://www.w3c.org/XML
http://www.yaml.org

The OpenCV 1.x C Reference Manual, Release 2.3

</opencv_storage>

YAML:

A: !!opencv-matrix
rows: 3
cols: 3
dt: f
data: [1., 0., 0., 0., 1., 0., 0., 0., 1.]

As it can be seen from the examples, XML uses nested tags to represent hierarchy, while YAML uses indentation for
that purpose (similar to the Python programming language).

The same CXCore functions can read and write data in both formats; the particular format is determined by the
extension of the opened file, .xml for XML files and .yml or .yaml for YAML.

CvFileNode

CvFileNode

File Storage Node.

/* file node type */
#define CV_NODE_NONE 0
#define CV_NODE_INT 1
#define CV_NODE_INTEGER CV_NODE_INT
#define CV_NODE_REAL 2
#define CV_NODE_FLOAT CV_NODE_REAL
#define CV_NODE_STR 3
#define CV_NODE_STRING CV_NODE_STR
#define CV_NODE_REF 4 /* not used */
#define CV_NODE_SEQ 5
#define CV_NODE_MAP 6
#define CV_NODE_TYPE_MASK 7

/* optional flags */
#define CV_NODE_USER 16
#define CV_NODE_EMPTY 32
#define CV_NODE_NAMED 64

#define CV_NODE_TYPE(tag) ((tag) & CV_NODE_TYPE_MASK)

#define CV_NODE_IS_INT(tag) (CV_NODE_TYPE(tag) == CV_NODE_INT)
#define CV_NODE_IS_REAL(tag) (CV_NODE_TYPE(tag) == CV_NODE_REAL)
#define CV_NODE_IS_STRING(tag) (CV_NODE_TYPE(tag) == CV_NODE_STRING)
#define CV_NODE_IS_SEQ(tag) (CV_NODE_TYPE(tag) == CV_NODE_SEQ)
#define CV_NODE_IS_MAP(tag) (CV_NODE_TYPE(tag) == CV_NODE_MAP)
#define CV_NODE_IS_COLLECTION(tag) (CV_NODE_TYPE(tag) >= CV_NODE_SEQ)
#define CV_NODE_IS_FLOW(tag) (((tag) & CV_NODE_FLOW) != 0)
#define CV_NODE_IS_EMPTY(tag) (((tag) & CV_NODE_EMPTY) != 0)
#define CV_NODE_IS_USER(tag) (((tag) & CV_NODE_USER) != 0)
#define CV_NODE_HAS_NAME(tag) (((tag) & CV_NODE_NAMED) != 0)

#define CV_NODE_SEQ_SIMPLE 256
#define CV_NODE_SEQ_IS_SIMPLE(seq) (((seq)->flags & CV_NODE_SEQ_SIMPLE) != 0)

typedef struct CvString

1.5. XML/YAML Persistence 105

The OpenCV 1.x C Reference Manual, Release 2.3

{
int len;
char* ptr;

}
CvString;

/* all the keys (names) of elements in the readed file storage
are stored in the hash to speed up the lookup operations */

typedef struct CvStringHashNode
{

unsigned hashval;
CvString str;
struct CvStringHashNode* next;

}
CvStringHashNode;

/* basic element of the file storage - scalar or collection */
typedef struct CvFileNode
{

int tag;
struct CvTypeInfo* info; /* type information

(only for user-defined object, for others it is 0) */
union
{

double f; /* scalar floating-point number */
int i; /* scalar integer number */
CvString str; /* text string */
CvSeq* seq; /* sequence (ordered collection of file nodes) */
struct CvMap* map; /* map (collection of named file nodes) */

} data;
}
CvFileNode;

The structure is used only for retrieving data from file storage (i.e., for loading data from the file). When data is written
to a file, it is done sequentially, with minimal buffering. No data is stored in the file storage.

In opposite, when data is read from a file, the whole file is parsed and represented in memory as a tree. Every node
of the tree is represented by CvFileNode . The type of file node N can be retrieved as CV_NODE_TYPE(N->tag) .
Some file nodes (leaves) are scalars: text strings, integers, or floating-point numbers. Other file nodes are collections
of file nodes, which can be scalars or collections in their turn. There are two types of collections: sequences and maps
(we use YAML notation, however, the same is true for XML streams). Sequences (do not mix them with CvSeq)
are ordered collections of unnamed file nodes; maps are unordered collections of named file nodes. Thus, elements of
sequences are accessed by index (GetSeqElem), while elements of maps are accessed by name (GetFileNodeByName
). The table below describes the different types of file nodes:

Type CV_NODE_TYPE(node->tag) Value
Integer CV_NODE_INT node->data.i
Floating-point CV_NODE_REAL node->data.f
Text string CV_NODE_STR node->data.str.ptr
Sequence CV_NODE_SEQ node->data.seq
Map CV_NODE_MAP node->data.map (see below)

There is no need to access the map field directly (by the way, CvMap is a hidden structure). The elements of the map
can be retrieved with the GetFileNodeByName function that takes a pointer to the “map” file node.

A user (custom) object is an instance of either one of the standard CxCore types, such as CvMat , CvSeq etc., or any
type registered with RegisterTypeInfo . Such an object is initially represented in a file as a map (as shown in XML
and YAML example files above) after the file storage has been opened and parsed. Then the object can be decoded

106 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

(coverted to native representation) by request - when a user calls the Read or ReadByName functions.

CvAttrList

CvAttrList

List of attributes.

typedef struct CvAttrList
{

const char** attr; /* NULL-terminated array of (attribute_name,attribute_value) pairs */
struct CvAttrList* next; /* pointer to next chunk of the attributes list */

}
CvAttrList;

/* initializes CvAttrList structure */
inline CvAttrList cvAttrList(const char** attr=NULL, CvAttrList* next=NULL);

/* returns attribute value or 0 (NULL) if there is no such attribute */
const char* cvAttrValue(const CvAttrList* attr, const char* attr_name);

In the current implementation, attributes are used to pass extra parameters when writing user objects (see Write).
XML attributes inside tags are not supported, aside from the object type specification (type_id attribute).

CvTypeInfo

CvTypeInfo

Type information.

typedef int (CV_CDECL *CvIsInstanceFunc)(const void* structPtr);
typedef void (CV_CDECL *CvReleaseFunc)(void** structDblPtr);
typedef void* (CV_CDECL *CvReadFunc)(CvFileStorage* storage, CvFileNode* node);
typedef void (CV_CDECL *CvWriteFunc)(CvFileStorage* storage,

const char* name,
const void* structPtr,
CvAttrList attributes);

typedef void* (CV_CDECL *CvCloneFunc)(const void* structPtr);

typedef struct CvTypeInfo
{

int flags; /* not used */
int header_size; /* sizeof(CvTypeInfo) */
struct CvTypeInfo* prev; /* previous registered type in the list */
struct CvTypeInfo* next; /* next registered type in the list */
const char* type_name; /* type name, written to file storage */

/* methods */
CvIsInstanceFunc is_instance; /* checks if the passed object belongs to the type */
CvReleaseFunc release; /* releases object (memory etc.) */
CvReadFunc read; /* reads object from file storage */
CvWriteFunc write; /* writes object to file storage */
CvCloneFunc clone; /* creates a copy of the object */

}
CvTypeInfo;

1.5. XML/YAML Persistence 107

The OpenCV 1.x C Reference Manual, Release 2.3

The structure CvTypeInfo contains information about one of the standard or user-defined types. Instances of the type
may or may not contain a pointer to the corresponding CvTypeInfo structure. In any case, there is a way to find the type
info structure for a given object using the TypeOf function. Aternatively, type info can be found by type name using
FindType , which is used when an object is read from file storage. The user can register a new type with RegisterType
that adds the type information structure into the beginning of the type list. Thus, it is possible to create specialized
types from generic standard types and override the basic methods.

Clone

void* cvClone(const void* structPtr)
Makes a clone of an object.

Parameters

• structPtr – The object to clone

The function finds the type of a given object and calls clone with the passed object.

EndWriteStruct

void cvEndWriteStruct(CvFileStorage* fs)
Ends the writing of a structure.

Parameters

• fs – File storage

The function finishes the currently written structure.

FindType

CvTypeInfo* cvFindType(const char* typeName)
Finds a type by its name.

Parameters

• typeName – Type name

The function finds a registered type by its name. It returns NULL if there is no type with the specified name.

FirstType

CvTypeInfo* cvFirstType(void)
Returns the beginning of a type list.

The function returns the first type in the list of registered types. Navigation through the list can be done via the prev
and next fields of the CvTypeInfo structure.

GetFileNode

CvFileNode* cvGetFileNode(CvFileStorage* fs, CvFileNode* map, const CvStringHashNode* key,
int createMissing=0)

Finds a node in a map or file storage.

Parameters

108 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

• fs – File storage

• map – The parent map. If it is NULL, the function searches a top-level node. If both map
and key are NULLs, the function returns the root file node - a map that contains top-level
nodes.

• key – Unique pointer to the node name, retrieved with GetHashedKey

• createMissing – Flag that specifies whether an absent node should be added to the map

The function finds a file node. It is a faster version of GetFileNodeByName (see GetHashedKey discussion). Also, the
function can insert a new node, if it is not in the map yet.

GetFileNodeByName

CvFileNode* cvGetFileNodeByName(const CvFileStorage* fs, const CvFileNode* map, const
char* name)

Finds a node in a map or file storage.

Parameters

• fs – File storage

• map – The parent map. If it is NULL, the function searches in all the top-level nodes
(streams), starting with the first one.

• name – The file node name

The function finds a file node by name . The node is searched either in map or, if the pointer is NULL, among the
top-level file storage nodes. Using this function for maps and GetSeqElem (or sequence reader) for sequences, it is
possible to nagivate through the file storage. To speed up multiple queries for a certain key (e.g., in the case of an array
of structures) one may use a combination of GetHashedKey and GetFileNode .

GetFileNodeName

const char* cvGetFileNodeName(const CvFileNode* node)
Returns the name of a file node.

Parameters

• node – File node

The function returns the name of a file node or NULL, if the file node does not have a name or if node is NULL .

GetHashedKey

CvStringHashNode* cvGetHashedKey(CvFileStorage* fs, const char* name, int len=-1, int createMiss-
ing=0)

Returns a unique pointer for a given name.

Parameters

• fs – File storage

• name – Literal node name

• len – Length of the name (if it is known apriori), or -1 if it needs to be calculated

• createMissing – Flag that specifies, whether an absent key should be added into the hash
table

1.5. XML/YAML Persistence 109

The OpenCV 1.x C Reference Manual, Release 2.3

The function returns a unique pointer for each particular file node name. This pointer can be then passed to the
GetFileNode function that is faster than GetFileNodeByName because it compares text strings by comparing pointers
rather than the strings’ content.

Consider the following example where an array of points is encoded as a sequence of 2-entry maps:

points:
- { x: 10, y: 10 }
- { x: 20, y: 20 }
- { x: 30, y: 30 }
...

Then, it is possible to get hashed “x” and “y” pointers to speed up decoding of the points.

#include "cxcore.h"

int main(int argc, char** argv)
{

CvFileStorage* fs = cvOpenFileStorage("points.yml", 0, CV_STORAGE_READ);
CvStringHashNode* x_key = cvGetHashedNode(fs, "x", -1, 1);
CvStringHashNode* y_key = cvGetHashedNode(fs, "y", -1, 1);
CvFileNode* points = cvGetFileNodeByName(fs, 0, "points");

if(CV_NODE_IS_SEQ(points->tag))
{

CvSeq* seq = points->data.seq;
int i, total = seq->total;
CvSeqReader reader;
cvStartReadSeq(seq, &reader, 0);
for(i = 0; i < total; i++)
{

CvFileNode* pt = (CvFileNode*)reader.ptr;
#if 1 /* faster variant */

CvFileNode* xnode = cvGetFileNode(fs, pt, x_key, 0);
CvFileNode* ynode = cvGetFileNode(fs, pt, y_key, 0);
assert(xnode && CV_NODE_IS_INT(xnode->tag) &&

ynode && CV_NODE_IS_INT(ynode->tag));
int x = xnode->data.i; // or x = cvReadInt(xnode, 0);
int y = ynode->data.i; // or y = cvReadInt(ynode, 0);

#elif 1 /* slower variant; does not use x_key & y_key */
CvFileNode* xnode = cvGetFileNodeByName(fs, pt, "x");
CvFileNode* ynode = cvGetFileNodeByName(fs, pt, "y");
assert(xnode && CV_NODE_IS_INT(xnode->tag) &&

ynode && CV_NODE_IS_INT(ynode->tag));
int x = xnode->data.i; // or x = cvReadInt(xnode, 0);
int y = ynode->data.i; // or y = cvReadInt(ynode, 0);

#else /* the slowest yet the easiest to use variant */
int x = cvReadIntByName(fs, pt, "x", 0 /* default value */);
int y = cvReadIntByName(fs, pt, "y", 0 /* default value */);

#endif
CV_NEXT_SEQ_ELEM(seq->elem_size, reader);
printf("

}
}
cvReleaseFileStorage(&fs);
return 0;

}

Please note that whatever method of accessing a map you are using, it is still much slower than using plain sequences;
for example, in the above example, it is more efficient to encode the points as pairs of integers in a single numeric

110 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

sequence.

GetRootFileNode

CvFileNode* cvGetRootFileNode(const CvFileStorage* fs, int stream_index=0)
Retrieves one of the top-level nodes of the file storage.

Parameters

• fs – File storage

• stream_index – Zero-based index of the stream. See StartNextStream . In most cases, there
is only one stream in the file; however, there can be several.

The function returns one of the top-level file nodes. The top-level nodes do not have a name, they correspond
to the streams that are stored one after another in the file storage. If the index is out of range, the func-
tion returns a NULL pointer, so all the top-level nodes may be iterated by subsequent calls to the function with
stream_index=0,1,... , until the NULL pointer is returned. This function may be used as a base for recursive
traversal of the file storage.

Load

void* cvLoad(const char* filename, CvMemStorage* storage=NULL, const char* name=NULL, const
char** realName=NULL)

Loads an object from a file.

Parameters

• filename – File name

• storage – Memory storage for dynamic structures, such as CvSeq or CvGraph . It is not
used for matrices or images.

• name – Optional object name. If it is NULL, the first top-level object in the storage will be
loaded.

• realName – Optional output parameter that will contain the name of the loaded object (use-
ful if name=NULL)

The function loads an object from a file. It provides a simple interface to Read . After the object is loaded, the file
storage is closed and all the temporary buffers are deleted. Thus, to load a dynamic structure, such as a sequence,
contour, or graph, one should pass a valid memory storage destination to the function.

OpenFileStorage

CvFileStorage* cvOpenFileStorage(const char* filename, CvMemStorage* memstorage, int flags)
Opens file storage for reading or writing data.

Parameters

• filename – Name of the file associated with the storage

• memstorage – Memory storage used for temporary data and for storing dynamic structures,
such as CvSeq or CvGraph . If it is NULL, a temporary memory storage is created and used.

• flags – Can be one of the following:

– CV_STORAGE_READ the storage is open for reading

– CV_STORAGE_WRITE the storage is open for writing

1.5. XML/YAML Persistence 111

The OpenCV 1.x C Reference Manual, Release 2.3

The function opens file storage for reading or writing data. In the latter case, a new file is created or an existing file
is rewritten. The type of the read or written file is determined by the filename extension: .xml for XML and .yml or
.yaml for YAML . The function returns a pointer to the CvFileStorage structure.

Read

void* cvRead(CvFileStorage* fs, CvFileNode* node, CvAttrList* attributes=NULL)
Decodes an object and returns a pointer to it.

Parameters

• fs – File storage

• node – The root object node

• attributes – Unused parameter

The function decodes a user object (creates an object in a native representation from the file storage subtree) and
returns it. The object to be decoded must be an instance of a registered type that supports the read method (see
CvTypeInfo). The type of the object is determined by the type name that is encoded in the file. If the object is a
dynamic structure, it is created either in memory storage and passed to OpenFileStorage or, if a NULL pointer was
passed, in temporary memory storage, which is released when ReleaseFileStorage is called. Otherwise, if the object
is not a dynamic structure, it is created in a heap and should be released with a specialized function or by using the
generic Release .

ReadByName

void* cvReadByName(CvFileStorage* fs, const CvFileNode* map, const char* name, CvAttrList* at-
tributes=NULL)

Finds an object by name and decodes it.

Parameters

• fs – File storage

• map – The parent map. If it is NULL, the function searches a top-level node.

• name – The node name

• attributes – Unused parameter

The function is a simple superposition of GetFileNodeByName and Read .

ReadInt

int cvReadInt(const CvFileNode* node, int defaultValue=0)
Retrieves an integer value from a file node.

Parameters

• node – File node

• defaultValue – The value that is returned if node is NULL

The function returns an integer that is represented by the file node. If the file node is NULL, the defaultValue is
returned (thus, it is convenient to call the function right after GetFileNode without checking for a NULL pointer). If
the file node has type CV_NODE_INT , then node->data.i is returned. If the file node has type CV_NODE_REAL
, then node->data.f is converted to an integer and returned. Otherwise the result is not determined.

112 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

ReadIntByName

int cvReadIntByName(const CvFileStorage* fs, const CvFileNode* map, const char* name, int default-
Value=0)

Finds a file node and returns its value.

Parameters

• fs – File storage

• map – The parent map. If it is NULL, the function searches a top-level node.

• name – The node name

• defaultValue – The value that is returned if the file node is not found

The function is a simple superposition of GetFileNodeByName and ReadInt .

ReadRawData

void cvReadRawData(const CvFileStorage* fs, const CvFileNode* src, void* dst, const char* dt)
Reads multiple numbers.

Parameters

• fs – File storage

• src – The file node (a sequence) to read numbers from

• dst – Pointer to the destination array

• dt – Specification of each array element. It has the same format as in WriteRawData .

The function reads elements from a file node that represents a sequence of scalars.

ReadRawDataSlice

void cvReadRawDataSlice(const CvFileStorage* fs, CvSeqReader* reader, int count, void* dst, const
char* dt)

Initializes file node sequence reader.

Parameters

• fs – File storage

• reader – The sequence reader. Initialize it with StartReadRawData .

• count – The number of elements to read

• dst – Pointer to the destination array

• dt – Specification of each array element. It has the same format as in WriteRawData .

The function reads one or more elements from the file node, representing a sequence, to a user-specified array. The
total number of read sequence elements is a product of total and the number of components in each array element.
For example, if dt= 2if , the function will read total× 3 sequence elements. As with any sequence, some parts of
the file node sequence may be skipped or read repeatedly by repositioning the reader using SetSeqReaderPos .

1.5. XML/YAML Persistence 113

The OpenCV 1.x C Reference Manual, Release 2.3

ReadReal

double cvReadReal(const CvFileNode* node, double defaultValue=0.)
Retrieves a floating-point value from a file node.

Parameters

• node – File node

• defaultValue – The value that is returned if node is NULL

The function returns a floating-point value that is represented by the file node. If the file node is NULL, the
defaultValue is returned (thus, it is convenient to call the function right after GetFileNode without checking
for a NULL pointer). If the file node has type CV_NODE_REAL , then node->data.f is returned. If the file node
has type CV_NODE_INT , then node-:math:‘>‘data.f is converted to floating-point and returned. Otherwise
the result is not determined.

ReadRealByName

double cvReadRealByName(const CvFileStorage* fs, const CvFileNode* map, const char* name, dou-
ble defaultValue=0.)

Finds a file node and returns its value.

Parameters

• fs – File storage

• map – The parent map. If it is NULL, the function searches a top-level node.

• name – The node name

• defaultValue – The value that is returned if the file node is not found

The function is a simple superposition of GetFileNodeByName and ReadReal .

ReadString

const char* cvReadString(const CvFileNode* node, const char* defaultValue=NULL)
Retrieves a text string from a file node.

Parameters

• node – File node

• defaultValue – The value that is returned if node is NULL

The function returns a text string that is represented by the file node. If the file node is NULL, the defaultValue
is returned (thus, it is convenient to call the function right after GetFileNode without checking for a NULL pointer). If
the file node has type CV_NODE_STR , then node-:math:‘>‘data.str.ptr is returned. Otherwise the result
is not determined.

ReadStringByName

const char* cvReadStringByName(const CvFileStorage* fs, const CvFileNode* map, const char* name,
const char* defaultValue=NULL)

Finds a file node by its name and returns its value.

Parameters

• fs – File storage

114 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

• map – The parent map. If it is NULL, the function searches a top-level node.

• name – The node name

• defaultValue – The value that is returned if the file node is not found

The function is a simple superposition of GetFileNodeByName and ReadString .

RegisterType

void cvRegisterType(const CvTypeInfo* info)
Registers a new type.

Parameters

• info – Type info structure

The function registers a new type, which is described by info . The function creates a copy of the structure, so the
user should delete it after calling the function.

Release

void cvRelease(void** structPtr)
Releases an object.

Parameters

• structPtr – Double pointer to the object

The function finds the type of a given object and calls release with the double pointer.

ReleaseFileStorage

void cvReleaseFileStorage(CvFileStorage** fs)
Releases file storage.

Parameters

• fs – Double pointer to the released file storage

The function closes the file associated with the storage and releases all the temporary structures. It must be called after
all I/O operations with the storage are finished.

Save

void cvSave(const char* filename, const void* structPtr, const char* name=NULL, const char* com-
ment=NULL, CvAttrList attributes=cvAttrList())

Saves an object to a file.

Parameters

• filename – File name

• structPtr – Object to save

• name – Optional object name. If it is NULL, the name will be formed from filename .

• comment – Optional comment to put in the beginning of the file

• attributes – Optional attributes passed to Write

1.5. XML/YAML Persistence 115

The OpenCV 1.x C Reference Manual, Release 2.3

The function saves an object to a file. It provides a simple interface to Write .

StartNextStream

void cvStartNextStream(CvFileStorage* fs)
Starts the next stream.

Parameters

• fs – File storage

The function starts the next stream in file storage. Both YAML and XML support multiple “streams.” This is useful
for concatenating files or for resuming the writing process.

StartReadRawData

void cvStartReadRawData(const CvFileStorage* fs, const CvFileNode* src, CvSeqReader* reader)
Initializes the file node sequence reader.

Parameters

• fs – File storage

• src – The file node (a sequence) to read numbers from

• reader – Pointer to the sequence reader

The function initializes the sequence reader to read data from a file node. The initialized reader can be then passed to
ReadRawDataSlice .

StartWriteStruct

void cvStartWriteStruct(CvFileStorage* fs, const char* name, int struct_flags, const char* type-
Name=NULL, CvAttrList attributes=cvAttrList())

Starts writing a new structure.

Parameters

• fs – File storage

• name – Name of the written structure. The structure can be accessed by this name when the
storage is read.

• struct_flags – A combination one of the following values:

– CV_NODE_SEQ the written structure is a sequence (see discussion of CvFileStorage),
that is, its elements do not have a name.

– CV_NODE_MAP the written structure is a map (see discussion of CvFileStorage), that
is, all its elements have names.

One and only one of the two above flags must be specified

• CV_NODE_FLOW – the optional flag that makes sense only for YAML streams. It means
that the structure is written as a flow (not as a block), which is more compact. It is recom-
mended to use this flag for structures or arrays whose elements are all scalars.

• typeName – Optional parameter - the object type name. In case of XML it is written as a
type_id attribute of the structure opening tag. In the case of YAML it is written after a
colon following the structure name (see the example in CvFileStorage description). Mainly

116 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

it is used with user objects. When the storage is read, the encoded type name is used to
determine the object type (see CvTypeInfo and FindTypeInfo).

• attributes – This parameter is not used in the current implementation

The function starts writing a compound structure (collection) that can be a sequence or a map. After all the structure
fields, which can be scalars or structures, are written, EndWriteStruct should be called. The function can be used to
group some objects or to implement the write function for a some user object (see CvTypeInfo).

TypeOf

CvTypeInfo* cvTypeOf(const void* structPtr)
Returns the type of an object.

Parameters

• structPtr – The object pointer

The function finds the type of a given object. It iterates through the list of registered types and calls the is_instance
function/method for every type info structure with that object until one of them returns non-zero or until the whole list
has been traversed. In the latter case, the function returns NULL.

UnregisterType

void cvUnregisterType(const char* typeName)
Unregisters the type.

Parameters

• typeName – Name of an unregistered type

The function unregisters a type with a specified name. If the name is unknown, it is possible to locate the type
info by an instance of the type using TypeOf or by iterating the type list, starting from FirstType , and then calling
cvUnregisterType(info->typeName) .

Write

void cvWrite(CvFileStorage* fs, const char* name, const void* ptr, CvAttrList attributes=cvAttrList())
Writes a user object.

Parameters

• fs – File storage

• name – Name of the written object. Should be NULL if and only if the parent structure is a
sequence.

• ptr – Pointer to the object

• attributes – The attributes of the object. They are specific for each particular type (see the
dicsussion below).

The function writes an object to file storage. First, the appropriate type info is found using TypeOf . Then, the write
method associated with the type info is called.

Attributes are used to customize the writing procedure. The standard types support the following attributes (all the
*dt attributes have the same format as in WriteRawData):

1. CvSeq

1.5. XML/YAML Persistence 117

The OpenCV 1.x C Reference Manual, Release 2.3

• header_dt description of user fields of the sequence header that follow CvSeq, or CvChain (if the sequence
is a Freeman chain) or CvContour (if the sequence is a contour or point sequence)

• dt description of the sequence elements.

• recursive if the attribute is present and is not equal to “0” or “false”, the whole tree of sequences (contours)
is stored.

2. Cvgraph

• header_dt description of user fields of the graph header that follows CvGraph;

• vertex_dt description of user fields of graph vertices

• edge_dt description of user fields of graph edges (note that the edge weight is always written, so there is
no need to specify it explicitly)

Below is the code that creates the YAML file shown in the CvFileStorage description:

#include "cxcore.h"

int main(int argc, char** argv)
{

CvMat* mat = cvCreateMat(3, 3, CV_32F);
CvFileStorage* fs = cvOpenFileStorage("example.yml", 0, CV_STORAGE_WRITE);

cvSetIdentity(mat);
cvWrite(fs, "A", mat, cvAttrList(0,0));

cvReleaseFileStorage(&fs);
cvReleaseMat(&mat);
return 0;

}

WriteComment

void cvWriteComment(CvFileStorage* fs, const char* comment, int eolComment)
Writes a comment.

Parameters

• fs – File storage

• comment – The written comment, single-line or multi-line

• eolComment – If non-zero, the function tries to put the comment at the end of current line.
If the flag is zero, if the comment is multi-line, or if it does not fit at the end of the current
line, the comment starts a new line.

The function writes a comment into file storage. The comments are skipped when the storage is read, so they may be
used only for debugging or descriptive purposes.

WriteFileNode

void cvWriteFileNode(CvFileStorage* fs, const char* new_node_name, const CvFileNode* node, int em-
bed)

Writes a file node to another file storage.

Parameters

• fs – Destination file storage

118 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

• new_file_node – New name of the file node in the destination file storage. To keep the
existing name, use cvGetFileNodeName

• node – The written node

• embed – If the written node is a collection and this parameter is not zero, no extra level of
hiararchy is created. Instead, all the elements of node are written into the currently written
structure. Of course, map elements may be written only to a map, and sequence elements
may be written only to a sequence.

The function writes a copy of a file node to file storage. Possible applications of the function are merging several file
storages into one and conversion between XML and YAML formats.

WriteInt

void cvWriteInt(CvFileStorage* fs, const char* name, int value)
Writes an integer value.

Parameters

• fs – File storage

• name – Name of the written value. Should be NULL if and only if the parent structure is a
sequence.

• value – The written value

The function writes a single integer value (with or without a name) to the file storage.

WriteRawData

void cvWriteRawData(CvFileStorage* fs, const void* src, int len, const char* dt)
Writes multiple numbers.

Parameters

• fs – File storage

• src – Pointer to the written array

• len – Number of the array elements to write

• dt – Specification of each array element that has the following format
([count]{’u’|’c’|’w’|’s’|’i’|’f’|’d’})... where the characters
correspond to fundamental C types:

– u 8-bit unsigned number

– c 8-bit signed number

– w 16-bit unsigned number

– s 16-bit signed number

– i 32-bit signed number

– f single precision floating-point number

– d double precision floating-point number

1.5. XML/YAML Persistence 119

The OpenCV 1.x C Reference Manual, Release 2.3

– r pointer, 32 lower bits of which are written as a signed integer. The type can be used to store structures with links between the elements. count is the optional counter of values of a given type. For
example, 2if means that each array element is a structure of 2 integers, followed
by a single-precision floating-point number. The equivalent notations of the above
specification are ‘ iif ‘, ‘ 2i1f ‘ and so forth. Other examples: u means that the
array consists of bytes, and 2d means the array consists of pairs of doubles.

The function writes an array, whose elements consist of single or multiple numbers. The function call can be replaced
with a loop containing a few WriteInt and WriteReal calls, but a single call is more efficient. Note that because none
of the elements have a name, they should be written to a sequence rather than a map.

WriteReal

void cvWriteReal(CvFileStorage* fs, const char* name, double value)
Writes a floating-point value.

Parameters

• fs – File storage

• name – Name of the written value. Should be NULL if and only if the parent structure is a
sequence.

• value – The written value

The function writes a single floating-point value (with or without a name) to file storage. Special values are encoded
as follows: NaN (Not A Number) as .NaN, ±∞ as +.Inf (-.Inf).

The following example shows how to use the low-level writing functions to store custom structures, such as termination
criteria, without registering a new type.

void write_termcriteria(CvFileStorage* fs, const char* struct_name,
CvTermCriteria* termcrit)

{
cvStartWriteStruct(fs, struct_name, CV_NODE_MAP, NULL, cvAttrList(0,0));
cvWriteComment(fs, "termination criteria", 1); // just a description
if(termcrit->type & CV_TERMCRIT_ITER)

cvWriteInteger(fs, "max_iterations", termcrit->max_iter);
if(termcrit->type & CV_TERMCRIT_EPS)

cvWriteReal(fs, "accuracy", termcrit->epsilon);
cvEndWriteStruct(fs);

}

WriteString

void cvWriteString(CvFileStorage* fs, const char* name, const char* str, int quote=0)
Writes a text string.

Parameters

• fs – File storage

• name – Name of the written string . Should be NULL if and only if the parent structure is a
sequence.

• str – The written text string

• quote – If non-zero, the written string is put in quotes, regardless of whether they are re-
quired. Otherwise, if the flag is zero, quotes are used only when they are required (e.g. when
the string starts with a digit or contains spaces).

120 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

The function writes a text string to file storage.

1.6 Clustering

KMeans2

int cvKMeans2(const CvArr* samples, int nclusters, CvArr* labels, CvTermCriteria termcrit, int attempts=1,
CvRNG* rng=0, int flags=0, CvArr* centers=0, double* compactness=0)

Splits set of vectors by a given number of clusters.

Parameters

• samples – Floating-point matrix of input samples, one row per sample

• nclusters – Number of clusters to split the set by

• labels – Output integer vector storing cluster indices for every sample

• termcrit – Specifies maximum number of iterations and/or accuracy (distance the centers
can move by between subsequent iterations)

• attempts – How many times the algorithm is executed using different initial labelings. The
algorithm returns labels that yield the best compactness (see the last function parameter)

• rng – Optional external random number generator; can be used to fully control the function
behaviour

• flags – Can be 0 or CV_KMEANS_USE_INITIAL_LABELS . The latter value means that
during the first (and possibly the only) attempt, the function uses the user-supplied labels as
the initial approximation instead of generating random labels. For the second and further
attempts, the function will use randomly generated labels in any case

• centers – The optional output array of the cluster centers

• compactness – The optional output parameter, which is computed as
∑

i ||samplesi −
centerslabelsi

||2 after every attempt; the best (minimum) value is chosen and the cor-
responding labels are returned by the function. Basically, the user can use only the core
of the function, set the number of attempts to 1, initialize labels each time using a custom
algorithm (flags=CV_KMEANS_USE_INITIAL_LABELS) and, based on the output
compactness or any other criteria, choose the best clustering.

The function cvKMeans2 implements a k-means algorithm that finds the centers of nclusters clusters and groups
the input samples around the clusters. On output, labelsi contains a cluster index for samples stored in the i-th row
of the samples matrix.

#include "cxcore.h"
#include "highgui.h"

void main(int argc, char** argv)
{

#define MAX_CLUSTERS 5
CvScalar color_tab[MAX_CLUSTERS];
IplImage* img = cvCreateImage(cvSize(500, 500), 8, 3);
CvRNG rng = cvRNG(0xffffffff);

color_tab[0] = CV_RGB(255,0,0);
color_tab[1] = CV_RGB(0,255,0);
color_tab[2] = CV_RGB(100,100,255);
color_tab[3] = CV_RGB(255,0,255);

1.6. Clustering 121

The OpenCV 1.x C Reference Manual, Release 2.3

color_tab[4] = CV_RGB(255,255,0);

cvNamedWindow("clusters", 1);

for(;;)
{

int k, cluster_count = cvRandInt(&rng)
int i, sample_count = cvRandInt(&rng)
CvMat* points = cvCreateMat(sample_count, 1, CV_32FC2);
CvMat* clusters = cvCreateMat(sample_count, 1, CV_32SC1);

/* generate random sample from multigaussian distribution */
for(k = 0; k < cluster_count; k++)
{

CvPoint center;
CvMat point_chunk;
center.x = cvRandInt(&rng)
center.y = cvRandInt(&rng)
cvGetRows(points,

&point_chunk,
k*sample_count/cluster_count,
(k == (cluster_count - 1)) ?

sample_count :
(k+1)*sample_count/cluster_count);

cvRandArr(&rng, &point_chunk, CV_RAND_NORMAL,
cvScalar(center.x,center.y,0,0),
cvScalar(img->width/6, img->height/6,0,0));

}

/* shuffle samples */
for(i = 0; i < sample_count/2; i++)
{

CvPoint2D32f* pt1 =
(CvPoint2D32f*)points->data.fl + cvRandInt(&rng)

CvPoint2D32f* pt2 =
(CvPoint2D32f*)points->data.fl + cvRandInt(&rng)

CvPoint2D32f temp;
CV_SWAP(*pt1, *pt2, temp);

}

cvKMeans2(points, cluster_count, clusters,
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0));

cvZero(img);

for(i = 0; i < sample_count; i++)
{

CvPoint2D32f pt = ((CvPoint2D32f*)points->data.fl)[i];
int cluster_idx = clusters->data.i[i];
cvCircle(img,

cvPointFrom32f(pt),
2,
color_tab[cluster_idx],
CV_FILLED);

}

cvReleaseMat(&points);
cvReleaseMat(&clusters);

122 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

cvShowImage("clusters", img);

int key = cvWaitKey(0);
if(key == 27)

break;
}

}

SeqPartition

int cvSeqPartition(const CvSeq* seq, CvMemStorage* storage, CvSeq** labels, CvCmpFunc is_equal,
void* userdata)

Splits a sequence into equivalency classes.

Parameters

• seq – The sequence to partition

• storage – The storage block to store the sequence of equivalency classes. If it is NULL, the
function uses seq->storage for output labels

• labels – Ouput parameter. Double pointer to the sequence of 0-based labels of input se-
quence elements

• is_equal – The relation function that should return non-zero if the two particular sequence
elements are from the same class, and zero otherwise. The partitioning algorithm uses
transitive closure of the relation function as an equivalency criteria

• userdata – Pointer that is transparently passed to the is_equal function

typedef int (CV_CDECL* CvCmpFunc)(const void* a, const void* b, void* userdata);

The function cvSeqPartition implements a quadratic algorithm for splitting a set into one or more equivalancy
classes. The function returns the number of equivalency classes.

#include "cxcore.h"
#include "highgui.h"
#include <stdio.h>

CvSeq* point_seq = 0;
IplImage* canvas = 0;
CvScalar* colors = 0;
int pos = 10;

int is_equal(const void* _a, const void* _b, void* userdata)
{

CvPoint a = *(const CvPoint*)_a;
CvPoint b = *(const CvPoint*)_b;
double threshold = *(double*)userdata;
return (double)((a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y)) <=

threshold;
}

void on_track(int pos)
{

CvSeq* labels = 0;
double threshold = pos*pos;
int i, class_count = cvSeqPartition(point_seq,

1.6. Clustering 123

The OpenCV 1.x C Reference Manual, Release 2.3

0,
&labels,
is_equal,
&threshold);

printf("
cvZero(canvas);

for(i = 0; i < labels->total; i++)
{

CvPoint pt = *(CvPoint*)cvGetSeqElem(point_seq, i);
CvScalar color = colors[*(int*)cvGetSeqElem(labels, i)];
cvCircle(canvas, pt, 1, color, -1);

}

cvShowImage("points", canvas);
}

int main(int argc, char** argv)
{

CvMemStorage* storage = cvCreateMemStorage(0);
point_seq = cvCreateSeq(CV_32SC2,

sizeof(CvSeq),
sizeof(CvPoint),
storage);

CvRNG rng = cvRNG(0xffffffff);

int width = 500, height = 500;
int i, count = 1000;
canvas = cvCreateImage(cvSize(width,height), 8, 3);

colors = (CvScalar*)cvAlloc(count*sizeof(colors[0]));
for(i = 0; i < count; i++)
{

CvPoint pt;
int icolor;
pt.x = cvRandInt(&rng)
pt.y = cvRandInt(&rng)
cvSeqPush(point_seq, &pt);
icolor = cvRandInt(&rng) | 0x00404040;
colors[i] = CV_RGB(icolor & 255,

(icolor >> 8)&255,
(icolor >> 16)&255);

}

cvNamedWindow("points", 1);
cvCreateTrackbar("threshold", "points", &pos, 50, on_track);
on_track(pos);
cvWaitKey(0);
return 0;

}

124 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

1.7 Utility and System Functions and Macros

Error Handling

Error handling in OpenCV is similar to IPL (Image Processing Library). In the case of an error, functions do not return
the error code. Instead, they raise an error using CV_ERROR macro that calls Error that, in its turn, sets the error status
with SetErrStatus and calls a standard or user-defined error handler (that can display a message box, write to log, etc.,
see RedirectError). There is a global variable, one per each program thread, that contains current error status (an
integer value). The status can be retrieved with the GetErrStatus function.

There are three modes of error handling (see SetErrMode and GetErrMode):

• Leaf . The program is terminated after the error handler is called. This is the default value. It is useful for
debugging, as the error is signalled immediately after it occurs. However, for production systems, other two
methods may be preferable as they provide more control.

• Parent . The program is not terminated, but the error handler is called. The stack is unwound (it is done w/o
using a C++ exception mechanism). The user may check error code after calling the CxCore function with
GetErrStatus and react.

• Silent . Similar to Parent mode, but no error handler is called.

Actually, the semantics of the Leaf and Parent modes are implemented by error handlers and the above description
is true for them. GuiBoxReport behaves slightly differently, and some custom error handlers may implement quite
different semantics.

Macros for raising an error, checking for errors, etc.

/* special macros for enclosing processing statements within a function and separating
them from prologue (resource initialization) and epilogue (guaranteed resource release) */

#define __BEGIN__ {
#define __END__ goto exit; exit: ; }
/* proceeds to "resource release" stage */
#define EXIT goto exit

/* Declares locally the function name for CV_ERROR() use */
#define CV_FUNCNAME(Name) \

static char cvFuncName[] = Name

/* Raises an error within the current context */
#define CV_ERROR(Code, Msg) \

/* Checks status after calling CXCORE function */
#define CV_CHECK() \

/* Provies shorthand for CXCORE function call and CV_CHECK() */
#define CV_CALL(Statement) \

/* Checks some condition in both debug and release configurations */
#define CV_ASSERT(Condition) \

/* these macros are similar to their CV_... counterparts, but they
do not need exit label nor cvFuncName to be defined */

#define OPENCV_ERROR(status,func_name,err_msg) ...
#define OPENCV_ERRCHK(func_name,err_msg) ...

1.7. Utility and System Functions and Macros 125

The OpenCV 1.x C Reference Manual, Release 2.3

#define OPENCV_ASSERT(condition,func_name,err_msg) ...
#define OPENCV_CALL(statement) ...

Instead of a discussion, below is a documented example of a typical CXCORE function and an example of the function
use.

Example: Use of Error Handling Macros

#include "cxcore.h"
#include <stdio.h>

void cvResizeDCT(CvMat* input_array, CvMat* output_array)
{

CvMat* temp_array = 0; // declare pointer that should be released anyway.

CV_FUNCNAME("cvResizeDCT"); // declare cvFuncName

__BEGIN__; // start processing. There may be some declarations just after
// this macro, but they could not be accessed from the epilogue.

if(!CV_IS_MAT(input_array) || !CV_IS_MAT(output_array))
// use CV_ERROR() to raise an error
CV_ERROR(CV_StsBadArg,
"input_array or output_array are not valid matrices");

// some restrictions that are going to be removed later, may be checked
// with CV_ASSERT()
CV_ASSERT(input_array->rows == 1 && output_array->rows == 1);

// use CV_CALL for safe function call
CV_CALL(temp_array = cvCreateMat(input_array->rows,

MAX(input_array->cols,
output_array->cols),
input_array->type));

if(output_array->cols > input_array->cols)
CV_CALL(cvZero(temp_array));

temp_array->cols = input_array->cols;
CV_CALL(cvDCT(input_array, temp_array, CV_DXT_FORWARD));
temp_array->cols = output_array->cols;
CV_CALL(cvDCT(temp_array, output_array, CV_DXT_INVERSE));
CV_CALL(cvScale(output_array,

output_array,
1./sqrt((double)input_array->cols*output_array->cols), 0));

__END__; // finish processing. Epilogue follows after the macro.

// release temp_array. If temp_array has not been allocated
// before an error occured, cvReleaseMat
// takes care of it and does nothing in this case.
cvReleaseMat(&temp_array);

}

int main(int argc, char** argv)
{

CvMat* src = cvCreateMat(1, 512, CV_32F);

126 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

#if 1 /* no errors */
CvMat* dst = cvCreateMat(1, 256, CV_32F);

#else
CvMat* dst = 0; /* test error processing mechanism */

#endif
cvSet(src, cvRealScalar(1.), 0);

#if 0 /* change 0 to 1 to suppress error handler invocation */
cvSetErrMode(CV_ErrModeSilent);

#endif
cvResizeDCT(src, dst); // if some error occurs, the message

// box will popup, or a message will be
// written to log, or some user-defined
// processing will be done

if(cvGetErrStatus() < 0)
printf("Some error occured");

else
printf("Everything is OK");

return 0;
}

GetErrStatus

int cvGetErrStatus(void)
Returns the current error status.

The function returns the current error status - the value set with the last SetErrStatus call. Note that in Leaf mode,
the program terminates immediately after an error occurs, so to always gain control after the function call, one should
call SetErrMode and set the Parent or Silent error mode.

SetErrStatus

void cvSetErrStatus(int status)
Sets the error status.

Parameters

• status – The error status

The function sets the error status to the specified value. Mostly, the function is used to reset the error status (set to it
CV_StsOk) to recover after an error. In other cases it is more natural to call Error or CV_ERROR .

GetErrMode

int cvGetErrMode(void)
Returns the current error mode.

The function returns the current error mode - the value set with the last SetErrMode call.

SetErrMode

..

int cvSetErrMode(int mode)
Sets the error mode.

1.7. Utility and System Functions and Macros 127

The OpenCV 1.x C Reference Manual, Release 2.3

#define CV_ErrModeLeaf 0 #define CV_ErrModeParent 1 #define CV_ErrModeSilent 2

param mode The error mode

The function sets the specified error mode. For descriptions of different error modes, see the beginning of the error
section.

Error

int cvError(int status, const char* func_name, const char* err_msg, const char* filename, int line)
Raises an error.

Parameters

• status – The error status

• func_name – Name of the function where the error occured

• err_msg – Additional information/diagnostics about the error

• filename – Name of the file where the error occured

• line – Line number, where the error occured

The function sets the error status to the specified value (via SetErrStatus) and, if the error mode is not Silent , calls
the error handler.

ErrorStr

const char* cvErrorStr(int status)
Returns textual description of an error status code.

Parameters

• status – The error status

The function returns the textual description for the specified error status code. In the case of unknown status, the
function returns a NULL pointer.

RedirectError

CvErrorCallback cvRedirectError(CvErrorCallback error_handler, void* userdata=NULL, void** pre-
vUserdata=NULL)

Sets a new error handler.

Parameters

• error_handler – The new error _ handler

• userdata – Arbitrary pointer that is transparently passed to the error handler

• prevUserdata – Pointer to the previously assigned user data pointer

typedef int (CV_CDECL *CvErrorCallback)(int status, const char* func_name,
const char* err_msg, const char* file_name, int line);

The function sets a new error handler that can be one of the standard handlers or a custom handler that has a specific
interface. The handler takes the same parameters as the Error function. If the handler returns a non-zero value, the
program is terminated; otherwise, it continues. The error handler may check the current error mode with GetErrMode
to make a decision.

128 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

cvNulDevReport cvStdErrReport cvGuiBoxReport

int cvNulDevReport(int status, const char* func_name, const char* err_msg, const char* file_name, int line,
void* userdata)

int cvStdErrReport(int status, const char* func_name, const char* err_msg, const char* file_name, int line,
void* userdata)

int cvGuiBoxReport(int status, const char* func_name, const char* err_msg, const char* file_name, int line,
void* userdata)

Provide standard error handling.

Parameters

• status – The error status

• func_name – Name of the function where the error occured

• err_msg – Additional information/diagnostics about the error

• filename – Name of the file where the error occured

• line – Line number, where the error occured

• userdata – Pointer to the user data. Ignored by the standard handlers

The functions cvNullDevReport , cvStdErrReport , and cvGuiBoxReport provide standard error han-
dling. cvGuiBoxReport is the default error handler on Win32 systems, cvStdErrReport is the default on other
systems. cvGuiBoxReport pops up a message box with the error description and suggest a few options. Below is
an example message box that may be recieved with the sample code above, if one introduces an error as described in
the sample.

Error Message Box

If the error handler is set to cvStdErrReport , the above message will be printed to standard error output and the
program will be terminated or continued, depending on the current error mode.

Error Message printed to Standard Error Output (in ‘‘Leaf‘‘ mode)

OpenCV ERROR: Bad argument (input_array or output_array are not valid matrices)
in function cvResizeDCT, D:UserVPProjectsavl_probaa.cpp(75)

Terminating the application...

1.7. Utility and System Functions and Macros 129

The OpenCV 1.x C Reference Manual, Release 2.3

Alloc

void* cvAlloc(size_t size)
Allocates a memory buffer.

Parameters

• size – Buffer size in bytes

The function allocates size bytes and returns a pointer to the allocated buffer. In the case of an error the function
reports an error and returns a NULL pointer. By default, cvAlloc calls icvAlloc which itself calls malloc .
However it is possible to assign user-defined memory allocation/deallocation functions using the SetMemoryManager
function.

Free

void cvFree(void** ptr)
Deallocates a memory buffer.

Parameters

• ptr – Double pointer to released buffer

The function deallocates a memory buffer allocated by Alloc . It clears the pointer to buffer upon exit, which is why
the double pointer is used. If the *buffer is already NULL, the function does nothing.

GetTickCount

int64 cvGetTickCount(void)
Returns the number of ticks.

The function returns number of the ticks starting from some platform-dependent event (number of CPU ticks from
the startup, number of milliseconds from 1970th year, etc.). The function is useful for accurate measurement of a
function/user-code execution time. To convert the number of ticks to time units, use GetTickFrequency .

GetTickFrequency

double cvGetTickFrequency(void)
Returns the number of ticks per microsecond.

The function returns the number of ticks per microsecond. Thus, the quotient of GetTickCount and GetTickFrequency
will give the number of microseconds starting from the platform-dependent event.

RegisterModule

..

int cvRegisterModule(const CvModuleInfo* moduleInfo)
Registers another module.

typedef struct CvPluginFuncInfo {

void** func_addr; void* default_func_addr; const char* func_names; int search_modules; int
loaded_from;

130 Chapter 1. core. The Core Functionality

The OpenCV 1.x C Reference Manual, Release 2.3

} CvPluginFuncInfo;

typedef struct CvModuleInfo {

struct CvModuleInfo* next; const char* name; const char* version; CvPluginFuncInfo* func_tab;

} CvModuleInfo;

param moduleInfo Information about the module

The function adds a module to the list of registered modules. After the module is registered, information about it can
be retrieved using the GetModuleInfo function. Also, the registered module makes full use of optimized plugins (IPP,
MKL, ...), supported by CXCORE. CXCORE itself, CV (computer vision), CVAUX (auxilary computer vision), and
HIGHGUI (visualization and image/video acquisition) are examples of modules. Registration is usually done when
the shared library is loaded. See cxcore/src/cxswitcher.cpp and cv/src/cvswitcher.cpp for details
about how registration is done and look at cxcore/src/cxswitcher.cpp , cxcore/src/_cxipp.h on how
IPP and MKL are connected to the modules.

GetModuleInfo

void cvGetModuleInfo(const char* moduleName, const char** version, const char** loadedAddonPlug-
ins)

Retrieves information about registered module(s) and plugins.

Parameters

• moduleName – Name of the module of interest, or NULL, which means all the modules

• version – The output parameter. Information about the module(s), including version

• loadedAddonPlugins – The list of names and versions of the optimized plugins that CX-
CORE was able to find and load

The function returns information about one or all of the registered modules. The returned information is stored inside
the libraries, so the user should not deallocate or modify the returned text strings.

UseOptimized

int cvUseOptimized(int onoff)
Switches between optimized/non-optimized modes.

Parameters

• onoff – Use optimized (6= 0) or not (= 0)

The function switches between the mode, where only pure C implementations from cxcore, OpenCV, etc. are used,
and the mode, where IPP and MKL functions are used if available. When cvUseOptimized(0) is called, all
the optimized libraries are unloaded. The function may be useful for debugging, IPP and MKL upgrading on the
fly, online speed comparisons, etc. It returns the number of optimized functions loaded. Note that by default, the
optimized plugins are loaded, so it is not necessary to call cvUseOptimized(1) in the beginning of the program
(actually, it will only increase the startup time).

SetMemoryManager

..

void cvSetMemoryManager(CvAllocFunc allocFunc=NULL, CvFreeFunc freeFunc=NULL, void* user-
data=NULL)

Accesses custom/default memory managing functions.

1.7. Utility and System Functions and Macros 131

The OpenCV 1.x C Reference Manual, Release 2.3

typedef void* (CV_CDECL CvAllocFunc)(size_t size, void userdata); typedef int (CV_CDECL CvFreeFunc)(void
pptr, void* userdata);

param allocFunc Allocation function; the interface is similar to malloc , except that
userdata may be used to determine the context

param freeFunc Deallocation function; the interface is similar to free

param userdata User data that is transparently passed to the custom functions

The function sets user-defined memory managment functions (substitutes for malloc and free) that will be called
by cvAlloc, cvFree and higher-level functions (e.g., cvCreateImage). Note that the function should be
called when there is data allocated using cvAlloc . Also, to avoid infinite recursive calls, it is not allowed to call
cvAlloc and Free from the custom allocation/deallocation functions.

If the alloc_func and free_func pointers are NULL , the default memory managing functions are restored.

SetIPLAllocators

\
\

void cvSetIPLAllocators(Cv_iplCreateImageHeader create_header, Cv_iplAllocateImageData al-
locate_data, Cv_iplDeallocate deallocate, Cv_iplCreateROI create_roi,
Cv_iplCloneImage clone_image)

Switches to IPL functions for image allocation/deallocation.

typedef IplImage* (CV_STDCALL* Cv_iplCreateImageHeader) (int,int,int,char*,char*,int,int,int,int,int,
IplROI*,IplImage*,void*,IplTileInfo*);

typedef void (CV_STDCALL* Cv_iplAllocateImageData)(IplImage*,int,int); typedef void (CV_STDCALL*
Cv_iplDeallocate)(IplImage*,int); typedef IplROI* (CV_STDCALL* Cv_iplCreateROI)(int,int,int,int,int); typedef
IplImage* (CV_STDCALL* Cv_iplCloneImage)(const IplImage*);

#define CV_TURN_ON_IPL_COMPATIBILITY() cvSetIPLAllocators(iplCreateImageHeader, iplAllocateImage,
iplDeallocate, iplCreateROI, iplCloneImage)

param create_header Pointer to iplCreateImageHeader

param allocate_data Pointer to iplAllocateImage

param deallocate Pointer to iplDeallocate

param create_roi Pointer to iplCreateROI

param clone_image Pointer to iplCloneImage

The function causes CXCORE to use IPL functions for image allocation/deallocation operations. For convenience,
there is the wrapping macro CV_TURN_ON_IPL_COMPATIBILITY . The function is useful for applications where
IPL and CXCORE/OpenCV are used together and still there are calls to iplCreateImageHeader , etc. The func-
tion is not necessary if IPL is called only for data processing and all the allocation/deallocation is done by CXCORE,
or if all the allocation/deallocation is done by IPL and some of OpenCV functions are used to process the data.

132 Chapter 1. core. The Core Functionality

CHAPTER

TWO

IMGPROC. IMAGE PROCESSING

2.1 Histograms

CvHistogram

CvHistogram

Multi-dimensional histogram.

typedef struct CvHistogram
{

int type;
CvArr* bins;
float thresh[CV_MAX_DIM][2]; /* for uniform histograms */
float** thresh2; /* for non-uniform histograms */
CvMatND mat; /* embedded matrix header for array histograms */

}
CvHistogram;

CalcBackProject

void cvCalcBackProject(IplImage** image, CvArr* back_project, const CvHistogram* hist)
Calculates the back projection.

Parameters

• image – Source images (though you may pass CvMat** as well)

• back_project – Destination back projection image of the same type as the source images

• hist – Histogram

The function calculates the back project of the histogram. For each tuple of pixels at the same position of all input
single-channel images the function puts the value of the histogram bin, corresponding to the tuple in the destination
image. In terms of statistics, the value of each output image pixel is the probability of the observed tuple given the
distribution (histogram). For example, to find a red object in the picture, one may do the following:

1. Calculate a hue histogram for the red object assuming the image contains only this object. The histogram is
likely to have a strong maximum, corresponding to red color.

2. Calculate back projection of a hue plane of input image where the object is searched, using the histogram.
Threshold the image.

133

The OpenCV 1.x C Reference Manual, Release 2.3

3. Find connected components in the resulting picture and choose the right component using some additional
criteria, for example, the largest connected component.

That is the approximate algorithm of Camshift color object tracker, except for the 3rd step, instead of which
CAMSHIFT algorithm is used to locate the object on the back projection given the previous object position.

CalcBackProjectPatch

void cvCalcBackProjectPatch(IplImage** images, CvArr* dst, CvSize patch_size, CvHistogram* hist,
int method, double factor)

Locates a template within an image by using a histogram comparison.

Parameters

• images – Source images (though, you may pass CvMat** as well)

• dst – Destination image

• patch_size – Size of the patch slid though the source image

• hist – Histogram

• method – Comparison method, passed to CompareHist (see description of that function)

• factor – Normalization factor for histograms, will affect the normalization scale of the des-
tination image, pass 1 if unsure

The function calculates the back projection by comparing histograms of the source image patches with the given his-
togram. Taking measurement results from some image at each location over ROI creates an array image . These
results might be one or more of hue, x derivative, y derivative, Laplacian filter, oriented Gabor filter, etc. Each
measurement output is collected into its own separate image. The image image array is a collection of these mea-
surement images. A multi-dimensional histogram hist is constructed by sampling from the image image array. The
final histogram is normalized. The hist histogram has as many dimensions as the number of elements in image
array.

Each new image is measured and then converted into an image image array over a chosen ROI. Histograms are taken
from this image image in an area covered by a “patch” with an anchor at center as shown in the picture below. The
histogram is normalized using the parameter norm_factor so that it may be compared with hist . The calculated
histogram is compared to the model histogram; hist uses The function cvCompareHist with the comparison
method= method). The resulting output is placed at the location corresponding to the patch anchor in the probability
image dst . This process is repeated as the patch is slid over the ROI. Iterative histogram update by subtracting
trailing pixels covered by the patch and adding newly covered pixels to the histogram can save a lot of operations,
though it is not implemented yet.

Back Project Calculation by Patches

134 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

CalcHist

void cvCalcHist(IplImage** image, CvHistogram* hist, int accumulate=0, const CvArr* mask=NULL)
Calculates the histogram of image(s).

Parameters

• image – Source images (though you may pass CvMat** as well)

• hist – Pointer to the histogram

• accumulate – Accumulation flag. If it is set, the histogram is not cleared in the beginning.
This feature allows user to compute a single histogram from several images, or to update the
histogram online

• mask – The operation mask, determines what pixels of the source images are counted

The function calculates the histogram of one or more single-channel images. The elements of a tuple that is used to
increment a histogram bin are taken at the same location from the corresponding input images.

#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv)
{

IplImage* src;
if(argc == 2 && (src=cvLoadImage(argv[1], 1))!= 0)
{

IplImage* h_plane = cvCreateImage(cvGetSize(src), 8, 1);
IplImage* s_plane = cvCreateImage(cvGetSize(src), 8, 1);

2.1. Histograms 135

The OpenCV 1.x C Reference Manual, Release 2.3

IplImage* v_plane = cvCreateImage(cvGetSize(src), 8, 1);
IplImage* planes[] = { h_plane, s_plane };
IplImage* hsv = cvCreateImage(cvGetSize(src), 8, 3);
int h_bins = 30, s_bins = 32;
int hist_size[] = {h_bins, s_bins};
/* hue varies from 0 (~0 deg red) to 180 (~360 deg red again) */
float h_ranges[] = { 0, 180 };
/* saturation varies from 0 (black-gray-white) to

255 (pure spectrum color) */
float s_ranges[] = { 0, 255 };
float* ranges[] = { h_ranges, s_ranges };
int scale = 10;
IplImage* hist_img =

cvCreateImage(cvSize(h_bins*scale,s_bins*scale), 8, 3);
CvHistogram* hist;
float max_value = 0;
int h, s;

cvCvtColor(src, hsv, CV_BGR2HSV);
cvCvtPixToPlane(hsv, h_plane, s_plane, v_plane, 0);
hist = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
cvCalcHist(planes, hist, 0, 0);
cvGetMinMaxHistValue(hist, 0, &max_value, 0, 0);
cvZero(hist_img);

for(h = 0; h < h_bins; h++)
{

for(s = 0; s < s_bins; s++)
{

float bin_val = cvQueryHistValue_2D(hist, h, s);
int intensity = cvRound(bin_val*255/max_value);
cvRectangle(hist_img, cvPoint(h*scale, s*scale),

cvPoint((h+1)*scale - 1, (s+1)*scale - 1),
CV_RGB(intensity,intensity,intensity),
CV_FILLED);

}
}

cvNamedWindow("Source", 1);
cvShowImage("Source", src);

cvNamedWindow("H-S Histogram", 1);
cvShowImage("H-S Histogram", hist_img);

cvWaitKey(0);
}

}

CalcProbDensity

void cvCalcProbDensity(const CvHistogram* hist1, const CvHistogram* hist2, CvHistogram* dst_hist,
double scale=255)

Divides one histogram by another.

Parameters

• hist1 – first histogram (the divisor)

136 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

• hist2 – second histogram

• dst_hist – destination histogram

• scale – scale factor for the destination histogram

The function calculates the object probability density from the two histograms as:

dist_hist(I) =

0 if hist1(I) = 0
scale if hist1(I) 6= 0 and hist2(I) > hist1(I)
hist2(I)·scale

hist1(I) if hist1(I) 6= 0 and hist2(I) ≤ hist1(I)

So the destination histogram bins are within less than scale .

ClearHist

void cvClearHist(CvHistogram* hist)
Clears the histogram.

Parameters

• hist – Histogram

The function sets all of the histogram bins to 0 in the case of a dense histogram and removes all histogram bins in the
case of a sparse array.

CompareHist

double cvCompareHist(const CvHistogram* hist1, const CvHistogram* hist2, int method)
Compares two dense histograms.

Parameters

• hist1 – The first dense histogram

• hist2 – The second dense histogram

• method – Comparison method, one of the following:

– CV_COMP_CORREL Correlation

– CV_COMP_CHISQR Chi-Square

– CV_COMP_INTERSECT Intersection

– CV_COMP_BHATTACHARYYA Bhattacharyya distance

The function compares two dense histograms using the specified method (H1 denotes the first histogram, H2 the
second):

• Correlation (method=CV_COMP_CORREL)

d(H1, H2) =
∑

I(H
′
1(I) ·H ′2(I))√∑

I(H
′
1(I)2) ·

∑
I(H

′
2(I)2)

where

H ′k(I) =
Hk(I)− 1

N ·
∑

J Hk(J)

where N is the number of histogram bins.

2.1. Histograms 137

The OpenCV 1.x C Reference Manual, Release 2.3

• Chi-Square (method=CV_COMP_CHISQR)

d(H1, H2) =
∑

I

(H1(I)−H2(I))2

H1(I) +H2(I)

• Intersection (method=CV_COMP_INTERSECT)

d(H1, H2) =
∑

I

min(H1(I), H2(I))

• Bhattacharyya distance (method=CV_COMP_BHATTACHARYYA)

d(H1, H2) =

√√√√1−
∑

I

√
H1(I) ·H2(I)√∑

I H1(I) ·
∑

I H2(I)

The function returns d(H1, H2) .

Note: the method CV_COMP_BHATTACHARYYA only works with normalized histograms.

To compare a sparse histogram or more general sparse configurations of weighted points, consider using the Cal-
cEMD2 function.

CopyHist

void cvCopyHist(const CvHistogram* src, CvHistogram** dst)
Copies a histogram.

Parameters

• src – Source histogram

• dst – Pointer to destination histogram

The function makes a copy of the histogram. If the second histogram pointer *dst is NULL, a new histogram of the
same size as src is created. Otherwise, both histograms must have equal types and sizes. Then the function copies
the source histogram’s bin values to the destination histogram and sets the same bin value ranges as in src .

CreateHist

CvHistogram* cvCreateHist(int dims, int* sizes, int type, float** ranges=NULL, int uniform=1)
Creates a histogram.

Parameters

• dims – Number of histogram dimensions

• sizes – Array of the histogram dimension sizes

• type – Histogram representation format: CV_HIST_ARRAY means that the histogram data
is represented as a multi-dimensional dense array CvMatND; CV_HIST_SPARSE means
that histogram data is represented as a multi-dimensional sparse array CvSparseMat

138 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

• ranges – Array of ranges for the histogram bins. Its meaning depends on the uniform
parameter value. The ranges are used for when the histogram is calculated or backprojected
to determine which histogram bin corresponds to which value/tuple of values from the input
image(s)

• uniform – Uniformity flag; if not 0, the histogram has evenly spaced bins and for every
0 <= i < cDims ranges[i] is an array of two numbers: lower and upper boundaries
for the i-th histogram dimension. The whole range [lower,upper] is then split into dims[i]
equal parts to determine the i-th input tuple value ranges for every histogram bin. And
if uniform=0 , then i-th element of ranges array contains dims[i]+1 elements:
lower0,upper0,lower1,upper1 = lower2, ...upperdims[i]−1 where lowerj and
upperj are lower and upper boundaries of i-th input tuple value for j-th bin, respec-
tively. In either case, the input values that are beyond the specified range for a histogram
bin are not counted by CalcHist and filled with 0 by CalcBackProject

The function creates a histogram of the specified size and returns a pointer to the created histogram. If the array
ranges is 0, the histogram bin ranges must be specified later via the function SetHistBinRanges . Though CalcHist
and CalcBackProject may process 8-bit images without setting bin ranges, they assume thy are equally spaced in 0 to
255 bins.

GetHistValue*D

float cvGetHistValue_1D(hist, idx0)

float cvGetHistValue_2D(hist, idx0, idx1)

float cvGetHistValue_3D(hist, idx0, idx1, idx2)

float cvGetHistValue_nD(hist, idx)
Returns a pointer to the histogram bin.

Parameters

• hist – Histogram

• idx1, idx2, idx3 (idx0,) – Indices of the bin

• idx – Array of indices

#define cvGetHistValue_1D(hist, idx0)
((float*)(cvPtr1D((hist)->bins, (idx0), 0))

#define cvGetHistValue_2D(hist, idx0, idx1)
((float*)(cvPtr2D((hist)->bins, (idx0), (idx1), 0)))

#define cvGetHistValue_3D(hist, idx0, idx1, idx2)
((float*)(cvPtr3D((hist)->bins, (idx0), (idx1), (idx2), 0)))

#define cvGetHistValue_nD(hist, idx)
((float*)(cvPtrND((hist)->bins, (idx), 0)))

The macros GetHistValue return a pointer to the specified bin of the 1D, 2D, 3D or N-D histogram. In the case of
a sparse histogram the function creates a new bin and sets it to 0, unless it exists already.

GetMinMaxHistValue

void cvGetMinMaxHistValue(const CvHistogram* hist, float* min_value, float* max_value,
int* min_idx=NULL, int* max_idx=NULL)

Finds the minimum and maximum histogram bins.

Parameters

2.1. Histograms 139

The OpenCV 1.x C Reference Manual, Release 2.3

• hist – Histogram

• min_value – Pointer to the minimum value of the histogram

• max_value – Pointer to the maximum value of the histogram

• min_idx – Pointer to the array of coordinates for the minimum

• max_idx – Pointer to the array of coordinates for the maximum

The function finds the minimum and maximum histogram bins and their positions. All of output arguments are
optional. Among several extremas with the same value the ones with the minimum index (in lexicographical order)
are returned. In the case of several maximums or minimums, the earliest in lexicographical order (extrema locations)
is returned.

MakeHistHeaderForArray

CvHistogram* cvMakeHistHeaderForArray(int dims, int* sizes, CvHistogram* hist, float* data,
float** ranges=NULL, int uniform=1)

Makes a histogram out of an array.

Parameters

• dims – Number of histogram dimensions

• sizes – Array of the histogram dimension sizes

• hist – The histogram header initialized by the function

• data – Array that will be used to store histogram bins

• ranges – Histogram bin ranges, see CreateHist

• uniform – Uniformity flag, see CreateHist

The function initializes the histogram, whose header and bins are allocated by th user. ReleaseHist does not need to
be called afterwards. Only dense histograms can be initialized this way. The function returns hist .

NormalizeHist

void cvNormalizeHist(CvHistogram* hist, double factor)
Normalizes the histogram.

Parameters

• hist – Pointer to the histogram

• factor – Normalization factor

The function normalizes the histogram bins by scaling them, such that the sum of the bins becomes equal to factor
.

QueryHistValue*D

float QueryHistValue_1D(CvHistogram hist, int idx0)
Queries the value of the histogram bin.

Parameters

• hist – Histogram

• idx1, idx2, idx3 (idx0,) – Indices of the bin

140 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

• idx – Array of indices

#define cvQueryHistValue_1D(hist, idx0) \
cvGetReal1D((hist)->bins, (idx0))

#define cvQueryHistValue_2D(hist, idx0, idx1) \
cvGetReal2D((hist)->bins, (idx0), (idx1))

#define cvQueryHistValue_3D(hist, idx0, idx1, idx2) \
cvGetReal3D((hist)->bins, (idx0), (idx1), (idx2))

#define cvQueryHistValue_nD(hist, idx) \
cvGetRealND((hist)->bins, (idx))

The macros return the value of the specified bin of the 1D, 2D, 3D or N-D histogram. In the case of a sparse histogram
the function returns 0, if the bin is not present in the histogram no new bin is created.

ReleaseHist

void cvReleaseHist(CvHistogram** hist)
Releases the histogram.

Parameters

• hist – Double pointer to the released histogram

The function releases the histogram (header and the data). The pointer to the histogram is cleared by the function. If
*hist pointer is already NULL , the function does nothing.

SetHistBinRanges

void cvSetHistBinRanges(CvHistogram* hist, float** ranges, int uniform=1)
Sets the bounds of the histogram bins.

Parameters

• hist – Histogram

• ranges – Array of bin ranges arrays, see CreateHist

• uniform – Uniformity flag, see CreateHist

The function is a stand-alone function for setting bin ranges in the histogram. For a more detailed description of the
parameters ranges and uniform see the CalcHist function, that can initialize the ranges as well. Ranges for the
histogram bins must be set before the histogram is calculated or the backproject of the histogram is calculated.

ThreshHist

void cvThreshHist(CvHistogram* hist, double threshold)
Thresholds the histogram.

Parameters

• hist – Pointer to the histogram

• threshold – Threshold level

The function clears histogram bins that are below the specified threshold.

2.1. Histograms 141

The OpenCV 1.x C Reference Manual, Release 2.3

2.2 Image Filtering

Functions and classes described in this section are used to perform various linear or non-linear filtering operations on
2D images (represented as Mat() ‘s), that is, for each pixel location (x, y) in the source image some its (normally
rectangular) neighborhood is considered and used to compute the response. In case of a linear filter it is a weighted
sum of pixel values, in case of morphological operations it is the minimum or maximum etc. The computed response
is stored to the destination image at the same location (x, y) . It means, that the output image will be of the same size
as the input image. Normally, the functions supports multi-channel arrays, in which case every channel is processed
independently, therefore the output image will also have the same number of channels as the input one.

Another common feature of the functions and classes described in this section is that, unlike simple arithmetic func-
tions, they need to extrapolate values of some non-existing pixels. For example, if we want to smooth an image using
a Gaussian 3×3 filter, then during the processing of the left-most pixels in each row we need pixels to the left of them,
i.e. outside of the image. We can let those pixels be the same as the left-most image pixels (i.e. use “replicated border”
extrapolation method), or assume that all the non-existing pixels are zeros (“contant border” extrapolation method)
etc.

IplConvKernel

IplConvKernel

An IplConvKernel is a rectangular convolution kernel, created by function CreateStructuringElementEx .

CopyMakeBorder

void cvCopyMakeBorder(const CvArr* src, CvArr* dst, CvPoint offset, int bordertype, CvS-
calar value=cvScalarAll(0))

Copies an image and makes a border around it.

Parameters

• src – The source image

• dst – The destination image

• offset – Coordinates of the top-left corner (or bottom-left in the case of images with bottom-
left origin) of the destination image rectangle where the source image (or its ROI) is copied.
Size of the rectanlge matches the source image size/ROI size

• bordertype – Type of the border to create around the copied source image rectangle; types
include:

– IPL_BORDER_CONSTANT border is filled with the fixed value, passed as last param-
eter of the function.

– IPL_BORDER_REPLICATE the pixels from the top and bottom rows, the left-most
and right-most columns are replicated to fill the border.

(The other two border types from IPL, IPL_BORDER_REFLECT and
IPL_BORDER_WRAP , are currently unsupported)

• value – Value of the border pixels if bordertype is IPL_BORDER_CONSTANT

The function copies the source 2D array into the interior of the destination array and makes a border of the specified
type around the copied area. The function is useful when one needs to emulate border type that is different from the
one embedded into a specific algorithm implementation. For example, morphological functions, as well as most of
other filtering functions in OpenCV, internally use replication border type, while the user may need a zero border or a
border, filled with 1’s or 255’s.

142 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

CreateStructuringElementEx

IplConvKernel* cvCreateStructuringElementEx(int cols, int rows, int anchorX, int anchorY,
int shape, int* values=NULL)

Creates a structuring element.

Parameters

• cols – Number of columns in the structuring element

• rows – Number of rows in the structuring element

• anchorX – Relative horizontal offset of the anchor point

• anchorY – Relative vertical offset of the anchor point

• shape – Shape of the structuring element; may have the following values:

– CV_SHAPE_RECT a rectangular element

– CV_SHAPE_CROSS a cross-shaped element

– CV_SHAPE_ELLIPSE an elliptic element

– CV_SHAPE_CUSTOM a user-defined element. In this case the parameter values
specifies the mask, that is, which neighbors of the pixel must be considered

• values – Pointer to the structuring element data, a plane array, representing row-by-row
scanning of the element matrix. Non-zero values indicate points that belong to the element.
If the pointer is NULL , then all values are considered non-zero, that is, the element is of a
rectangular shape. This parameter is considered only if the shape is CV_SHAPE_CUSTOM

The function CreateStructuringElementEx allocates and fills the structure IplConvKernel , which can be used as
a structuring element in the morphological operations.

Dilate

void cvDilate(const CvArr* src, CvArr* dst, IplConvKernel* element=NULL, int iterations=1)
Dilates an image by using a specific structuring element.

Parameters

• src – Source image

• dst – Destination image

• element – Structuring element used for dilation. If it is NULL, a 3 x 3 rectangular struc-
turing element is used

• iterations – Number of times dilation is applied

The function dilates the source image using the specified structuring element that determines the shape of a pixel
neighborhood over which the maximum is taken:

max
(x′,y′) in element

src(x+ x′, y + y′)

The function supports the in-place mode. Dilation can be applied several (iterations) times. For color images,
each channel is processed independently.

2.2. Image Filtering 143

The OpenCV 1.x C Reference Manual, Release 2.3

Erode

void cvErode(const CvArr* src, CvArr* dst, IplConvKernel* element=NULL, int iterations=1)
Erodes an image by using a specific structuring element.

Parameters

• src – Source image

• dst – Destination image

• element – Structuring element used for erosion. If it is NULL , a 3 x 3 rectangular struc-
turing element is used

• iterations – Number of times erosion is applied

The function erodes the source image using the specified structuring element that determines the shape of a pixel
neighborhood over which the minimum is taken:

min
(x′,y′) in element

src(x+ x′, y + y′)

The function supports the in-place mode. Erosion can be applied several (iterations) times. For color images,
each channel is processed independently.

Filter2D

void cvFilter2D(const CvArr* src, CvArr* dst, const CvMat* kernel, CvPoint anchor=cvPoint(-1, -1))
Convolves an image with the kernel.

Parameters

• src – The source image

• dst – The destination image

• kernel – Convolution kernel, a single-channel floating point matrix. If you want to apply
different kernels to different channels, split the image into separate color planes using Split
and process them individually

• anchor – The anchor of the kernel that indicates the relative position of a filtered point
within the kernel. The anchor shoud lie within the kernel. The special default value (-1,-1)
means that it is at the kernel center

The function applies an arbitrary linear filter to the image. In-place operation is supported. When the aperture is
partially outside the image, the function interpolates outlier pixel values from the nearest pixels that are inside the
image.

Laplace

void cvLaplace(const CvArr* src, CvArr* dst, int apertureSize=3)
Calculates the Laplacian of an image.

Parameters

• src – Source image

• dst – Destination image

• apertureSize – Aperture size (it has the same meaning as Sobel)

144 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

The function calculates the Laplacian of the source image by adding up the second x and y derivatives calculated using
the Sobel operator:

dst(x, y) =
d2src

dx2
+
d2src

dy2

Setting apertureSize = 1 gives the fastest variant that is equal to convolving the image with the following kernel:0 1 0
1 −4 1
0 1 0

Similar to the Sobel function, no scaling is done and the same combinations of input and output formats are supported.

MorphologyEx

void cvMorphologyEx(const CvArr* src, CvArr* dst, CvArr* temp, IplConvKernel* element, int operation,
int iterations=1)

Performs advanced morphological transformations.

Parameters

• src – Source image

• dst – Destination image

• temp – Temporary image, required in some cases

• element – Structuring element

• operation – Type of morphological operation, one of the following:

– CV_MOP_OPEN opening

– CV_MOP_CLOSE closing

– CV_MOP_GRADIENT morphological gradient

– CV_MOP_TOPHAT “top hat”

– CV_MOP_BLACKHAT “black hat”

• iterations – Number of times erosion and dilation are applied

The function can perform advanced morphological transformations using erosion and dilation as basic operations.

Opening:

dst = open(src, element) = dilate(erode(src, element), element)

Closing:

dst = close(src, element) = erode(dilate(src, element), element)

Morphological gradient:

dst = morph_grad(src, element) = dilate(src, element)− erode(src, element)

“Top hat”:

dst = tophat(src, element) = src− open(src, element)

“Black hat”:

dst = blackhat(src, element) = close(src, element)− src

The temporary image temp is required for a morphological gradient and, in the case of in-place operation, for “top
hat” and “black hat”.

2.2. Image Filtering 145

The OpenCV 1.x C Reference Manual, Release 2.3

PyrDown

void cvPyrDown(const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5)
Downsamples an image.

Parameters

• src – The source image

• dst – The destination image, should have a half as large width and height than the source

• filter – Type of the filter used for convolution; only CV_GAUSSIAN_5x5 is currently sup-
ported

The function performs the downsampling step of the Gaussian pyramid decomposition. First it convolves the source
image with the specified filter and then downsamples the image by rejecting even rows and columns.

ReleaseStructuringElement

void cvReleaseStructuringElement(IplConvKernel** element)
Deletes a structuring element.

Parameters

• element – Pointer to the deleted structuring element

The function releases the structure IplConvKernel that is no longer needed. If *element is NULL , the function
has no effect.

Smooth

void cvSmooth(const CvArr* src, CvArr* dst, int smoothtype=CV_GAUSSIAN, int param1=3,
int param2=0, double param3=0, double param4=0)

Smooths the image in one of several ways.

Parameters

• src – The source image

• dst – The destination image

• smoothtype – Type of the smoothing:

– CV_BLUR_NO_SCALE linear convolution with param1 × param2 box kernel (all
1’s). If you want to smooth different pixels with different-size box kernels, you can use
the integral image that is computed using Integral

– CV_BLUR linear convolution with param1× param2 box kernel (all 1’s) with subse-
quent scaling by 1/(param1 · param2)

– CV_GAUSSIAN linear convolution with a param1× param2 Gaussian kernel

– CV_MEDIAN median filter with a param1× param1 square aperture

– CV_BILATERAL bilateral filter with a param1 × param1 square aper-
ture, color sigma= param3 and spatial sigma= param4 . If param1=0
, the aperture square side is set to cvRound(param4*1.5)*2+1
. Information about bilateral filtering can be found at
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html

146 Chapter 2. imgproc. Image Processing

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html

The OpenCV 1.x C Reference Manual, Release 2.3

• param1 – The first parameter of the smoothing operation, the aperture width. Must be a
positive odd number (1, 3, 5, ...)

• param2 – The second parameter of the smoothing operation, the aperture height. Ignored
by CV_MEDIAN and CV_BILATERAL methods. In the case of simple scaled/non-scaled
and Gaussian blur if param2 is zero, it is set to param1 . Otherwise it must be a positive
odd number.

• param3 – In the case of a Gaussian parameter this parameter may specify Gaussian σ (stan-
dard deviation). If it is zero, it is calculated from the kernel size:

σ = 0.3(n/2− 1) + 0.8 where n =
param1 for horizontal kernel
param2 for vertical kernel

Using standard sigma for small kernels (3 × 3 to 7 × 7) gives better speed. If param3 is
not zero, while param1 and param2 are zeros, the kernel size is calculated from the sigma
(to provide accurate enough operation).

The function smooths an image using one of several methods. Every of the methods has some features and restrictions
listed below

Blur with no scaling works with single-channel images only and supports accumulation of 8-bit to 16-bit format
(similar to Sobel and Laplace) and 32-bit floating point to 32-bit floating-point format.

Simple blur and Gaussian blur support 1- or 3-channel, 8-bit and 32-bit floating point images. These two methods can
process images in-place.

Median and bilateral filters work with 1- or 3-channel 8-bit images and can not process images in-place.

Sobel

void cvSobel(const CvArr* src, CvArr* dst, int xorder, int yorder, int apertureSize=3)
Calculates the first, second, third or mixed image derivatives using an extended Sobel operator.

Parameters

• src – Source image of type CvArr*

• dst – Destination image

• xorder – Order of the derivative x

• yorder – Order of the derivative y

• apertureSize – Size of the extended Sobel kernel, must be 1, 3, 5 or 7

In all cases except 1, an apertureSize×apertureSize separable kernel will be used to calculate the derivative.
For apertureSize = 1 a 3×1 or 1×3 a kernel is used (Gaussian smoothing is not done). There is also the special
value CV_SCHARR (-1) that corresponds to a 3×3 Scharr filter that may give more accurate results than a 3×3 Sobel.
Scharr aperture is −3 0 3

−10 0 10
−3 0 3

for the x-derivative or transposed for the y-derivative.

The function calculates the image derivative by convolving the image with the appropriate kernel:

dst(x, y) =
dxorder+yordersrc

dxxorder · dyyorder

2.2. Image Filtering 147

The OpenCV 1.x C Reference Manual, Release 2.3

The Sobel operators combine Gaussian smoothing and differentiation so the result is more or less resistant to the noise.
Most often, the function is called with (xorder = 1, yorder = 0, apertureSize = 3) or (xorder = 0, yorder
= 1, apertureSize = 3) to calculate the first x- or y- image derivative. The first case corresponds to a kernel of:−1 0 1

−2 0 2
−1 0 1

and the second one corresponds to a kernel of: −1 −2 −1

0 0 0
1 2 1

or a kernel of: 1 2 1

0 0 0
−1 2 −1

depending on the image origin (origin field of IplImage structure). No scaling is done, so the destination image
usually has larger numbers (in absolute values) than the source image does. To avoid overflow, the function requires a
16-bit destination image if the source image is 8-bit. The result can be converted back to 8-bit using the ConvertScale
or the ConvertScaleAbs function. Besides 8-bit images the function can process 32-bit floating-point images. Both the
source and the destination must be single-channel images of equal size or equal ROI size.

2.3 Geometric Image Transformations

The functions in this section perform various geometrical transformations of 2D images. That is, they do not change
the image content, but deform the pixel grid, and map this deformed grid to the destination image. In fact, to avoid
sampling artifacts, the mapping is done in the reverse order, from destination to the source. That is, for each pixel
(x, y) of the destination image, the functions compute coordinates of the corresponding “donor” pixel in the source
image and copy the pixel value, that is:

dst(x, y) = src(fx(x, y), fy(x, y))

In the case when the user specifies the forward mapping: 〈gx, gy〉 : src→ dst , the OpenCV functions first compute
the corresponding inverse mapping: 〈fx, fy〉 : dst→ src and then use the above formula.

The actual implementations of the geometrical transformations, from the most generic Remap and to the simplest and
the fastest Resize , need to solve the 2 main problems with the above formula:

1. extrapolation of non-existing pixels. Similarly to the filtering functions, described in the previous section, for
some (x, y) one of fx(x, y) or fy(x, y) , or they both, may fall outside of the image, in which case some
extrapolation method needs to be used. OpenCV provides the same selection of the extrapolation methods
as in the filtering functions, but also an additional method BORDER_TRANSPARENT , which means that the
corresponding pixels in the destination image will not be modified at all.

2. interpolation of pixel values. Usually fx(x, y) and fy(x, y) are floating-point numbers (i.e. 〈fx, fy〉 can be
an affine or perspective transformation, or radial lens distortion correction etc.), so a pixel values at fractional
coordinates needs to be retrieved. In the simplest case the coordinates can be just rounded to the nearest integer
coordinates and the corresponding pixel used, which is called nearest-neighbor interpolation. However, a better
result can be achieved by using more sophisticated interpolation methods , where a polynomial function is
fit into some neighborhood of the computed pixel (fx(x, y), fy(x, y)) and then the value of the polynomial
at (fx(x, y), fy(x, y)) is taken as the interpolated pixel value. In OpenCV you can choose between several
interpolation methods, see Resize .

148 Chapter 2. imgproc. Image Processing

http://en.wikipedia.org/wiki/Multivariate_interpolation

The OpenCV 1.x C Reference Manual, Release 2.3

GetRotationMatrix2D

CvMat* cv2DRotationMatrix(CvPoint2D32f center, double angle, double scale, CvMat* mapMatrix)
Calculates the affine matrix of 2d rotation.

Parameters

• center – Center of the rotation in the source image

• angle – The rotation angle in degrees. Positive values mean counter-clockwise rotation (the
coordinate origin is assumed to be the top-left corner)

• scale – Isotropic scale factor

• mapMatrix – Pointer to the destination 2× 3 matrix

The function cv2DRotationMatrix calculates the following matrix:[
α β (1− α) · center.x− β · center.y
−β α β · center.x− (1− α) · center.y

]
where

α = scale · cos(angle), β = scale · sin(angle)

The transformation maps the rotation center to itself. If this is not the purpose, the shift should be adjusted.

GetAffineTransform

CvMat* cvGetAffineTransform(const CvPoint2D32f* src, const CvPoint2D32f* dst, CvMat* mapMa-
trix)

Calculates the affine transform from 3 corresponding points.

Parameters

• src – Coordinates of 3 triangle vertices in the source image

• dst – Coordinates of the 3 corresponding triangle vertices in the destination image

• mapMatrix – Pointer to the destination 2× 3 matrix

The function cvGetAffineTransform calculates the matrix of an affine transform such that:[
x′i
y′i

]
= mapMatrix ·

xi

yi

1

where

dst(i) = (x′i, y
′
i), src(i) = (xi, yi), i = 0, 1, 2

GetPerspectiveTransform

CvMat* cvGetPerspectiveTransform(const CvPoint2D32f* src, const CvPoint2D32f* dst, Cv-
Mat* mapMatrix)

Calculates the perspective transform from 4 corresponding points.

Parameters

2.3. Geometric Image Transformations 149

The OpenCV 1.x C Reference Manual, Release 2.3

• src – Coordinates of 4 quadrangle vertices in the source image

• dst – Coordinates of the 4 corresponding quadrangle vertices in the destination image

• mapMatrix – Pointer to the destination 3× 3 matrix

The function cvGetPerspectiveTransform calculates a matrix of perspective transforms such that:

[
x′i
y′i

]
= mapMatrix ·

xi

yi

1

where

dst(i) = (x′i, y
′
i), src(i) = (xi, yi), i = 0, 1, 2, 3

GetQuadrangleSubPix

void cvGetQuadrangleSubPix(const CvArr* src, CvArr* dst, const CvMat* mapMatrix)
Retrieves the pixel quadrangle from an image with sub-pixel accuracy.

Parameters

• src – Source image

• dst – Extracted quadrangle

• mapMatrix – The transformation 2× 3 matrix [A|b] (see the discussion)

The function cvGetQuadrangleSubPix extracts pixels from src at sub-pixel accuracy and stores them to dst
as follows:

dst(x, y) = src(A11x
′ +A12y

′ + b1, A21x
′ +A22y

′ + b2)

where

x′ = x− (width(dst)− 1)
2

, y′ = y − (height(dst)− 1)
2

and

mapMatrix =
[
A11 A12 b1
A21 A22 b2

]
The values of pixels at non-integer coordinates are retrieved using bilinear interpolation. When the function needs
pixels outside of the image, it uses replication border mode to reconstruct the values. Every channel of multiple-
channel images is processed independently.

GetRectSubPix

void cvGetRectSubPix(const CvArr* src, CvArr* dst, CvPoint2D32f center)
Retrieves the pixel rectangle from an image with sub-pixel accuracy.

Parameters

• src – Source image

• dst – Extracted rectangle

150 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

• center – Floating point coordinates of the extracted rectangle center within the source im-
age. The center must be inside the image

The function cvGetRectSubPix extracts pixels from src :

dst(x, y) = src(x+ center.x− (width(dst)− 1) ∗ 0.5, y + center.y− (height(dst)− 1) ∗ 0.5)

where the values of the pixels at non-integer coordinates are retrieved using bilinear interpolation. Every channel of
multiple-channel images is processed independently. While the rectangle center must be inside the image, parts of
the rectangle may be outside. In this case, the replication border mode is used to get pixel values beyond the image
boundaries.

LogPolar

void cvLogPolar(const CvArr* src, CvArr* dst, CvPoint2D32f center, double M,
int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS)

Remaps an image to log-polar space.

Parameters

• src – Source image

• dst – Destination image

• center – The transformation center; where the output precision is maximal

• M – Magnitude scale parameter. See below

• flags – A combination of interpolation methods and the following optional flags:

– CV_WARP_FILL_OUTLIERS fills all of the destination image pixels. If some of them
correspond to outliers in the source image, they are set to zero

– CV_WARP_INVERSE_MAP See below

The function cvLogPolar transforms the source image using the following transformation:

Forward transformation (CV_WARP_INVERSE_MAP is not set):

dst(φ, ρ) = src(x, y)

Inverse transformation (CV_WARP_INVERSE_MAP is set):

dst(x, y) = src(φ, ρ)

where

ρ = M · log
√
x2 + y2, φ = atan(y/x)

The function emulates the human “foveal” vision and can be used for fast scale and rotation-invariant template match-
ing, for object tracking and so forth. The function can not operate in-place.

#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv)
{

IplImage* src;

if(argc == 2 && (src=cvLoadImage(argv[1],1) != 0)
{

2.3. Geometric Image Transformations 151

The OpenCV 1.x C Reference Manual, Release 2.3

IplImage* dst = cvCreateImage(cvSize(256,256), 8, 3);
IplImage* src2 = cvCreateImage(cvGetSize(src), 8, 3);
cvLogPolar(src, dst, cvPoint2D32f(src->width/2,src->height/2), 40,
CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS);
cvLogPolar(dst, src2, cvPoint2D32f(src->width/2,src->height/2), 40,
CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS+CV_WARP_INVERSE_MAP);
cvNamedWindow("log-polar", 1);
cvShowImage("log-polar", dst);
cvNamedWindow("inverse log-polar", 1);
cvShowImage("inverse log-polar", src2);
cvWaitKey();

}
return 0;

}

And this is what the program displays when opencv/samples/c/fruits.jpg is passed to it

152 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

Remap

void cvRemap(const CvArr* src, CvArr* dst, const CvArr* mapx, const CvArr* mapy,
int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS, CvScalar fill-
val=cvScalarAll(0))

Applies a generic geometrical transformation to the image.

Parameters

• src – Source image

• dst – Destination image

• mapx – The map of x-coordinates (CV _ 32FC1 image)

• mapy – The map of y-coordinates (CV _ 32FC1 image)

• flags – A combination of interpolation method and the following optional flag(s):

2.3. Geometric Image Transformations 153

The OpenCV 1.x C Reference Manual, Release 2.3

– CV_WARP_FILL_OUTLIERS fills all of the destination image pixels. If some of them
correspond to outliers in the source image, they are set to fillval

• fillval – A value used to fill outliers

The function cvRemap transforms the source image using the specified map:

dst(x, y) = src(mapx(x, y),mapy(x, y))

Similar to other geometrical transformations, some interpolation method (specified by user) is used to extract pixels
with non-integer coordinates. Note that the function can not operate in-place.

Resize

void cvResize(const CvArr* src, CvArr* dst, int interpolation=CV_INTER_LINEAR)
Resizes an image.

Parameters

• src – Source image

• dst – Destination image

• interpolation – Interpolation method:

– CV_INTER_NN nearest-neigbor interpolation

– CV_INTER_LINEAR bilinear interpolation (used by default)

– CV_INTER_AREA resampling using pixel area relation. It is the preferred method for
image decimation that gives moire-free results. In terms of zooming it is similar to the
CV_INTER_NN method

– CV_INTER_CUBIC bicubic interpolation

The function cvResize resizes an image src so that it fits exactly into dst . If ROI is set, the function considers
the ROI as supported.

WarpAffine

void cvWarpAffine(const CvArr* src, CvArr* dst, const CvMat* mapMatrix,
int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS, CvScalar fill-
val=cvScalarAll(0))

Applies an affine transformation to an image.

Parameters

• src – Source image

• dst – Destination image

• mapMatrix – 2× 3 transformation matrix

• flags – A combination of interpolation methods and the following optional flags:

– CV_WARP_FILL_OUTLIERS fills all of the destination image pixels; if some of them
correspond to outliers in the source image, they are set to fillval

– CV_WARP_INVERSE_MAP indicates that matrix is inversely transformed from
the destination image to the source and, thus, can be used directly for pixel interpo-
lation. Otherwise, the function finds the inverse transform from mapMatrix

154 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

• fillval – A value used to fill outliers

The function cvWarpAffine transforms the source image using the specified matrix:

dst(x′, y′) = src(x, y)

where [
x′

y′

]
= mapMatrix ·

xy
1

 if CV_WARP_INVERSE_MAP is not set

[
x
y

]
= mapMatrix ·

x′y′
1

 otherwise

The function is similar to GetQuadrangleSubPix but they are not exactly the same. WarpAffine requires input and
output image have the same data type, has larger overhead (so it is not quite suitable for small images) and can leave
part of destination image unchanged. While GetQuadrangleSubPix may extract quadrangles from 8-bit images into
floating-point buffer, has smaller overhead and always changes the whole destination image content. Note that the
function can not operate in-place.

To transform a sparse set of points, use the Transform function from cxcore.

WarpPerspective

void cvWarpPerspective(const CvArr* src, CvArr* dst, const CvMat* mapMatrix,
int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS, CvScalar fill-
val=cvScalarAll(0))

Applies a perspective transformation to an image.

Parameters

• src – Source image

• dst – Destination image

• mapMatrix – 3× 3 transformation matrix

• flags – A combination of interpolation methods and the following optional flags:

– CV_WARP_FILL_OUTLIERS fills all of the destination image pixels; if some of them
correspond to outliers in the source image, they are set to fillval

– CV_WARP_INVERSE_MAP indicates that matrix is inversely transformed from the
destination image to the source and, thus, can be used directly for pixel interpolation.
Otherwise, the function finds the inverse transform from mapMatrix

• fillval – A value used to fill outliers

The function cvWarpPerspective transforms the source image using the specified matrix:

[
x′

y′

]
= mapMatrix ·

xy
1

 if CV_WARP_INVERSE_MAP is not set

[
x
y

]
= mapMatrix ·

x′y′
1

 otherwise

Note that the function can not operate in-place. For a sparse set of points use the PerspectiveTransform function from
CxCore.

2.3. Geometric Image Transformations 155

The OpenCV 1.x C Reference Manual, Release 2.3

2.4 Miscellaneous Image Transformations

AdaptiveThreshold

void cvAdaptiveThreshold(const CvArr* src, CvArr* dst, double maxValue, int adap-
tive_method=CV_ADAPTIVE_THRESH_MEAN_C, int threshold-
Type=CV_THRESH_BINARY, int blockSize=3, double param1=5)

Applies an adaptive threshold to an array.

Parameters

• src – Source image

• dst – Destination image

• maxValue – Maximum value that is used with CV_THRESH_BINARY and
CV_THRESH_BINARY_INV

• adaptive_method – Adaptive thresholding algorithm to use:
CV_ADAPTIVE_THRESH_MEAN_C or CV_ADAPTIVE_THRESH_GAUSSIAN_C
(see the discussion)

• thresholdType – Thresholding type; must be one of

– CV_THRESH_BINARY xxx

– CV_THRESH_BINARY_INV xxx

• blockSize – The size of a pixel neighborhood that is used to calculate a threshold value for
the pixel: 3, 5, 7, and so on

• param1 – The method-dependent parameter. For the methods
CV_ADAPTIVE_THRESH_MEAN_C and CV_ADAPTIVE_THRESH_GAUSSIAN_C
it is a constant subtracted from the mean or weighted mean (see the discussion), though it
may be negative

The function transforms a grayscale image to a binary image according to the formulas:

• CV_THRESH_BINARY

dst(x, y) =
{

maxValue if src(x, y) > T (x, y)
0 otherwise

• CV_THRESH_BINARY_INV

dst(x, y) =
{

0 if src(x, y) > T (x, y)
maxValue otherwise

where T (x, y) is a threshold calculated individually for each pixel.

For the method CV_ADAPTIVE_THRESH_MEAN_C it is the mean of a blockSize×blockSize pixel neighbor-
hood, minus param1 .

For the method CV_ADAPTIVE_THRESH_GAUSSIAN_C it is the weighted sum (gaussian) of a blockSize ×
blockSize pixel neighborhood, minus param1 .

156 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

CvtColor

void cvCvtColor(const CvArr* src, CvArr* dst, int code)
Converts an image from one color space to another.

Parameters

• src – The source 8-bit (8u), 16-bit (16u) or single-precision floating-point (32f) image

• dst – The destination image of the same data type as the source. The number of channels
may be different

• code – Color conversion operation that can be specifed using CV_

src_color_space 2 *dst_color_space* constants (see below)

The function converts the input image from one color space to another. The function ignores the colorModel
and channelSeq fields of the IplImage header, so the source image color space should be specified cor-
rectly (including order of the channels in the case of RGB space. For example, BGR means 24-bit format with
B0, G0, R0, B1, G1, R1, ... layout whereas RGB means 24-format with R0, G0, B0, R1, G1, B1, ... layout).

The conventional range for R,G,B channel values is:

• 0 to 255 for 8-bit images

• 0 to 65535 for 16-bit images and

• 0 to 1 for floating-point images.

Of course, in the case of linear transformations the range can be specific, but in order to get correct results in the case
of non-linear transformations, the input image should be scaled.

The function can do the following transformations:

• Transformations within RGB space like adding/removing the alpha channel, reversing the channel order, con-
version to/from 16-bit RGB color (R5:G6:B5 or R5:G5:B5), as well as conversion to/from grayscale using:

RGB[A] to Gray:Y ← 0.299 ·R+ 0.587 ·G+ 0.114 ·B

and

Gray to RGB[A]:R← Y,G← Y,B ← Y,A← 0

The conversion from a RGB image to gray is done with:

cvCvtColor(src ,bwsrc, CV_RGB2GRAY)

• RGB ↔ CIE XYZ.Rec 709 with D65 white point (CV_BGR2XYZ, CV_RGB2XYZ, CV_XYZ2BGR,
CV_XYZ2RGB): XY

Z

←
0.412453 0.357580 0.180423

0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

 ·
RG
B

RG
B

←
 3.240479 −1.53715 −0.498535
−0.969256 1.875991 0.041556
0.055648 −0.204043 1.057311

 ·
XY
Z

X , Y and Z cover the whole value range (in the case of floating-point images Z may exceed 1).

• RGB ↔ YCrCb JPEG (a.k.a. YCC) (CV_BGR2YCrCb, CV_RGB2YCrCb, CV_YCrCb2BGR,
CV_YCrCb2RGB)

Y ← 0.299 ·R+ 0.587 ·G+ 0.114 ·B

2.4. Miscellaneous Image Transformations 157

The OpenCV 1.x C Reference Manual, Release 2.3

Cr ← (R− Y) · 0.713 + delta

Cb← (B − Y) · 0.564 + delta

R← Y + 1.403 · (Cr − delta)

G← Y − 0.344 · (Cr − delta)− 0.714 · (Cb− delta)

B ← Y + 1.773 · (Cb− delta)

where

delta =

 128 for 8-bit images
32768 for 16-bit images
0.5 for floating-point images

Y, Cr and Cb cover the whole value range.

• RGB↔ HSV (CV_BGR2HSV, CV_RGB2HSV, CV_HSV2BGR, CV_HSV2RGB) in the case of 8-bit and
16-bit images R, G and B are converted to floating-point format and scaled to fit the 0 to 1 range

V ← max(R,G,B)

S ←
{

V−min(R,G,B)
V if V 6= 0

0 otherwise

H ←

 60(G−B)/S if V = R
120 + 60(B −R)/S if V = G
240 + 60(R−G)/S if V = B

if H < 0 then H ← H + 360 On output 0 ≤ V ≤ 1 , 0 ≤ S ≤ 1 , 0 ≤ H ≤ 360 .

The values are then converted to the destination data type:

– 8-bit images

V ← 255V, S ← 255S,H ← H/2(to fit to 0 to 255)

– 16-bit images (currently not supported)

V < −65535V, S < −65535S,H < −H

– 32-bit images H, S, V are left as is

• RGB↔ HLS (CV_BGR2HLS, CV_RGB2HLS, CV_HLS2BGR, CV_HLS2RGB). in the case of 8-bit and
16-bit images R, G and B are converted to floating-point format and scaled to fit the 0 to 1 range.

Vmax ← max(R,G,B)

Vmin ← min(R,G,B)

158 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

L← Vmax + Vmin

2

S ←

{
Vmax−Vmin

Vmax+Vmin
if L < 0.5

Vmax−Vmin

2−(Vmax+Vmin) if L ≥ 0.5

H ←

 60(G−B)/S if Vmax = R
120 + 60(B −R)/S if Vmax = G
240 + 60(R−G)/S if Vmax = B

if H < 0 then H ← H + 360 On output 0 ≤ L ≤ 1 , 0 ≤ S ≤ 1 , 0 ≤ H ≤ 360 .

The values are then converted to the destination data type:

– 8-bit images

V ← 255V, S ← 255S,H ← H/2(to fit to 0 to 255)

– 16-bit images (currently not supported)

V < −65535V, S < −65535S,H < −H

– 32-bit images H, S, V are left as is

• RGB↔ CIE L*a*b* (CV_BGR2Lab, CV_RGB2Lab, CV_Lab2BGR, CV_Lab2RGB) in the case of 8-
bit and 16-bit images R, G and B are converted to floating-point format and scaled to fit the 0 to 1 rangeXY

Z

←
0.412453 0.357580 0.180423

0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

 ·
RG
B

X ← X/Xn,whereXn = 0.950456

Z ← Z/Zn,whereZn = 1.088754

L←
{

116 ∗ Y 1/3 − 16 for Y > 0.008856
903.3 ∗ Y for Y ≤ 0.008856

a← 500(f(X)− f(Y)) + delta

b← 200(f(Y)− f(Z)) + delta

where

f(t) =
{
t1/3 for t > 0.008856
7.787t+ 16/116 for t <= 0.008856

and

delta =
{

128 for 8-bit images
0 for floating-point images

On output 0 ≤ L ≤ 100 , −127 ≤ a ≤ 127 , −127 ≤ b ≤ 127 The values are then converted to the destination
data type:

2.4. Miscellaneous Image Transformations 159

The OpenCV 1.x C Reference Manual, Release 2.3

– 8-bit images

L← L ∗ 255/100, a← a+ 128, b← b+ 128

– 16-bit images currently not supported

– 32-bit images L, a, b are left as is

• RGB ↔ CIE L*u*v* (CV_BGR2Luv, CV_RGB2Luv, CV_Luv2BGR, CV_Luv2RGB) in the case of
8-bit and 16-bit images R, G and B are converted to floating-point format and scaled to fit 0 to 1 rangeXY

Z

←
0.412453 0.357580 0.180423

0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

 ·
RG
B

L←
{

116Y 1/3 for Y > 0.008856
903.3Y for Y <= 0.008856

u′ ← 4 ∗X/(X + 15 ∗ Y + 3Z)

v′ ← 9 ∗ Y/(X + 15 ∗ Y + 3Z)

u← 13 ∗ L ∗ (u′ − un) where un = 0.19793943

v ← 13 ∗ L ∗ (v′ − vn) where vn = 0.46831096

On output 0 ≤ L ≤ 100 , −134 ≤ u ≤ 220 , −140 ≤ v ≤ 122 .

The values are then converted to the destination data type:

– 8-bit images

L← 255/100L, u← 255/354(u+ 134), v ← 255/256(v + 140)

– 16-bit images currently not supported

– 32-bit images L, u, v are left as is

The above formulas for converting RGB to/from various color spaces have been taken from multiple sources on
Web, primarily from the Ford98 at the Charles Poynton site.

• Bayer→ RGB (CV_BayerBG2BGR, CV_BayerGB2BGR, CV_BayerRG2BGR, CV_BayerGR2BGR,
CV_BayerBG2RGB, CV_BayerGB2RGB, CV_BayerRG2RGB, CV_BayerGR2RGB) The Bayer pat-
tern is widely used in CCD and CMOS cameras. It allows one to get color pictures from a single plane where
R,G and B pixels (sensors of a particular component) are interleaved like this:

160 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

The output RGB components of a pixel are interpolated from 1, 2 or 4 neighbors of the pixel having the same
color. There are several modifications of the above pattern that can be achieved by shifting the pattern one pixel
left and/or one pixel up. The two letters C1 and C2 in the conversion constants CV_Bayer C1C2 2BGR and
CV_BayerC1C2 2RGB indicate the particular pattern type - these are components from the second row, second
and third columns, respectively. For example, the above pattern has very popular “BG” type.

DistTransform

void cvDistTransform(const CvArr* src, CvArr* dst, int distance_type=CV_DIST_L2, int mask_size=3,
const float* mask=NULL, CvArr* labels=NULL)

Calculates the distance to the closest zero pixel for all non-zero pixels of the source image.

Parameters

• src – 8-bit, single-channel (binary) source image

• dst – Output image with calculated distances (32-bit floating-point, single-channel)

• distance_type – Type of distance; can be CV_DIST_L1, CV_DIST_L2, CV_DIST_C
or CV_DIST_USER

• mask_size – Size of the distance transform mask; can be 3 or 5. in the case of CV_DIST_L1
or CV_DIST_C the parameter is forced to 3, because a 3× 3 mask gives the same result as
a 5× 5 yet it is faster

• mask – User-defined mask in the case of a user-defined distance, it consists of 2 numbers
(horizontal/vertical shift cost, diagonal shift cost) in the case ofa 3× 3 mask and 3 numbers
(horizontal/vertical shift cost, diagonal shift cost, knight’s move cost) in the case of a 5× 5
mask

• labels – The optional output 2d array of integer type labels, the same size as src and dst

The function calculates the approximated distance from every binary image pixel to the nearest zero pixel. For zero
pixels the function sets the zero distance, for others it finds the shortest path consisting of basic shifts: horizontal,
vertical, diagonal or knight’s move (the latest is available for a 5 × 5 mask). The overall distance is calculated as a
sum of these basic distances. Because the distance function should be symmetric, all of the horizontal and vertical
shifts must have the same cost (that is denoted as a), all the diagonal shifts must have the same cost (denoted b), and
all knight’s moves must have the same cost (denoted c). For CV_DIST_C and CV_DIST_L1 types the distance is
calculated precisely, whereas for CV_DIST_L2 (Euclidian distance) the distance can be calculated only with some
relative error (a 5× 5 mask gives more accurate results), OpenCV uses the values suggested in Borgefors86 :

2.4. Miscellaneous Image Transformations 161

The OpenCV 1.x C Reference Manual, Release 2.3

CV_DIST_C (3× 3) a = 1, b = 1
CV_DIST_L1 (3× 3) a = 1, b = 2
CV_DIST_L2 (3× 3) a=0.955, b=1.3693
CV_DIST_L2 (5× 5) a=1, b=1.4, c=2.1969

And below are samples of the distance field (black (0) pixel is in the middle of white square) in the case of a user-
defined distance:

User-defined 3× 3 mask (a=1, b=1.5)

4.5 4 3.5 3 3.5 4 4.5
4 3 2.5 2 2.5 3 4
3.5 2.5 1.5 1 1.5 2.5 3.5
3 2 1 1 2 3
3.5 2.5 1.5 1 1.5 2.5 3.5
4 3 2.5 2 2.5 3 4
4.5 4 3.5 3 3.5 4 4.5

User-defined 5× 5 mask (a=1, b=1.5, c=2)

4.5 3.5 3 3 3 3.5 4.5
3.5 3 2 2 2 3 3.5
3 2 1.5 1 1.5 2 3
3 2 1 1 2 3
3 2 1.5 1 1.5 2 3
3.5 3 2 2 2 3 3.5
4 3.5 3 3 3 3.5 4

Typically, for a fast, coarse distance estimation CV_DIST_L2 , a 3× 3 mask is used, and for a more accurate distance
estimation CV_DIST_L2 , a 5× 5 mask is used.

When the output parameter labels is not NULL , for every non-zero pixel the function also finds the nearest con-
nected component consisting of zero pixels. The connected components themselves are found as contours in the
beginning of the function.

In this mode the processing time is still O(N), where N is the number of pixels. Thus, the function provides a very fast
way to compute approximate Voronoi diagram for the binary image.

CvConnectedComp

CvConnectedComp

typedef struct CvConnectedComp
{

double area; /* area of the segmented component */
CvScalar value; /* average color of the connected component */
CvRect rect; /* ROI of the segmented component */
CvSeq* contour; /* optional component boundary

(the contour might have child contours corresponding to the holes) */
} CvConnectedComp;

FloodFill

void cvFloodFill(CvArr* image, CvPoint seed_point, CvScalar new_val, CvScalar lo_diff=cvScalarAll(0),
CvScalar up_diff=cvScalarAll(0), CvConnectedComp* comp=NULL, int flags=4,
CvArr* mask=NULL)

Fills a connected component with the given color.

162 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

Parameters

• image – Input 1- or 3-channel, 8-bit or floating-point image. It is modified by the function
unless the CV_FLOODFILL_MASK_ONLY flag is set (see below)

• seed_point – The starting point

• new_val – New value of the repainted domain pixels

• lo_diff – Maximal lower brightness/color difference between the currently observed pixel
and one of its neighbors belonging to the component, or a seed pixel being added to the
component. In the case of 8-bit color images it is a packed value

• up_diff – Maximal upper brightness/color difference between the currently observed pixel
and one of its neighbors belonging to the component, or a seed pixel being added to the
component. In the case of 8-bit color images it is a packed value

• comp – Pointer to the structure that the function fills with the information about the re-
painted domain. Note that the function does not fill comp->contour field. The boundary
of the filled component can be retrieved from the output mask image using FindContours

• flags – The operation flags. Lower bits contain connectivity value, 4 (by default) or 8, used
within the function. Connectivity determines which neighbors of a pixel are considered.
Upper bits can be 0 or a combination of the following flags:

– CV_FLOODFILL_FIXED_RANGE if set, the difference between the current pixel and
seed pixel is considered, otherwise the difference between neighbor pixels is considered
(the range is floating)

– CV_FLOODFILL_MASK_ONLY if set, the function does not fill the image (
new_val is ignored), but fills the mask (that must be non-NULL in this case)

• mask – Operation mask, should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
taller than image . If not NULL, the function uses and updates the mask, so the user takes
responsibility of initializing the mask content. Floodfilling can’t go across non-zero pixels
in the mask, for example, an edge detector output can be used as a mask to stop filling at
edges. It is possible to use the same mask in multiple calls to the function to make sure the
filled area do not overlap. Note : because the mask is larger than the filled image, a pixel in
mask that corresponds to (x, y) pixel in image will have coordinates (x+ 1, y + 1)

The function fills a connected component starting from the seed point with the specified color. The connectivity is
determined by the closeness of pixel values. The pixel at (x, y) is considered to belong to the repainted domain if:

• grayscale image, floating range

src(x′, y′)− lo_diff <= src(x, y) <= src(x′, y′) + up_diff

• grayscale image, fixed range

src(seed.x, seed.y)− lo_diff <= src(x, y) <= src(seed.x, seed.y) + up_diff

• color image, floating range

src(x′, y′)r − lo_diffr <= src(x, y)r <= src(x′, y′)r + up_diffr

2.4. Miscellaneous Image Transformations 163

The OpenCV 1.x C Reference Manual, Release 2.3

src(x′, y′)g − lo_diffg <= src(x, y)g <= src(x′, y′)g + up_diffg

src(x′, y′)b − lo_diffb <= src(x, y)b <= src(x′, y′)b + up_diffb

• color image, fixed range

src(seed.x, seed.y)r − lo_diffr <= src(x, y)r <= src(seed.x, seed.y)r + up_diffr

src(seed.x, seed.y)g − lo_diffg <= src(x, y)g <= src(seed.x, seed.y)g + up_diffg

src(seed.x, seed.y)b − lo_diffb <= src(x, y)b <= src(seed.x, seed.y)b + up_diffb

where src(x′, y′) is the value of one of pixel neighbors. That is, to be added to the connected component, a pixel’s
color/brightness should be close enough to the:

• color/brightness of one of its neighbors that are already referred to the connected component in the case of
floating range

• color/brightness of the seed point in the case of fixed range.

Inpaint

void cvInpaint(const CvArr* src, const CvArr* mask, CvArr* dst, double inpaintRadius, int flags)
Inpaints the selected region in the image.

Parameters

• src – The input 8-bit 1-channel or 3-channel image.

• mask – The inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that
needs to be inpainted.

• dst – The output image of the same format and the same size as input.

• inpaintRadius – The radius of circlular neighborhood of each point inpainted that is con-
sidered by the algorithm.

• flags – The inpainting method, one of the following:

– CV_INPAINT_NS Navier-Stokes based method.

– CV_INPAINT_TELEA The method by Alexandru Telea Telea04

The function reconstructs the selected image area from the pixel near the area boundary. The function may be used to
remove dust and scratches from a scanned photo, or to remove undesirable objects from still images or video.

Integral

void cvIntegral(const CvArr* image, CvArr* sum, CvArr* sqsum=NULL, CvArr* tiltedSum=NULL)
Calculates the integral of an image.

Parameters

• image – The source image, W ×H , 8-bit or floating-point (32f or 64f)

164 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

• sum – The integral image, (W + 1)× (H + 1) , 32-bit integer or double precision floating-
point (64f)

• sqsum – The integral image for squared pixel values, (W +1)× (H+1) , double precision
floating-point (64f)

• tiltedSum – The integral for the image rotated by 45 degrees, (W +1)× (H+1) , the same
data type as sum

The function calculates one or more integral images for the source image as following:

sum(X,Y) =
∑

x<X,y<Y

image(x, y)

sqsum(X,Y) =
∑

x<X,y<Y

image(x, y)2

tiltedSum(X,Y) =
∑

y<Y,abs(x−X+1)≤Y−y−1

image(x, y)

Using these integral images, one may calculate sum, mean and standard deviation over a specific up-right or rotated
rectangular region of the image in a constant time, for example:∑

x1<=x<x2, y1<=y<y2

= sum(x2, y2)− sum(x1, y2)− sum(x2, y1) + sum(x1, y1)

It makes possible to do a fast blurring or fast block correlation with variable window size, for example. In the case of
multi-channel images, sums for each channel are accumulated independently.

PyrMeanShiftFiltering

void cvPyrMeanShiftFiltering(const CvArr* src, CvArr* dst, double sp, double sr,
int max_level=1, CvTermCriteria termcrit= cvTermCrite-
ria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 5, 1))

Does meanshift image segmentation

Parameters

• src – The source 8-bit, 3-channel image.

• dst – The destination image of the same format and the same size as the source.

• sp – The spatial window radius.

• sr – The color window radius.

• max_level – Maximum level of the pyramid for the segmentation.

• termcrit – Termination criteria: when to stop meanshift iterations.

The function implements the filtering stage of meanshift segmentation, that is, the output of the function is the filtered
“posterized” image with color gradients and fine-grain texture flattened. At every pixel (X,Y) of the input image (or
down-sized input image, see below) the function executes meanshift iterations, that is, the pixel (X,Y) neighborhood
in the joint space-color hyperspace is considered:

(x, y) : X − sp ≤ x ≤ X + sp, Y − sp ≤ y ≤ Y + sp, ||(R,G,B)− (r, g, b)|| ≤ sr

where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y) , respectively (though, the
algorithm does not depend on the color space used, so any 3-component color space can be used instead). Over the

2.4. Miscellaneous Image Transformations 165

The OpenCV 1.x C Reference Manual, Release 2.3

neighborhood the average spatial value (X’,Y’) and average color vector (R’,G’,B’) are found and they act as
the neighborhood center on the next iteration:

(X,Y) (X ′, Y ′), (R,G,B) (R′, G′, B′). After the iterations over, the color components of the initial pixel (that is,
the pixel from where the iterations started) are set to the final value (average color at the last iteration):

I(X,Y) < −(R∗, G∗, B∗) Then max_level > 0 , the gaussian pyramid of max_level+1 levels is built, and the
above procedure is run on the smallest layer. After that, the results are propagated to the larger layer and the iterations
are run again only on those pixels where the layer colors differ much (> sr) from the lower-resolution layer, that is,
the boundaries of the color regions are clarified. Note, that the results will be actually different from the ones obtained
by running the meanshift procedure on the whole original image (i.e. when max_level == 0).

PyrSegmentation

void cvPyrSegmentation(IplImage* src, IplImage* dst, CvMemStorage* storage, CvSeq** comp,
int level, double threshold1, double threshold2)

Implements image segmentation by pyramids.

Parameters

• src – The source image

• dst – The destination image

• storage – Storage; stores the resulting sequence of connected components

• comp – Pointer to the output sequence of the segmented components

• level – Maximum level of the pyramid for the segmentation

• threshold1 – Error threshold for establishing the links

• threshold2 – Error threshold for the segments clustering

The function implements image segmentation by pyramids. The pyramid builds up to the level level . The links
between any pixel a on level i and its candidate father pixel b on the adjacent level are established if p(c(a), c(b)) <
threshold1 . After the connected components are defined, they are joined into several clusters. Any two segments
A and B belong to the same cluster, if p(c(A), c(B)) < threshold2 . If the input image has only one channel, then
p(c1, c2) = |c1 − c2| . If the input image has three channels (red, green and blue), then

p(c1, c2) = 0.30(c1r − c2r) + 0.59(c1g − c2g) + 0.11(c1b − c2b).

There may be more than one connected component per a cluster. The images src and dst should be 8-bit single-
channel or 3-channel images or equal size.

Threshold

double cvThreshold(const CvArr* src, CvArr* dst, double threshold, double maxValue, int thresholdType)
Applies a fixed-level threshold to array elements.

Parameters

• src – Source array (single-channel, 8-bit or 32-bit floating point)

• dst – Destination array; must be either the same type as src or 8-bit

• threshold – Threshold value

• maxValue – Maximum value to use with CV_THRESH_BINARY and
CV_THRESH_BINARY_INV thresholding types

166 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

• thresholdType – Thresholding type (see the discussion)

The function applies fixed-level thresholding to a single-channel array. The function is typically used to get a bi-level
(binary) image out of a grayscale image (CmpS could be also used for this purpose) or for removing a noise, i.e.
filtering out pixels with too small or too large values. There are several types of thresholding that the function supports
that are determined by thresholdType :

• CV_THRESH_BINARY

dst(x, y) =
{

maxValue if src(x, y) > threshold
0 otherwise

• CV_THRESH_BINARY_INV

dst(x, y) =
{

0 if src(x, y) > threshold
maxValue otherwise

• CV_THRESH_TRUNC

dst(x, y) =
{

threshold if src(x, y) > threshold
src(x, y) otherwise

• CV_THRESH_TOZERO

dst(x, y) =
{

src(x, y) if src(x, y) > threshold
0 otherwise

• CV_THRESH_TOZERO_INV

dst(x, y) =
{

0 if src(x, y) > threshold
src(x, y) otherwise

Also, the special value CV_THRESH_OTSU may be combined with one of the above values. In this case the function
determines the optimal threshold value using Otsu’s algorithm and uses it instead of the specified thresh . The
function returns the computed threshold value. Currently, Otsu’s method is implemented only for 8-bit images.

2.4. Miscellaneous Image Transformations 167

The OpenCV 1.x C Reference Manual, Release 2.3

168 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

2.5 Structural Analysis and Shape Descriptors

ApproxChains

CvSeq* cvApproxChains(CvSeq* src_seq, CvMemStorage* storage,
int method=CV_CHAIN_APPROX_SIMPLE, double parameter=0, int mini-
mal_perimeter=0, int recursive=0)

Approximates Freeman chain(s) with a polygonal curve.

Parameters

• src_seq – Pointer to the chain that can refer to other chains

• storage – Storage location for the resulting polylines

• method – Approximation method (see the description of the function FindContours)

• parameter – Method parameter (not used now)

• minimal_perimeter – Approximates only those contours whose perimeters are not less than
minimal_perimeter . Other chains are removed from the resulting structure

• recursive – If not 0, the function approximates all chains that access can be obtained to
from src_seq by using the h_next or v_next links . If 0, the single chain is ap-
proximated

This is a stand-alone approximation routine. The function cvApproxChains works exactly in the same way as
FindContours with the corresponding approximation flag. The function returns pointer to the first resultant contour.
Other approximated contours, if any, can be accessed via the v_next or h_next fields of the returned structure.

ApproxPoly

CvSeq* cvApproxPoly(const void* src_seq, int header_size, CvMemStorage* storage, int method, dou-
ble parameter, int parameter2=0)

Approximates polygonal curve(s) with the specified precision.

Parameters

• src_seq – Sequence of an array of points

• header_size – Header size of the approximated curve[s]

• storage – Container for the approximated contours. If it is NULL, the input sequences’
storage is used

• method – Approximation method; only CV_POLY_APPROX_DP is supported, that corre-
sponds to the Douglas-Peucker algorithm

• parameter – Method-specific parameter; in the case of CV_POLY_APPROX_DP it is a
desired approximation accuracy

• parameter2 – If case if src_seq is a sequence, the parameter determines whether the sin-
gle sequence should be approximated or all sequences on the same level or below src_seq
(see FindContours for description of hierarchical contour structures). If src_seq is an ar-
ray CvMat* of points, the parameter specifies whether the curve is closed (parameter2
!=0) or not (parameter2 =0)

The function approximates one or more curves and returns the approximation result[s]. In the case of multiple curves,
the resultant tree will have the same structure as the input one (1:1 correspondence).

2.5. Structural Analysis and Shape Descriptors 169

The OpenCV 1.x C Reference Manual, Release 2.3

ArcLength

double cvArcLength(const void* curve, CvSlice slice=CV_WHOLE_SEQ, int isClosed=-1)
Calculates the contour perimeter or the curve length.

Parameters

• curve – Sequence or array of the curve points

• slice – Starting and ending points of the curve, by default, the whole curve length is calcu-
lated

• isClosed – Indicates whether the curve is closed or not. There are 3 cases:

– isClosed = 0 the curve is assumed to be unclosed.

– isClosed > 0 the curve is assumed to be closed.

– isClosed < 0 if curve is sequence, the flag CV_SEQ_FLAG_CLOSED of
((CvSeq*)curve)->flags is checked to determine if the curve is closed or not,
otherwise (curve is represented by array (CvMat*) of points) it is assumed to be unclosed.

The function calculates the length or curve as the sum of lengths of segments between subsequent points

BoundingRect

CvRect cvBoundingRect(CvArr* points, int update=0)
Calculates the up-right bounding rectangle of a point set.

Parameters

• points – 2D point set, either a sequence or vector (CvMat) of points

• update – The update flag. See below.

The function returns the up-right bounding rectangle for a 2d point set. Here is the list of possible combination of the
flag values and type of points :

up-
date

points action

0 CvContour* the bounding rectangle is not calculated, but it is taken from rect field of the
contour header.

1 CvContour* the bounding rectangle is calculated and written to rect field of the contour
header.

0 CvSeq* or
CvMat*

the bounding rectangle is calculated and returned.

1 CvSeq* or
CvMat*

runtime error is raised.

BoxPoints

void cvBoxPoints(CvBox2D box, CvPoint2D32f pt[4])
Finds the box vertices.

Parameters

• box – Box

• points – Array of vertices

170 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

The function calculates the vertices of the input 2d box.

Here is the function code:

void cvBoxPoints(CvBox2D box, CvPoint2D32f pt[4])
{

float a = (float)cos(box.angle)*0.5f;
float b = (float)sin(box.angle)*0.5f;

pt[0].x = box.center.x - a*box.size.height - b*box.size.width;
pt[0].y = box.center.y + b*box.size.height - a*box.size.width;
pt[1].x = box.center.x + a*box.size.height - b*box.size.width;
pt[1].y = box.center.y - b*box.size.height - a*box.size.width;
pt[2].x = 2*box.center.x - pt[0].x;
pt[2].y = 2*box.center.y - pt[0].y;
pt[3].x = 2*box.center.x - pt[1].x;
pt[3].y = 2*box.center.y - pt[1].y;

}

CalcPGH

void cvCalcPGH(const CvSeq* contour, CvHistogram* hist)
Calculates a pair-wise geometrical histogram for a contour.

Parameters

• contour – Input contour. Currently, only integer point coordinates are allowed

• hist – Calculated histogram; must be two-dimensional

The function calculates a 2D pair-wise geometrical histogram (PGH), described in Iivarinen97 for the contour. The
algorithm considers every pair of contour edges. The angle between the edges and the minimum/maximum distances
are determined for every pair. To do this each of the edges in turn is taken as the base, while the function loops through
all the other edges. When the base edge and any other edge are considered, the minimum and maximum distances
from the points on the non-base edge and line of the base edge are selected. The angle between the edges defines
the row of the histogram in which all the bins that correspond to the distance between the calculated minimum and
maximum distances are incremented (that is, the histogram is transposed relatively to the Iivarninen97 definition).
The histogram can be used for contour matching.

CalcEMD2

float cvCalcEMD2(const CvArr* signature1, const CvArr* signature2, int distance_type, CvDistance-
Function distance_func=NULL, const CvArr* cost_matrix=NULL, CvArr* flow=NULL,
float* lower_bound=NULL, void* userdata=NULL)

Computes the “minimal work” distance between two weighted point configurations.

Parameters

• signature1 – First signature, a size1 × dims + 1 floating-point matrix. Each row stores
the point weight followed by the point coordinates. The matrix is allowed to have a single
column (weights only) if the user-defined cost matrix is used

• signature2 – Second signature of the same format as signature1 , though the number
of rows may be different. The total weights may be different, in this case an extra “dummy”
point is added to either signature1 or signature2

2.5. Structural Analysis and Shape Descriptors 171

The OpenCV 1.x C Reference Manual, Release 2.3

• distance_type – Metrics used; CV_DIST_L1, CV_DIST_L2 , and CV_DIST_C stand
for one of the standard metrics; CV_DIST_USER means that a user-defined function
distance_func or pre-calculated cost_matrix is used

• distance_func – The user-supplied distance function. It takes coordinates of two points and
returns the distance between the points ‘‘ typedef float (CvDistanceFunction)(const float f1,
const float* f2, void* userdata);‘‘

• cost_matrix – The user-defined size1 × size2 cost matrix. At least one of
cost_matrix and distance_func must be NULL. Also, if a cost matrix is used,
lower boundary (see below) can not be calculated, because it needs a metric function

• flow – The resultant size1 × size2 flow matrix: flowi,j is a flow from i th point of
signature1 to j th point of signature2

• lower_bound – Optional input/output parameter: lower boundary of distance between the
two signatures that is a distance between mass centers. The lower boundary may not be
calculated if the user-defined cost matrix is used, the total weights of point configurations
are not equal, or if the signatures consist of weights only (i.e. the signature matrices have
a single column). The user must initialize *lower_bound . If the calculated distance
between mass centers is greater or equal to *lower_bound (it means that the signatures
are far enough) the function does not calculate EMD. In any case *lower_bound is set
to the calculated distance between mass centers on return. Thus, if user wants to calculate
both distance between mass centers and EMD, *lower_bound should be set to 0

• userdata – Pointer to optional data that is passed into the user-defined distance function

The function computes the earth mover distance and/or a lower boundary of the distance between the two weighted
point configurations. One of the applications described in RubnerSept98 is multi-dimensional histogram comparison
for image retrieval. EMD is a a transportation problem that is solved using some modification of a simplex algorithm,
thus the complexity is exponential in the worst case, though, on average it is much faster. In the case of a real metric
the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used to determine roughly
whether the two signatures are far enough so that they cannot relate to the same object.

CheckContourConvexity

int cvCheckContourConvexity(const CvArr* contour)
Tests contour convexity.

Parameters

• contour – Tested contour (sequence or array of points)

The function tests whether the input contour is convex or not. The contour must be simple, without self-intersections.

CvConvexityDefect

CvConvexityDefect

Structure describing a single contour convexity defect.

typedef struct CvConvexityDefect
{

CvPoint* start; /* point of the contour where the defect begins */
CvPoint* end; /* point of the contour where the defect ends */
CvPoint* depth_point; /* the farthest from the convex hull point within the defect */
float depth; /* distance between the farthest point and the convex hull */

} CvConvexityDefect;

172 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

ContourArea

double cvContourArea(const CvArr* contour, CvSlice slice=CV_WHOLE_SEQ)
Calculates the area of a whole contour or a contour section.

Parameters

• contour – Contour (sequence or array of vertices)

• slice – Starting and ending points of the contour section of interest, by default, the area of
the whole contour is calculated

The function calculates the area of a whole contour or a contour section. In the latter case the total area bounded by
the contour arc and the chord connecting the 2 selected points is calculated as shown on the picture below:

2.5. Structural Analysis and Shape Descriptors 173

The OpenCV 1.x C Reference Manual, Release 2.3

Orientation of the contour affects the area sign, thus the function may return a negative result. Use the fabs()
function from C runtime to get the absolute value of the area.

ContourFromContourTree

CvSeq* cvContourFromContourTree(const CvContourTree* tree, CvMemStorage* storage, CvTerm-
Criteria criteria)

Restores a contour from the tree.

Parameters

• tree – Contour tree

• storage – Container for the reconstructed contour

• criteria – Criteria, where to stop reconstruction

The function restores the contour from its binary tree representation. The parameter criteria determines the
accuracy and/or the number of tree levels used for reconstruction, so it is possible to build an approximated contour.
The function returns the reconstructed contour.

ConvexHull2

CvSeq* cvConvexHull2(const CvArr* input, void* storage=NULL, int orientation=CV_CLOCKWISE,
int return_points=0)

Finds the convex hull of a point set.

Parameters

• points – Sequence or array of 2D points with 32-bit integer or floating-point coordinates

174 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

• storage – The destination array (CvMat*) or memory storage (CvMemStorage*) that will
store the convex hull. If it is an array, it should be 1d and have the same number of elements
as the input array/sequence. On output the header is modified as to truncate the array down
to the hull size. If storage is NULL then the convex hull will be stored in the same storage
as the input sequence

• orientation – Desired orientation of convex hull: CV_CLOCKWISE or
CV_COUNTER_CLOCKWISE

• return_points – If non-zero, the points themselves will be stored in the hull instead of
indices if storage is an array, or pointers if storage is memory storage

The function finds the convex hull of a 2D point set using Sklansky’s algorithm. If storage is memory storage, the
function creates a sequence containing the hull points or pointers to them, depending on return_points value and
returns the sequence on output. If storage is a CvMat, the function returns NULL.

Example. Building convex hull for a sequence or array of points

#include "cv.h"
#include "highgui.h"
#include <stdlib.h>

#define ARRAY 0 /* switch between array/sequence method by replacing 0<=>1 */

void main(int argc, char** argv)
{

IplImage* img = cvCreateImage(cvSize(500, 500), 8, 3);
cvNamedWindow("hull", 1);

#if !ARRAY
CvMemStorage* storage = cvCreateMemStorage();

#endif

for(;;)
{

int i, count = rand()
CvPoint pt0;

#if !ARRAY
CvSeq* ptseq = cvCreateSeq(CV_SEQ_KIND_GENERIC|CV_32SC2,

sizeof(CvContour),
sizeof(CvPoint),
storage);

CvSeq* hull;

for(i = 0; i < count; i++)
{

pt0.x = rand()
pt0.y = rand()
cvSeqPush(ptseq, &pt0);

}
hull = cvConvexHull2(ptseq, 0, CV_CLOCKWISE, 0);
hullcount = hull->total;

#else
CvPoint* points = (CvPoint*)malloc(count * sizeof(points[0]));
int* hull = (int*)malloc(count * sizeof(hull[0]));
CvMat point_mat = cvMat(1, count, CV_32SC2, points);
CvMat hull_mat = cvMat(1, count, CV_32SC1, hull);

for(i = 0; i < count; i++)
{

2.5. Structural Analysis and Shape Descriptors 175

The OpenCV 1.x C Reference Manual, Release 2.3

pt0.x = rand()
pt0.y = rand()
points[i] = pt0;

}
cvConvexHull2(&point_mat, &hull_mat, CV_CLOCKWISE, 0);
hullcount = hull_mat.cols;

#endif
cvZero(img);
for(i = 0; i < count; i++)
{

#if !ARRAY
pt0 = *CV_GET_SEQ_ELEM(CvPoint, ptseq, i);

#else
pt0 = points[i];

#endif
cvCircle(img, pt0, 2, CV_RGB(255, 0, 0), CV_FILLED);

}

#if !ARRAY
pt0 = **CV_GET_SEQ_ELEM(CvPoint*, hull, hullcount - 1);

#else
pt0 = points[hull[hullcount-1]];

#endif

for(i = 0; i < hullcount; i++)
{

#if !ARRAY
CvPoint pt = **CV_GET_SEQ_ELEM(CvPoint*, hull, i);

#else
CvPoint pt = points[hull[i]];

#endif
cvLine(img, pt0, pt, CV_RGB(0, 255, 0));
pt0 = pt;

}

cvShowImage("hull", img);

int key = cvWaitKey(0);
if(key == 27) // ’ESC’

break;

#if !ARRAY
cvClearMemStorage(storage);

#else
free(points);
free(hull);

#endif
}

}

ConvexityDefects

CvSeq* cvConvexityDefects(const CvArr* contour, const CvArr* convexhull, CvMemStorage* stor-
age=NULL)

Finds the convexity defects of a contour.

Parameters

176 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

• contour – Input contour

• convexhull – Convex hull obtained using ConvexHull2 that should contain pointers or in-
dices to the contour points, not the hull points themselves (the return_points parameter
in ConvexHull2 should be 0)

• storage – Container for the output sequence of convexity defects. If it is NULL, the contour
or hull (in that order) storage is used

The function finds all convexity defects of the input contour and returns a sequence of the CvConvexityDefect struc-
tures.

CreateContourTree

CvContourTree* cvCreateContourTree(const CvSeq* contour, CvMemStorage* storage, double thresh-
old)

Creates a hierarchical representation of a contour.

Parameters

• contour – Input contour

• storage – Container for output tree

• threshold – Approximation accuracy

The function creates a binary tree representation for the input contour and returns the pointer to its root. If the
parameter threshold is less than or equal to 0, the function creates a full binary tree representation. If the threshold
is greater than 0, the function creates a representation with the precision threshold : if the vertices with the
interceptive area of its base line are less than threshold , the tree should not be built any further. The function
returns the created tree.

EndFindContours

CvSeq* cvEndFindContours(CvContourScanner* scanner)
Finishes the scanning process.

Parameters

• scanner – Pointer to the contour scanner

The function finishes the scanning process and returns a pointer to the first contour on the highest level.

FindContours

int cvFindContours(CvArr* image, CvMemStorage* storage, CvSeq** first_contour,
int header_size=sizeof(CvContour), int mode=CV_RETR_LIST,
int method=CV_CHAIN_APPROX_SIMPLE, CvPoint offset=cvPoint(0, 0))

Finds the contours in a binary image.

Parameters

• image – The source, an 8-bit single channel image. Non-zero pixels are treated as 1’s, zero
pixels remain 0’s - the image is treated as binary . To get such a binary image from
grayscale, one may use Threshold , AdaptiveThreshold or Canny . The function modifies
the source image’s content

• storage – Container of the retrieved contours

2.5. Structural Analysis and Shape Descriptors 177

The OpenCV 1.x C Reference Manual, Release 2.3

• first_contour – Output parameter, will contain the pointer to the first outer contour

• header_size – Size of the sequence header, ≥ sizeof(CvChain) if method =
CV_CHAIN_CODE , and ≥ sizeof(CvContour) otherwise

• mode – Retrieval mode

– CV_RETR_EXTERNAL retrives only the extreme outer contours

– CV_RETR_LIST retrieves all of the contours and puts them in the list

– CV_RETR_CCOMP retrieves all of the contours and organizes them into a two-level
hierarchy: on the top level are the external boundaries of the components, on the second
level are the boundaries of the holes

– CV_RETR_TREE retrieves all of the contours and reconstructs the full hierarchy of
nested contours

• method – Approximation method (for all the modes, except CV_LINK_RUNS , which uses
built-in approximation)

– CV_CHAIN_CODE outputs contours in the Freeman chain code. All other methods
output polygons (sequences of vertices)

– CV_CHAIN_APPROX_NONE translates all of the points from the chain code into
points

– CV_CHAIN_APPROX_SIMPLE compresses horizontal, vertical, and diagonal seg-
ments and leaves only their end points

– CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS applies one
of the flavors of the Teh-Chin chain approximation algorithm.

– CV_LINK_RUNS uses a completely different contour retrieval algorithm by linking hor-
izontal segments of 1’s. Only the CV_RETR_LIST retrieval mode can be used with this
method.

• offset – Offset, by which every contour point is shifted. This is useful if the contours are
extracted from the image ROI and then they should be analyzed in the whole image context

The function retrieves contours from the binary image using the algorithm Suzuki85 . The contours are a useful tool
for shape analysis and object detection and recognition.

The function retrieves contours from the binary image and returns the number of retrieved contours. The pointer
first_contour is filled by the function. It will contain a pointer to the first outermost contour or NULL if no con-
tours are detected (if the image is completely black). Other contours may be reached from first_contour using
the h_next and v_next links. The sample in the DrawContours discussion shows how to use contours for con-
nected component detection. Contours can be also used for shape analysis and object recognition - see squares.c
in the OpenCV sample directory.

Note: the source image is modified by this function.

FindNextContour

CvSeq* cvFindNextContour(CvContourScanner scanner)
Finds the next contour in the image.

Parameters

• scanner – Contour scanner initialized by StartFindContours

The function locates and retrieves the next contour in the image and returns a pointer to it. The function returns NULL
if there are no more contours.

178 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

FitEllipse2

CvBox2D cvFitEllipse2(const CvArr* points)
Fits an ellipse around a set of 2D points.

Parameters

• points – Sequence or array of points

The function calculates the ellipse that fits best (in least-squares sense) around a set of 2D points. The meaning of the
returned structure fields is similar to those in Ellipse except that size stores the full lengths of the ellipse axises, not
half-lengths.

FitLine

void cvFitLine(const CvArr* points, int dist_type, double param, double reps, double aeps, float* line)
Fits a line to a 2D or 3D point set.

Parameters

• points – Sequence or array of 2D or 3D points with 32-bit integer or floating-point coordi-
nates

• dist_type – The distance used for fitting (see the discussion)

• param – Numerical parameter (C) for some types of distances, if 0 then some optimal
value is chosen

• reps – Sufficient accuracy for the radius (distance between the coordinate origin and the
line). 0.01 is a good default value.

• aeps – Sufficient accuracy for the angle. 0.01 is a good default value.

• line – The output line parameters. In the case of a 2d fitting, it is an array of 4 floats (vx,
vy, x0, y0) where (vx, vy) is a normalized vector collinear to the line and (x0,
y0) is some point on the line. in the case of a 3D fitting it is an array of 6 floats (vx, vy,
vz, x0, y0, z0) where (vx, vy, vz) is a normalized vector collinear to the line
and (x0, y0, z0) is some point on the line

The function fits a line to a 2D or 3D point set by minimizing
∑

i ρ(ri) where ri is the distance between the i th point
and the line and ρ(r) is a distance function, one of:

• dist_type=CV_DIST_L2

ρ(r) = r2/2 (the simplest and the fastest least-squares method)

• dist_type=CV_DIST_L1

ρ(r) = r

• dist_type=CV_DIST_L12

ρ(r) = 2 · (
√

1 +
r2

2
− 1)

2.5. Structural Analysis and Shape Descriptors 179

The OpenCV 1.x C Reference Manual, Release 2.3

• dist_type=CV_DIST_FAIR

ρ (r) = C2 ·
(r
C
− log

(
1 +

r

C

))
where C = 1.3998

• dist_type=CV_DIST_WELSCH

ρ (r) =
C2

2
·
(

1− exp
(
−
(r
C

)2
))

where C = 2.9846

• dist_type=CV_DIST_HUBER

ρ(r) =
{
r2/2 if r < C
C · (r − C/2) otherwise where C = 1.345

GetCentralMoment

double cvGetCentralMoment(CvMoments* moments, int x_order, int y_order)
Retrieves the central moment from the moment state structure.

Parameters

• moments – Pointer to the moment state structure

• x_order – x order of the retrieved moment, x_order >= 0

• y_order – y order of the retrieved moment, y_order >= 0 and x_order +
y_order <= 3

The function retrieves the central moment, which in the case of image moments is defined as:

µx_order, y_order =
∑
x,y

(I(x, y) · (x− xc)x_order · (y − yc)y_order)

where xc, yc are the coordinates of the gravity center:

xc =
M10

M00
, yc =

M01

M00

GetHuMoments

void cvGetHuMoments(const CvMoments* moments, CvHuMoments* hu)
Calculates the seven Hu invariants.

Parameters

• moments – The input moments, computed with Moments

• hu – The output Hu invariants

180 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

The function calculates the seven Hu invariants, see http://en.wikipedia.org/wiki/Image_moment , that are defined as:

hu1 = η20 + η02
hu2 = (η20 − η02)2 + 4η2

11

hu3 = (η30 − 3η12)2 + (3η21 − η03)2
hu4 = (η30 + η12)2 + (η21 + η03)2

hu5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2] + (3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2]
hu6 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2] + 4η11(η30 + η12)(η21 + η03)
hu7 = (3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2]− (η30 − 3η12)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2]

where ηji denote the normalized central moments.

These values are proved to be invariant to the image scale, rotation, and reflection except the seventh one, whose sign
is changed by reflection. Of course, this invariance was proved with the assumption of infinite image resolution. In
case of a raster images the computed Hu invariants for the original and transformed images will be a bit different.

GetNormalizedCentralMoment

double cvGetNormalizedCentralMoment(CvMoments* moments, int x_order, int y_order)
Retrieves the normalized central moment from the moment state structure.

Parameters

• moments – Pointer to the moment state structure

• x_order – x order of the retrieved moment, x_order >= 0

• y_order – y order of the retrieved moment, y_order >= 0 and x_order +
y_order <= 3

The function retrieves the normalized central moment:

ηx_order, y_order =
µx_order, y_order

M
(y_order+x_order)/2+1
00

GetSpatialMoment

double cvGetSpatialMoment(CvMoments* moments, int x_order, int y_order)
Retrieves the spatial moment from the moment state structure.

Parameters

• moments – The moment state, calculated by Moments

• x_order – x order of the retrieved moment, x_order >= 0

• y_order – y order of the retrieved moment, y_order >= 0 and x_order +
y_order <= 3

The function retrieves the spatial moment, which in the case of image moments is defined as:

Mx_order, y_order =
∑
x,y

(I(x, y) · xx_order · yy_order)

where I(x, y) is the intensity of the pixel (x, y) .

2.5. Structural Analysis and Shape Descriptors 181

http://en.wikipedia.org/wiki/Image_moment

The OpenCV 1.x C Reference Manual, Release 2.3

MatchContourTrees

double cvMatchContourTrees(const CvContourTree* tree1, const CvContourTree* tree2, int method,
double threshold)

Compares two contours using their tree representations.

Parameters

• tree1 – First contour tree

• tree2 – Second contour tree

• method – Similarity measure, only CV_CONTOUR_TREES_MATCH_I1 is supported

• threshold – Similarity threshold

The function calculates the value of the matching measure for two contour trees. The similarity measure is calculated
level by level from the binary tree roots. If at a certain level the difference between contours becomes less than
threshold , the reconstruction process is interrupted and the current difference is returned.

MatchShapes

double cvMatchShapes(const void* object1, const void* object2, int method, double parameter=0)
Compares two shapes.

Parameters

• object1 – First contour or grayscale image

• object2 – Second contour or grayscale image

• method –

Comparison method; CV_CONTOURS_MATCH_I1 , CV_CONTOURS_MATCH_I2

or CV_CONTOURS_MATCH_I3

• parameter – Method-specific parameter (is not used now)

The function compares two shapes. The 3 implemented methods all use Hu moments (see GetHuMoments) (A is
object1 , B is object2):

• method=CV_CONTOURS_MATCH_I1

I1(A,B) =
∑

i=1...7

∣∣∣∣ 1
mA

i

− 1
mB

i

∣∣∣∣
• method=CV_CONTOURS_MATCH_I2

I2(A,B) =
∑

i=1...7

∣∣mA
i −mB

i

∣∣
• method=CV_CONTOURS_MATCH_I3

I3(A,B) =
∑

i=1...7

∣∣mA
i −mB

i

∣∣∣∣mA
i

∣∣
182 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

where

mA
i = sign(hA

i) · log hA
i m

B
i = sign(hB

i) · log hB
i

and hA
i , h

B
i are the Hu moments of A and B respectively.

MinAreaRect2

CvBox2D cvMinAreaRect2(const CvArr* points, CvMemStorage* storage=NULL)
Finds the circumscribed rectangle of minimal area for a given 2D point set.

Parameters

• points – Sequence or array of points

• storage – Optional temporary memory storage

The function finds a circumscribed rectangle of the minimal area for a 2D point set by building a convex hull for the
set and applying the rotating calipers technique to the hull.

Picture. Minimal-area bounding rectangle for contour

MinEnclosingCircle

int cvMinEnclosingCircle(const CvArr* points, CvPoint2D32f* center, float* radius)
Finds the circumscribed circle of minimal area for a given 2D point set.

Parameters

• points – Sequence or array of 2D points

• center – Output parameter; the center of the enclosing circle

• radius – Output parameter; the radius of the enclosing circle

The function finds the minimal circumscribed circle for a 2D point set using an iterative algorithm. It returns nonzero
if the resultant circle contains all the input points and zero otherwise (i.e. the algorithm failed).

Moments

void cvMoments(const CvArr* arr, CvMoments* moments, int binary=0)
Calculates all of the moments up to the third order of a polygon or rasterized shape.

Parameters

2.5. Structural Analysis and Shape Descriptors 183

The OpenCV 1.x C Reference Manual, Release 2.3

• arr – Image (1-channel or 3-channel with COI set) or polygon (CvSeq of points or a vector
of points)

• moments – Pointer to returned moment’s state structure

• binary – (For images only) If the flag is non-zero, all of the zero pixel values are treated as
zeroes, and all of the others are treated as 1’s

The function calculates spatial and central moments up to the third order and writes them to moments . The mo-
ments may then be used then to calculate the gravity center of the shape, its area, main axises and various shape
characeteristics including 7 Hu invariants.

PointPolygonTest

double cvPointPolygonTest(const CvArr* contour, CvPoint2D32f pt, int measure_dist)
Point in contour test.

Parameters

• contour – Input contour

• pt – The point tested against the contour

• measure_dist – If it is non-zero, the function estimates the distance from the point to the
nearest contour edge

The function determines whether the point is inside a contour, outside, or lies on an edge (or coinsides with a vertex).
It returns positive, negative or zero value, correspondingly. When measure_dist = 0 , the return value is +1, -1
and 0, respectively. When measure_dist 6= 0 , it is a signed distance between the point and the nearest contour
edge.

Here is the sample output of the function, where each image pixel is tested against the contour.

184 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

PointSeqFromMat

CvSeq* cvPointSeqFromMat(int seq_kind, const CvArr* mat, CvContour* contour_header, CvSe-
qBlock* block)

Initializes a point sequence header from a point vector.

Parameters

• seq_kind – Type of the point sequence: point set (0), a curve (CV_SEQ_KIND_CURVE),
closed curve (CV_SEQ_KIND_CURVE+CV_SEQ_FLAG_CLOSED) etc.

• mat – Input matrix. It should be a continuous, 1-dimensional vector of points, that is, it
should have type CV_32SC2 or CV_32FC2

• contour_header – Contour header, initialized by the function

2.5. Structural Analysis and Shape Descriptors 185

The OpenCV 1.x C Reference Manual, Release 2.3

• block – Sequence block header, initialized by the function

The function initializes a sequence header to create a “virtual” sequence in which elements reside in the specified
matrix. No data is copied. The initialized sequence header may be passed to any function that takes a point sequence
on input. No extra elements can be added to the sequence, but some may be removed. The function is a specialized
variant of MakeSeqHeaderForArray and uses the latter internally. It returns a pointer to the initialized contour header.
Note that the bounding rectangle (field rect of CvContour strucuture) is not initialized by the function. If you need
one, use BoundingRect .

Here is a simple usage example.

CvContour header;
CvSeqBlock block;
CvMat* vector = cvCreateMat(1, 3, CV_32SC2);

CV_MAT_ELEM(*vector, CvPoint, 0, 0) = cvPoint(100,100);
CV_MAT_ELEM(*vector, CvPoint, 0, 1) = cvPoint(100,200);
CV_MAT_ELEM(*vector, CvPoint, 0, 2) = cvPoint(200,100);

IplImage* img = cvCreateImage(cvSize(300,300), 8, 3);
cvZero(img);

cvDrawContours(img,
cvPointSeqFromMat(CV_SEQ_KIND_CURVE+CV_SEQ_FLAG_CLOSED,

vector,
&header,
&block),

CV_RGB(255,0,0),
CV_RGB(255,0,0),
0, 3, 8, cvPoint(0,0));

ReadChainPoint

CvPoint cvReadChainPoint(CvChainPtReader* reader)
Gets the next chain point.

Parameters

• reader – Chain reader state

The function returns the current chain point and updates the reader position.

StartFindContours

CvContourScanner cvStartFindContours(CvArr* image, CvMemStorage* stor-
age, int header_size=sizeof(CvContour),
int mode=CV_RETR_LIST,
int method=CV_CHAIN_APPROX_SIMPLE, CvPoint off-
set=cvPoint(0, 0))

Initializes the contour scanning process.

Parameters

• image – The 8-bit, single channel, binary source image

• storage – Container of the retrieved contours

• header_size – Size of the sequence header, >= sizeof(CvChain) if method =CV _
CHAIN _ CODE, and >= sizeof(CvContour) otherwise

186 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

• mode – Retrieval mode; see FindContours

• method – Approximation method. It has the same meaning in FindContours , but
CV_LINK_RUNS can not be used here

• offset – ROI offset; see FindContours

The function initializes and returns a pointer to the contour scanner. The scanner is used in FindNextContour to retrieve
the rest of the contours.

StartReadChainPoints

void cvStartReadChainPoints(CvChain* chain, CvChainPtReader* reader)
Initializes the chain reader.

The function initializes a special reader.

SubstituteContour

void cvSubstituteContour(CvContourScanner scanner, CvSeq* new_contour)
Replaces a retrieved contour.

Parameters

• scanner – Contour scanner initialized by StartFindContours

• new_contour – Substituting contour

The function replaces the retrieved contour, that was returned from the preceding call of FindNextContour and stored
inside the contour scanner state, with the user-specified contour. The contour is inserted into the resulting structure,
list, two-level hierarchy, or tree, depending on the retrieval mode. If the parameter new_contour is NULL , the
retrieved contour is not included in the resulting structure, nor are any of its children that might be added to this
structure later.

2.6 Planar Subdivisions

CvSubdiv2D

CvSubdiv2D

Planar subdivision.

#define CV_SUBDIV2D_FIELDS() \
CV_GRAPH_FIELDS() \
int quad_edges; \
int is_geometry_valid; \
CvSubdiv2DEdge recent_edge; \
CvPoint2D32f topleft; \
CvPoint2D32f bottomright;

typedef struct CvSubdiv2D
{

CV_SUBDIV2D_FIELDS()
}
CvSubdiv2D;

2.6. Planar Subdivisions 187

The OpenCV 1.x C Reference Manual, Release 2.3

Planar subdivision is the subdivision of a plane into a set of non-overlapped regions (facets) that cover the whole plane.
The above structure describes a subdivision built on a 2d point set, where the points are linked together and form a
planar graph, which, together with a few edges connecting the exterior subdivision points (namely, convex hull points)
with infinity, subdivides a plane into facets by its edges.

For every subdivision there exists a dual subdivision in which facets and points (subdivision vertices) swap their roles,
that is, a facet is treated as a vertex (called a virtual point below) of the dual subdivision and the original subdivision
vertices become facets. On the picture below original subdivision is marked with solid lines and dual subdivision with
dotted lines.

OpenCV subdivides a plane into triangles using Delaunay’s algorithm. Subdivision is built iteratively starting from a
dummy triangle that includes all the subdivision points for sure. In this case the dual subdivision is a Voronoi diagram
of the input 2d point set. The subdivisions can be used for the 3d piece-wise transformation of a plane, morphing, fast
location of points on the plane, building special graphs (such as NNG,RNG) and so forth.

CvQuadEdge2D

CvQuadEdge2D

Quad-edge of planar subdivision.

/* one of edges within quad-edge, lower 2 bits is index (0..3)
and upper bits are quad-edge pointer */

typedef long CvSubdiv2DEdge;

/* quad-edge structure fields */
#define CV_QUADEDGE2D_FIELDS() \

int flags; \
struct CvSubdiv2DPoint* pt[4]; \
CvSubdiv2DEdge next[4];

typedef struct CvQuadEdge2D
{

CV_QUADEDGE2D_FIELDS()
}
CvQuadEdge2D;

188 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

Quad-edge is a basic element of subdivision containing four edges (e, eRot, reversed e and reversed eRot):

CvSubdiv2DPoint

CvSubdiv2DPoint

Point of original or dual subdivision.

#define CV_SUBDIV2D_POINT_FIELDS()\
int flags; \
CvSubdiv2DEdge first; \
CvPoint2D32f pt; \
int id;

#define CV_SUBDIV2D_VIRTUAL_POINT_FLAG (1 << 30)

typedef struct CvSubdiv2DPoint
{

CV_SUBDIV2D_POINT_FIELDS()
}
CvSubdiv2DPoint;

• id This integer can be used to index auxillary data associated with each vertex of the planar subdivision

2.6. Planar Subdivisions 189

The OpenCV 1.x C Reference Manual, Release 2.3

CalcSubdivVoronoi2D

void cvCalcSubdivVoronoi2D(CvSubdiv2D* subdiv)
Calculates the coordinates of Voronoi diagram cells.

Parameters

• subdiv – Delaunay subdivision, in which all the points are already added

The function calculates the coordinates of virtual points. All virtual points corresponding to some vertex of the original
subdivision form (when connected together) a boundary of the Voronoi cell at that point.

ClearSubdivVoronoi2D

void cvClearSubdivVoronoi2D(CvSubdiv2D* subdiv)
Removes all virtual points.

Parameters

• subdiv – Delaunay subdivision

The function removes all of the virtual points. It is called internally in CalcSubdivVoronoi2D if the subdivision was
modified after previous call to the function.

CreateSubdivDelaunay2D

CvSubdiv2D* cvCreateSubdivDelaunay2D(CvRect rect, CvMemStorage* storage)
Creates an empty Delaunay triangulation.

Parameters

• rect – Rectangle that includes all of the 2d points that are to be added to the subdivision

• storage – Container for subdivision

The function creates an empty Delaunay subdivision, where 2d points can be added using the function SubdivDelau-
nay2DInsert . All of the points to be added must be within the specified rectangle, otherwise a runtime error will be
raised.

Note that the triangulation is a single large triangle that covers the given rectangle. Hence the three vertices of this
triangle are outside the rectangle rect .

FindNearestPoint2D

CvSubdiv2DPoint* cvFindNearestPoint2D(CvSubdiv2D* subdiv, CvPoint2D32f pt)
Finds the closest subdivision vertex to the given point.

Parameters

• subdiv – Delaunay or another subdivision

• pt – Input point

The function is another function that locates the input point within the subdivision. It finds the subdivision vertex that
is the closest to the input point. It is not necessarily one of vertices of the facet containing the input point, though
the facet (located using Subdiv2DLocate) is used as a starting point. The function returns a pointer to the found
subdivision vertex.

190 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

Subdiv2DEdgeDst

CvSubdiv2DPoint* cvSubdiv2DEdgeDst(CvSubdiv2DEdge edge)
Returns the edge destination.

Parameters

• edge – Subdivision edge (not a quad-edge)

The function returns the edge destination. The returned pointer may be NULL if the edge is from dual subdivision and
the virtual point coordinates are not calculated yet. The virtual points can be calculated using the function CalcSub-
divVoronoi2D .

Subdiv2DGetEdge

CvSubdiv2DEdge cvSubdiv2DGetEdge(CvSubdiv2DEdge edge, CvNextEdgeType type)
Returns one of the edges related to the given edge.

Parameters

• edge – Subdivision edge (not a quad-edge)

• type – Specifies which of the related edges to return, one of the following:

– CV_NEXT_AROUND_ORG next around the edge origin (eOnext on the picture be-
low if e is the input edge)

– CV_NEXT_AROUND_DST next around the edge vertex (eDnext)

– CV_PREV_AROUND_ORG previous around the edge origin (reversed eRnext)

– CV_PREV_AROUND_DST previous around the edge destination (reversed eLnext)

– CV_NEXT_AROUND_LEFT next around the left facet (eLnext)

– CV_NEXT_AROUND_RIGHT next around the right facet (eRnext)

– CV_PREV_AROUND_LEFT previous around the left facet (reversed eOnext)

– CV_PREV_AROUND_RIGHT previous around the right facet (reversed eDnext)

2.6. Planar Subdivisions 191

The OpenCV 1.x C Reference Manual, Release 2.3

The function returns one of the edges related to the input edge.

Subdiv2DNextEdge

CvSubdiv2DEdge cvSubdiv2DNextEdge(CvSubdiv2DEdge edge)
Returns next edge around the edge origin

Parameters

• edge – Subdivision edge (not a quad-edge)

192 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

The function returns the next edge around the edge origin: eOnext on the picture above if e is the input edge)

Subdiv2DLocate

CvSubdiv2DPointLocation cvSubdiv2DLocate(CvSubdiv2D* subdiv, CvPoint2D32f pt, CvSub-
div2DEdge* edge, CvSubdiv2DPoint** vertex=NULL)

Returns the location of a point within a Delaunay triangulation.

Parameters

• subdiv – Delaunay or another subdivision

• pt – The point to locate

• edge – The output edge the point falls onto or right to

• vertex – Optional output vertex double pointer the input point coinsides with

The function locates the input point within the subdivision. There are 5 cases:

• The point falls into some facet. The function returns CV_PTLOC_INSIDE and *edge will contain one of
edges of the facet.

• The point falls onto the edge. The function returns CV_PTLOC_ON_EDGE and *edge will contain this edge.

2.6. Planar Subdivisions 193

The OpenCV 1.x C Reference Manual, Release 2.3

• The point coincides with one of the subdivision vertices. The function returns CV_PTLOC_VERTEX and
*vertex will contain a pointer to the vertex.

• The point is outside the subdivsion reference rectangle. The function returns CV_PTLOC_OUTSIDE_RECT
and no pointers are filled.

• One of input arguments is invalid. A runtime error is raised or, if silent or “parent” error processing mode is
selected, CV_PTLOC_ERROR is returnd.

Subdiv2DRotateEdge

CvSubdiv2DEdge cvSubdiv2DRotateEdge(CvSubdiv2DEdge edge, int rotate)
Returns another edge of the same quad-edge.

Parameters

• edge – Subdivision edge (not a quad-edge)

• rotate – Specifies which of the edges of the same quad-edge as the input one to return, one
of the following:

– 0 the input edge (e on the picture below if e is the input edge)

– 1 the rotated edge (eRot)

– 2 the reversed edge (reversed e (in green))

– 3 the reversed rotated edge (reversed eRot (in green))

194 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

The function returns one of the edges of the same quad-edge as the input edge.

SubdivDelaunay2DInsert

CvSubdiv2DPoint* cvSubdivDelaunay2DInsert(CvSubdiv2D* subdiv, CvPoint2D32f pt)
Inserts a single point into a Delaunay triangulation.

Parameters

• subdiv – Delaunay subdivision created by the function CreateSubdivDelaunay2D

• pt – Inserted point

The function inserts a single point into a subdivision and modifies the subdivision topology appropriately. If a point
with the same coordinates exists already, no new point is added. The function returns a pointer to the allocated point.
No virtual point coordinates are calculated at this stage.

2.6. Planar Subdivisions 195

The OpenCV 1.x C Reference Manual, Release 2.3

2.7 Motion Analysis and Object Tracking

Acc

void cvAcc(const CvArr* image, CvArr* sum, const CvArr* mask=NULL)
Adds a frame to an accumulator.

Parameters

• image – Input image, 1- or 3-channel, 8-bit or 32-bit floating point. (each channel of multi-
channel image is processed independently)

• sum – Accumulator with the same number of channels as input image, 32-bit or 64-bit
floating-point

• mask – Optional operation mask

The function adds the whole image image or its selected region to the accumulator sum :

sum(x, y)← sum(x, y) + image(x, y) if mask(x, y) 6= 0

MultiplyAcc

void cvMultiplyAcc(const CvArr* image1, const CvArr* image2, CvArr* acc, const
CvArr* mask=NULL)

Adds the product of two input images to the accumulator.

Parameters

• image1 – First input image, 1- or 3-channel, 8-bit or 32-bit floating point (each channel of
multi-channel image is processed independently)

• image2 – Second input image, the same format as the first one

• acc – Accumulator with the same number of channels as input images, 32-bit or 64-bit
floating-point

• mask – Optional operation mask

The function adds the product of 2 images or their selected regions to the accumulator acc :

acc(x, y)← acc(x, y) + image1(x, y) · image2(x, y) if mask(x, y) 6= 0

RunningAvg

void cvRunningAvg(const CvArr* image, CvArr* acc, double alpha, const CvArr* mask=NULL)
Updates the running average.

Parameters

• image – Input image, 1- or 3-channel, 8-bit or 32-bit floating point (each channel of multi-
channel image is processed independently)

• acc – Accumulator with the same number of channels as input image, 32-bit or 64-bit
floating-point

196 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

• alpha – Weight of input image

• mask – Optional operation mask

The function calculates the weighted sum of the input image image and the accumulator acc so that acc becomes
a running average of frame sequence:

acc(x, y)← (1− α) · acc(x, y) + α · image(x, y) if mask(x, y) 6= 0

where α regulates the update speed (how fast the accumulator forgets about previous frames).

SquareAcc

void cvSquareAcc(const CvArr* image, CvArr* sqsum, const CvArr* mask=NULL)
Adds the square of the source image to the accumulator.

Parameters

• image – Input image, 1- or 3-channel, 8-bit or 32-bit floating point (each channel of multi-
channel image is processed independently)

• sqsum – Accumulator with the same number of channels as input image, 32-bit or 64-bit
floating-point

• mask – Optional operation mask

The function adds the input image image or its selected region, raised to power 2, to the accumulator sqsum :

sqsum(x, y)← sqsum(x, y) + image(x, y)2 if mask(x, y) 6= 0

2.8 Feature Detection

Canny

void cvCanny(const CvArr* image, CvArr* edges, double threshold1, double threshold2, int aper-
ture_size=3)

Implements the Canny algorithm for edge detection.

Parameters

• image – Single-channel input image

• edges – Single-channel image to store the edges found by the function

• threshold1 – The first threshold

• threshold2 – The second threshold

• aperture_size – Aperture parameter for the Sobel operator (see Sobel)

The function finds the edges on the input image image and marks them in the output image edges using the Canny
algorithm. The smallest value between threshold1 and threshold2 is used for edge linking, the largest value
is used to find the initial segments of strong edges.

CornerEigenValsAndVecs

void cvCornerEigenValsAndVecs(const CvArr* image, CvArr* eigenvv, int blockSize, int aper-
ture_size=3)

Calculates eigenvalues and eigenvectors of image blocks for corner detection.

2.8. Feature Detection 197

The OpenCV 1.x C Reference Manual, Release 2.3

Parameters

• image – Input image

• eigenvv – Image to store the results. It must be 6 times wider than the input image

• blockSize – Neighborhood size (see discussion)

• aperture_size – Aperture parameter for the Sobel operator (see Sobel)

For every pixel, the function cvCornerEigenValsAndVecs considers a blockSize × blockSize neigbor-
hood S(p). It calcualtes the covariation matrix of derivatives over the neigborhood as:

M =
[∑

S(p)(dI/dx)
2

∑
S(p)(dI/dx · dI/dy)2∑

S(p)(dI/dx · dI/dy)2
∑

S(p)(dI/dy)
2

]
After that it finds eigenvectors and eigenvalues of the matrix and stores them into destination image in form
(λ1, λ2, x1, y1, x2, y2) where

• λ1, λ2 are the eigenvalues of M ; not sorted

• x1, y1 are the eigenvectors corresponding to λ1

• x2, y2 are the eigenvectors corresponding to λ2

CornerHarris

void cvCornerHarris(const CvArr* image, CvArr* harris_dst, int blockSize, int aperture_size=3, dou-
ble k=0.04)

Harris edge detector.

Parameters

• image – Input image

• harris_dst – Image to store the Harris detector responses. Should have the same size as
image

• blockSize – Neighborhood size (see the discussion of CornerEigenValsAndVecs)

• aperture_size – Aperture parameter for the Sobel operator (see Sobel).

• k – Harris detector free parameter. See the formula below

The function runs the Harris edge detector on the image. Similarly to CornerMinEigenVal and CornerEigenVal-
sAndVecs , for each pixel it calculates a 2 × 2 gradient covariation matrix M over a blockSize × blockSize
neighborhood. Then, it stores

det(M)− k trace(M)2

to the destination image. Corners in the image can be found as the local maxima of the destination image.

CornerMinEigenVal

void cvCornerMinEigenVal(const CvArr* image, CvArr* eigenval, int blockSize, int aperture_size=3)
Calculates the minimal eigenvalue of gradient matrices for corner detection.

Parameters

• image – Input image

• eigenval – Image to store the minimal eigenvalues. Should have the same size as image

198 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

• blockSize – Neighborhood size (see the discussion of CornerEigenValsAndVecs)

• aperture_size – Aperture parameter for the Sobel operator (see Sobel).

The function is similar to CornerEigenValsAndVecs but it calculates and stores only the minimal eigen value of deriva-
tive covariation matrix for every pixel, i.e. min(λ1, λ2) in terms of the previous function.

FindCornerSubPix

void cvFindCornerSubPix(const CvArr* image, CvPoint2D32f* corners, int count, CvSize win, Cv-
Size zero_zone, CvTermCriteria criteria)

Refines the corner locations.

Parameters

• image – Input image

• corners – Initial coordinates of the input corners; refined coordinates on output

• count – Number of corners

• win – Half of the side length of the search window. For example, if win =(5,5), then a
5 ∗ 2 + 1× 5 ∗ 2 + 1 = 11× 11 search window would be used

• zero_zone – Half of the size of the dead region in the middle of the search zone over which
the summation in the formula below is not done. It is used sometimes to avoid possible
singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no
such size

• criteria – Criteria for termination of the iterative process of corner refinement. That is,
the process of corner position refinement stops either after a certain number of iterations or
when a required accuracy is achieved. The criteria may specify either of or both the
maximum number of iteration and the required accuracy

The function iterates to find the sub-pixel accurate location of corners, or radial saddle points, as shown in on the
picture below.

Sub-pixel accurate corner locator is based on the observation that every vector from the center q to a point p located
within a neighborhood of q is orthogonal to the image gradient at p subject to image and measurement noise. Consider
the expression:

εi = DIpi

T · (q − pi)

2.8. Feature Detection 199

The OpenCV 1.x C Reference Manual, Release 2.3

where DIpi is the image gradient at the one of the points pi in a neighborhood of q . The value of q is to be found
such that εi is minimized. A system of equations may be set up with εi set to zero:∑

i

(DIpi
·DIpi

T)q =
∑

i

(DIpi
·DIpi

T · pi)

where the gradients are summed within a neighborhood (“search window”) of q . Calling the first gradient term G and
the second gradient term b gives:

q = G−1 · b

The algorithm sets the center of the neighborhood window at this new center q and then iterates until the center keeps
within a set threshold.

GoodFeaturesToTrack

void cvGoodFeaturesToTrack(const CvArr* image CvArr* eigImage, CvArr* tempImage Cv-
Point2D32f* corners int* cornerCount double qualityLevel double
minDistance const CvArr* mask=NULL int blockSize=3 int useHarris=0
double k=0.04)

Determines strong corners on an image.

Parameters

• image – The source 8-bit or floating-point 32-bit, single-channel image

• eigImage – Temporary floating-point 32-bit image, the same size as image

• tempImage – Another temporary image, the same size and format as eigImage

• corners – Output parameter; detected corners

• cornerCount – Output parameter; number of detected corners

• qualityLevel – Multiplier for the max/min eigenvalue; specifies the minimal accepted qual-
ity of image corners

• minDistance – Limit, specifying the minimum possible distance between the returned cor-
ners; Euclidian distance is used

• mask – Region of interest. The function selects points either in the specified region or in
the whole image if the mask is NULL

• blockSize – Size of the averaging block, passed to the underlying CornerMinEigenVal or
CornerHarris used by the function

• useHarris – If nonzero, Harris operator (CornerHarris) is used instead of default Corner-
MinEigenVal

• k – Free parameter of Harris detector; used only if (useHarris! = 0)

The function finds the corners with big eigenvalues in the image. The function first calculates the minimal eigenvalue
for every source image pixel using the CornerMinEigenVal function and stores them in eigImage . Then it performs
non-maxima suppression (only the local maxima in 3×3 neighborhood are retained). The next step rejects the corners
with the minimal eigenvalue less than qualityLevel ·max(eigImage(x, y)) . Finally, the function ensures that
the distance between any two corners is not smaller than minDistance . The weaker corners (with a smaller min
eigenvalue) that are too close to the stronger corners are rejected.

Note that the if the function is called with different values A and B of the parameter qualityLevel , and A
> {B}, the array of returned corners with qualityLevel=A will be the prefix of the output corners array with
qualityLevel=B .

200 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

HoughLines2

CvSeq* cvHoughLines2(CvArr* image, void* storage, int method, double rho, double theta, int threshold,
double param1=0, double param2=0)

Finds lines in a binary image using a Hough transform.

Parameters

• image – The 8-bit, single-channel, binary source image. In the case of a probabilistic
method, the image is modified by the function

• storage – The storage for the lines that are detected. It can be a memory storage (in this
case a sequence of lines is created in the storage and returned by the function) or single
row/single column matrix (CvMat*) of a particular type (see below) to which the lines’
parameters are written. The matrix header is modified by the function so its cols or rows
will contain the number of lines detected. If storage is a matrix and the actual number of
lines exceeds the matrix size, the maximum possible number of lines is returned (in the case
of standard hough transform the lines are sorted by the accumulator value)

• method – The Hough transform variant, one of the following:

– CV_HOUGH_STANDARD classical or standard Hough transform. Every line is repre-
sented by two floating-point numbers (ρ, θ) , where ρ is a distance between (0,0) point
and the line, and θ is the angle between x-axis and the normal to the line. Thus, the matrix
must be (the created sequence will be) of CV_32FC2 type

– CV_HOUGH_PROBABILISTIC probabilistic Hough transform (more efficient in case
if picture contains a few long linear segments). It returns line segments rather than the
whole line. Each segment is represented by starting and ending points, and the matrix
must be (the created sequence will be) of CV_32SC4 type

– CV_HOUGH_MULTI_SCALE multi-scale variant of the classical Hough transform.
The lines are encoded the same way as CV_HOUGH_STANDARD

• rho – Distance resolution in pixel-related units

• theta – Angle resolution measured in radians

• threshold – Threshold parameter. A line is returned by the function if the corresponding
accumulator value is greater than threshold

• param1 – The first method-dependent parameter:

– For the classical Hough transform it is not used (0).

– For the probabilistic Hough transform it is the minimum line length.

– For the multi-scale Hough transform it is the divisor for the distance resolution ρ . (The
coarse distance resolution will be ρ and the accurate resolution will be (ρ/param1)).

• param2 – The second method-dependent parameter:

– For the classical Hough transform it is not used (0).

– For the probabilistic Hough transform it is the maximum gap between line segments lying
on the same line to treat them as a single line segment (i.e. to join them).

– For the multi-scale Hough transform it is the divisor for the angle resolution θ . (The
coarse angle resolution will be θ and the accurate resolution will be (θ/param2)).

The function implements a few variants of the Hough transform for line detection.

Example. Detecting lines with Hough transform.

2.8. Feature Detection 201

The OpenCV 1.x C Reference Manual, Release 2.3

/* This is a standalone program. Pass an image name as a first parameter
of the program. Switch between standard and probabilistic Hough transform
by changing "#if 1" to "#if 0" and back */
#include <cv.h>
#include <highgui.h>
#include <math.h>

int main(int argc, char** argv)
{

IplImage* src;
if(argc == 2 && (src=cvLoadImage(argv[1], 0))!= 0)
{

IplImage* dst = cvCreateImage(cvGetSize(src), 8, 1);
IplImage* color_dst = cvCreateImage(cvGetSize(src), 8, 3);
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* lines = 0;
int i;
cvCanny(src, dst, 50, 200, 3);
cvCvtColor(dst, color_dst, CV_GRAY2BGR);

#if 1
lines = cvHoughLines2(dst,

storage,
CV_HOUGH_STANDARD,
1,
CV_PI/180,
100,
0,
0);

for(i = 0; i < MIN(lines->total,100); i++)
{

float* line = (float*)cvGetSeqElem(lines,i);
float rho = line[0];
float theta = line[1];
CvPoint pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
cvLine(color_dst, pt1, pt2, CV_RGB(255,0,0), 3, 8);

}
#else

lines = cvHoughLines2(dst,
storage,
CV_HOUGH_PROBABILISTIC,
1,
CV_PI/180,
80,
30,
10);

for(i = 0; i < lines->total; i++)
{

CvPoint* line = (CvPoint*)cvGetSeqElem(lines,i);
cvLine(color_dst, line[0], line[1], CV_RGB(255,0,0), 3, 8);

}
#endif

202 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

cvNamedWindow("Source", 1);
cvShowImage("Source", src);

cvNamedWindow("Hough", 1);
cvShowImage("Hough", color_dst);

cvWaitKey(0);
}

}

This is the sample picture the function parameters have been tuned for:

And this is the output of the above program in the case of probabilistic Hough transform (#if 0 case):

2.8. Feature Detection 203

The OpenCV 1.x C Reference Manual, Release 2.3

PreCornerDetect

void cvPreCornerDetect(const CvArr* image, CvArr* corners, int apertureSize=3)
Calculates the feature map for corner detection.

Parameters

• image – Input image

• corners – Image to store the corner candidates

• apertureSize – Aperture parameter for the Sobel operator (see Sobel)

The function calculates the function

D2
xDyy +D2

yDxx − 2DxDyDxy

where D? denotes one of the first image derivatives and D?? denotes a second image derivative.

The corners can be found as local maximums of the function below:

// assume that the image is floating-point
IplImage* corners = cvCloneImage(image);
IplImage* dilated_corners = cvCloneImage(image);
IplImage* corner_mask = cvCreateImage(cvGetSize(image), 8, 1);
cvPreCornerDetect(image, corners, 3);
cvDilate(corners, dilated_corners, 0, 1);
cvSubS(corners, dilated_corners, corners);
cvCmpS(corners, 0, corner_mask, CV_CMP_GE);

204 Chapter 2. imgproc. Image Processing

The OpenCV 1.x C Reference Manual, Release 2.3

cvReleaseImage(&corners);
cvReleaseImage(&dilated_corners);

SampleLine

int cvSampleLine(const CvArr* image CvPoint pt1 CvPoint pt2 void* buffer int connectivity=8)
Reads the raster line to the buffer.

Parameters

• image – Image to sample the line from

• pt1 – Starting line point

• pt2 – Ending line point

• buffer – Buffer to store the line points; must have enough size to store max(|pt2.x −
pt1.x|+1, |pt2.y−pt1.y|+1) points in the case of an 8-connected line and (|pt2.x−
pt1.x|+ |pt2.y− pt1.y|+ 1) in the case of a 4-connected line

• connectivity – The line connectivity, 4 or 8

The function implements a particular application of line iterators. The function reads all of the image points lying on
the line between pt1 and pt2 , including the end points, and stores them into the buffer.

2.9 Object Detection

MatchTemplate

void cvMatchTemplate(const CvArr* image, const CvArr* templ, CvArr* result, int method)
Compares a template against overlapped image regions.

Parameters

• image – Image where the search is running; should be 8-bit or 32-bit floating-point

• templ – Searched template; must be not greater than the source image and the same data
type as the image

• result – A map of comparison results; single-channel 32-bit floating-point. If image is
W ×H and templ is w × h then result must be (W − w + 1)× (H − h+ 1)

• method – Specifies the way the template must be compared with the image regions (see
below)

The function is similar to CalcBackProjectPatch . It slides through image , compares the overlapped patches of size
w×h against templ using the specified method and stores the comparison results to result . Here are the formulas
for the different comparison methods one may use (I denotes image , T template , R result). The summation
is done over template and/or the image patch: x′ = 0...w − 1, y′ = 0...h− 1

• method=CV_TM_SQDIFF

R(x, y) =
∑
x′,y′

(T (x′, y′)− I(x+ x′, y + y′))2

• method=CV_TM_SQDIFF_NORMED

2.9. Object Detection 205

The OpenCV 1.x C Reference Manual, Release 2.3

R(x, y) =

∑
x′,y′(T (x′, y′)− I(x+ x′, y + y′))2√∑

x′,y′ T (x′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2

• method=CV_TM_CCORR

R(x, y) =
∑
x′,y′

(T (x′, y′) · I(x+ x′, y + y′))

• method=CV_TM_CCORR_NORMED

R(x, y) =

∑
x′,y′(T (x′, y′) · I(x+ x′, y + y′))√∑

x′,y′ T (x′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2

• method=CV_TM_CCOEFF

R(x, y) =
∑
x′,y′

(T ′(x′, y′) · I ′(x+ x′, y + y′))

where

T ′(x′, y′) = T (x′, y′)− 1/(w · h) ·
∑

x′′,y′′ T (x′′, y′′)
I ′(x+ x′, y + y′) = I(x+ x′, y + y′)− 1/(w · h) ·

∑
x′′,y′′ I(x+ x′′, y + y′′)

• method=CV_TM_CCOEFF_NORMED

R(x, y) =

∑
x′,y′(T

′(x′, y′) · I ′(x+ x′, y + y′))√∑
x′,y′ T

′(x′, y′)2 ·
∑

x′,y′ I
′(x+ x′, y + y′)2

After the function finishes the comparison, the best matches can be found as global minimums (CV_TM_SQDIFF)
or maximums (CV_TM_CCORR and CV_TM_CCOEFF) using the MinMaxLoc function. In the case of a color image,
template summation in the numerator and each sum in the denominator is done over all of the channels (and separate
mean values are used for each channel).

206 Chapter 2. imgproc. Image Processing

CHAPTER

THREE

FEATURES2D. FEATURE DETECTION
AND DESCRIPTOR EXTRACTION

3.1 Feature detection and description

ExtractSURF

void cvExtractSURF(const CvArr* image, const CvArr* mask, CvSeq** keypoints, CvSeq** descriptors,
CvMemStorage* storage, CvSURFParams params)

Extracts Speeded Up Robust Features from an image.

Parameters

• image – The input 8-bit grayscale image

• mask – The optional input 8-bit mask. The features are only found in the areas that contain
more than 50 % of non-zero mask pixels

• keypoints – The output parameter; double pointer to the sequence of keypoints. The se-
quence of CvSURFPoint structures is as follows:

typedef struct CvSURFPoint
{

CvPoint2D32f pt; // position of the feature within the image
int laplacian; // -1, 0 or +1. sign of the laplacian at the point.

// can be used to speedup feature comparison
// (normally features with laplacians of different

// signs can not match)
int size; // size of the feature
float dir; // orientation of the feature: 0..360 degrees
float hessian; // value of the hessian (can be used to

// approximately estimate the feature strengths;
// see also params.hessianThreshold)

}
CvSURFPoint;

Parameters

• descriptors – The optional output parameter; double pointer to the sequence of descriptors.
Depending on the params.extended value, each element of the sequence will be either a 64-
element or a 128-element floating-point (CV_32F) vector. If the parameter is NULL, the
descriptors are not computed

• storage – Memory storage where keypoints and descriptors will be stored

207

The OpenCV 1.x C Reference Manual, Release 2.3

• params – Various algorithm parameters put to the structure CvSURFParams:

typedef struct CvSURFParams
{

int extended; // 0 means basic descriptors (64 elements each),
// 1 means extended descriptors (128 elements each)

double hessianThreshold; // only features with keypoint.hessian
// larger than that are extracted.

// good default value is ~300-500 (can depend on the
// average local contrast and sharpness of the image).

// user can further filter out some features based on
// their hessian values and other characteristics.

int nOctaves; // the number of octaves to be used for extraction.
// With each next octave the feature size is doubled

// (3 by default)
int nOctaveLayers; // The number of layers within each octave

// (4 by default)
}
CvSURFParams;

CvSURFParams cvSURFParams(double hessianThreshold, int extended=0);
// returns default parameters

The function cvExtractSURF finds robust features in the image, as described in Bay06 . For each feature it returns its
location, size, orientation and optionally the descriptor, basic or extended. The function can be used for object tracking
and localization, image stitching etc.

See the find_obj.cpp demo in OpenCV samples directory.

GetStarKeypoints

CvSeq* cvGetStarKeypoints(const CvArr* image, CvMemStorage* storage, CvStarDetector-
Params params=cvStarDetectorParams())

Retrieves keypoints using the StarDetector algorithm.

Parameters

• image – The input 8-bit grayscale image

• storage – Memory storage where the keypoints will be stored

• params – Various algorithm parameters given to the structure CvStarDetectorParams:

typedef struct CvStarDetectorParams
{

int maxSize; // maximal size of the features detected. The following
// values of the parameter are supported:
// 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128

int responseThreshold; // threshold for the approximatd laplacian,
// used to eliminate weak features

int lineThresholdProjected; // another threshold for laplacian to
// eliminate edges

int lineThresholdBinarized; // another threshold for the feature
// scale to eliminate edges

int suppressNonmaxSize; // linear size of a pixel neighborhood
// for non-maxima suppression

}
CvStarDetectorParams;

208 Chapter 3. features2d. Feature Detection and Descriptor Extraction

The OpenCV 1.x C Reference Manual, Release 2.3

The function GetStarKeypoints extracts keypoints that are local scale-space extremas. The scale-space is constructed
by computing approximate values of laplacians with different sigma’s at each pixel. Instead of using pyramids, a pop-
ular approach to save computing time, all of the laplacians are computed at each pixel of the original high-resolution
image. But each approximate laplacian value is computed in O(1) time regardless of the sigma, thanks to the use of
integral images. The algorithm is based on the paper Agrawal08 , but instead of a square, hexagon or octagon it uses
an 8-end star shape, hence the name, consisting of overlapping upright and tilted squares.

Each computed feature is represented by the following structure:

typedef struct CvStarKeypoint
{

CvPoint pt; // coordinates of the feature
int size; // feature size, see CvStarDetectorParams::maxSize
float response; // the approximated laplacian value at that point.

}
CvStarKeypoint;

inline CvStarKeypoint cvStarKeypoint(CvPoint pt, int size, float response);

Below is the small usage sample:

#include "cv.h"
#include "highgui.h"

int main(int argc, char** argv)
{

const char* filename = argc > 1 ? argv[1] : "lena.jpg";
IplImage* img = cvLoadImage(filename, 0), *cimg;
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* keypoints = 0;
int i;

if(!img)
return 0;

cvNamedWindow("image", 1);
cvShowImage("image", img);
cvNamedWindow("features", 1);
cimg = cvCreateImage(cvGetSize(img), 8, 3);
cvCvtColor(img, cimg, CV_GRAY2BGR);

keypoints = cvGetStarKeypoints(img, storage, cvStarDetectorParams(45));

for(i = 0; i < (keypoints ? keypoints->total : 0); i++)
{

CvStarKeypoint kpt = *(CvStarKeypoint*)cvGetSeqElem(keypoints, i);
int r = kpt.size/2;
cvCircle(cimg, kpt.pt, r, CV_RGB(0,255,0));
cvLine(cimg, cvPoint(kpt.pt.x + r, kpt.pt.y + r),

cvPoint(kpt.pt.x - r, kpt.pt.y - r), CV_RGB(0,255,0));
cvLine(cimg, cvPoint(kpt.pt.x - r, kpt.pt.y + r),

cvPoint(kpt.pt.x + r, kpt.pt.y - r), CV_RGB(0,255,0));
}
cvShowImage("features", cimg);
cvWaitKey();

}

3.1. Feature detection and description 209

The OpenCV 1.x C Reference Manual, Release 2.3

210 Chapter 3. features2d. Feature Detection and Descriptor Extraction

CHAPTER

FOUR

OBJDETECT. OBJECT DETECTION

4.1 Cascade Classification

Haar Feature-based Cascade Classifier for Object Detection

The object detector described below has been initially proposed by Paul Viola Viola01 and improved by Rainer Lien-
hart Lienhart02 . First, a classifier (namely a cascade of boosted classifiers working with haar-like features) is trained
with a few hundred sample views of a particular object (i.e., a face or a car), called positive examples, that are scaled
to the same size (say, 20x20), and negative examples - arbitrary images of the same size.

After a classifier is trained, it can be applied to a region of interest (of the same size as used during the training) in an
input image. The classifier outputs a “1” if the region is likely to show the object (i.e., face/car), and “0” otherwise. To
search for the object in the whole image one can move the search window across the image and check every location
using the classifier. The classifier is designed so that it can be easily “resized” in order to be able to find the objects of
interest at different sizes, which is more efficient than resizing the image itself. So, to find an object of an unknown
size in the image the scan procedure should be done several times at different scales.

The word “cascade” in the classifier name means that the resultant classifier consists of several simpler classifiers (
stages) that are applied subsequently to a region of interest until at some stage the candidate is rejected or all the stages
are passed. The word “boosted” means that the classifiers at every stage of the cascade are complex themselves and
they are built out of basic classifiers using one of four different boosting techniques (weighted voting). Currently
Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are decision-
tree classifiers with at least 2 leaves. Haar-like features are the input to the basic classifers, and are calculated as
described below. The current algorithm uses the following Haar-like features:

211

The OpenCV 1.x C Reference Manual, Release 2.3

The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within the region of interest
and the scale (this scale is not the same as the scale used at the detection stage, though these two scales are multiplied).
For example, in the case of the third line feature (2c) the response is calculated as the difference between the sum
of image pixels under the rectangle covering the whole feature (including the two white stripes and the black stripe
in the middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to compensate for
the differences in the size of areas. The sums of pixel values over a rectangular regions are calculated rapidly using
integral images (see below and the Integral description).

To see the object detector at work, have a look at the HaarFaceDetect demo.

The following reference is for the detection part only. There is a separate application called haartraining that can
train a cascade of boosted classifiers from a set of samples. See opencv/apps/haartraining for details.

CvHaarFeature, CvHaarClassifier, CvHaarStageClassifier, CvHaarClassifierCas-
cade

CvHaarFeature, CvHaarClassifier, CvHaarStageClassifier, CvHaarClassifierCascade

Boosted Haar classifier structures.

#define CV_HAAR_FEATURE_MAX 3

/* a haar feature consists of 2-3 rectangles with appropriate weights */
typedef struct CvHaarFeature
{

int tilted; /* 0 means up-right feature, 1 means 45--rotated feature */

/* 2-3 rectangles with weights of opposite signs and
with absolute values inversely proportional to the areas of the
rectangles. If rect[2].weight !=0, then
the feature consists of 3 rectangles, otherwise it consists of 2 */

struct
{

CvRect r;
float weight;

} rect[CV_HAAR_FEATURE_MAX];
}
CvHaarFeature;

212 Chapter 4. objdetect. Object Detection

The OpenCV 1.x C Reference Manual, Release 2.3

/* a single tree classifier (stump in the simplest case) that returns the
response for the feature at the particular image location (i.e. pixel
sum over subrectangles of the window) and gives out a value depending
on the response */

typedef struct CvHaarClassifier
{

int count; /* number of nodes in the decision tree */

/* these are "parallel" arrays. Every index ‘‘i‘‘
corresponds to a node of the decision tree (root has 0-th index).

left[i] - index of the left child (or negated index if the
left child is a leaf)

right[i] - index of the right child (or negated index if the
right child is a leaf)

threshold[i] - branch threshold. if feature responce is <= threshold,
left branch is chosen, otherwise right branch is chosen.

alpha[i] - output value correponding to the leaf. */
CvHaarFeature* haar_feature;
float* threshold;
int* left;
int* right;
float* alpha;

}
CvHaarClassifier;

/* a boosted battery of classifiers(=stage classifier):
the stage classifier returns 1
if the sum of the classifiers responses
is greater than ‘‘threshold‘‘ and 0 otherwise */

typedef struct CvHaarStageClassifier
{

int count; /* number of classifiers in the battery */
float threshold; /* threshold for the boosted classifier */
CvHaarClassifier* classifier; /* array of classifiers */

/* these fields are used for organizing trees of stage classifiers,
rather than just stright cascades */

int next;
int child;
int parent;

}
CvHaarStageClassifier;

typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;

/* cascade or tree of stage classifiers */
typedef struct CvHaarClassifierCascade
{

int flags; /* signature */
int count; /* number of stages */
CvSize orig_window_size; /* original object size (the cascade is

trained for) */

/* these two parameters are set by cvSetImagesForHaarClassifierCascade */
CvSize real_window_size; /* current object size */
double scale; /* current scale */
CvHaarStageClassifier* stage_classifier; /* array of stage classifiers */

4.1. Cascade Classification 213

The OpenCV 1.x C Reference Manual, Release 2.3

CvHidHaarClassifierCascade* hid_cascade; /* hidden optimized
representation of the
cascade, created by

cvSetImagesForHaarClassifierCascade */
}
CvHaarClassifierCascade;

All the structures are used for representing a cascaded of boosted Haar classifiers. The cascade has the following
hierarchical structure:

Cascade:
Stage,,1,,:

Classifier,,11,,:
Feature,,11,,

Classifier,,12,,:
Feature,,12,,

...
Stage,,2,,:

Classifier,,21,,:
Feature,,21,,

...
...

The whole hierarchy can be constructed manually or loaded from a file or an embedded base using the function
LoadHaarClassifierCascade .

LoadHaarClassifierCascade

CvHaarClassifierCascade* cvLoadHaarClassifierCascade(const char* directory, Cv-
Size orig_window_size)

Loads a trained cascade classifier from a file or the classifier database embedded in OpenCV.

Parameters

• directory – Name of the directory containing the description of a trained cascade classifier

• orig_window_size – Original size of the objects the cascade has been trained on. Note that
it is not stored in the cascade and therefore must be specified separately

The function loads a trained cascade of haar classifiers from a file or the classifier database embedded in OpenCV. The
base can be trained using the haartraining application (see opencv/apps/haartraining for details).

The function is obsolete . Nowadays object detection classifiers are stored in XML or YAML files, rather than in
directories. To load a cascade from a file, use the Load function.

HaarDetectObjects

..

CvSeq* cvHaarDetectObjects(const CvArr* image, CvHaarClassifierCascade* cascade, CvMemStor-
age* storage, double scaleFactor=1.1, int minNeighbors=3, int flags=0,
CvSize minSize=cvSize(0, 0), CvSize maxSize=cvSize(0, 0))

Detects objects in the image.

typedef struct CvAvgComp {

CvRect rect; /* bounding rectangle for the object (average rectangle of a group) / int neighbors; / number
of neighbor rectangles in the group */

214 Chapter 4. objdetect. Object Detection

The OpenCV 1.x C Reference Manual, Release 2.3

} CvAvgComp;

param image Image to detect objects in

param cascade Haar classifier cascade in internal representation

param storage Memory storage to store the resultant sequence of the object candidate rect-
angles

param scaleFactor The factor by which the search window is scaled between the subsequent
scans, 1.1 means increasing window by 10 %

param minNeighbors Minimum number (minus 1) of neighbor rectangles that makes up an
object. All the groups of a smaller number of rectangles than min_neighbors -1 are
rejected. If minNeighbors is 0, the function does not any grouping at all and returns
all the detected candidate rectangles, which may be useful if the user wants to apply a
customized grouping procedure

param flags Mode of operation. Currently the only flag that may be specified is
CV_HAAR_DO_CANNY_PRUNING . If it is set, the function uses Canny edge detector
to reject some image regions that contain too few or too much edges and thus can not
contain the searched object. The particular threshold values are tuned for face detection
and in this case the pruning speeds up the processing

param minSize Minimum window size. By default, it is set to the size of samples the classi-
fier has been trained on (∼ 20× 20 for face detection)

param maxSize Maximum window size to use. By default, it is set to the size of the image.

The function finds rectangular regions in the given image that are likely to contain objects the cascade has been
trained for and returns those regions as a sequence of rectangles. The function scans the image several times at
different scales (see SetImagesForHaarClassifierCascade). Each time it considers overlapping regions in the image
and applies the classifiers to the regions using RunHaarClassifierCascade . It may also apply some heuristics to reduce
number of analyzed regions, such as Canny prunning. After it has proceeded and collected the candidate rectangles
(regions that passed the classifier cascade), it groups them and returns a sequence of average rectangles for each large
enough group. The default parameters (scale_factor =1.1, min_neighbors =3, flags =0) are tuned for
accurate yet slow object detection. For a faster operation on real video images the settings are: scale_factor
=1.2, min_neighbors =2, flags = CV_HAAR_DO_CANNY_PRUNING , min_size = minimum possible face
size (for example, ∼ 1/4 to 1/16 of the image area in the case of video conferencing).

#include "cv.h"
#include "highgui.h"

CvHaarClassifierCascade* load_object_detector(const char* cascade_path)
{

return (CvHaarClassifierCascade*)cvLoad(cascade_path);
}

void detect_and_draw_objects(IplImage* image,
CvHaarClassifierCascade* cascade,
int do_pyramids)

{
IplImage* small_image = image;
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* faces;
int i, scale = 1;

/* if the flag is specified, down-scale the input image to get a
performance boost w/o loosing quality (perhaps) */

if(do_pyramids)

4.1. Cascade Classification 215

The OpenCV 1.x C Reference Manual, Release 2.3

{
small_image = cvCreateImage(cvSize(image->width/2,image->height/2), IPL_DEPTH_8U, 3);
cvPyrDown(image, small_image, CV_GAUSSIAN_5x5);
scale = 2;

}

/* use the fastest variant */
faces = cvHaarDetectObjects(small_image, cascade, storage, 1.2, 2, CV_HAAR_DO_CANNY_PRUNING);

/* draw all the rectangles */
for(i = 0; i < faces->total; i++)
{

/* extract the rectanlges only */
CvRect face_rect = *(CvRect*)cvGetSeqElem(faces, i);
cvRectangle(image, cvPoint(face_rect.x*scale,face_rect.y*scale),

cvPoint((face_rect.x+face_rect.width)*scale,
(face_rect.y+face_rect.height)*scale),

CV_RGB(255,0,0), 3);
}

if(small_image != image)
cvReleaseImage(&small_image);

cvReleaseMemStorage(&storage);
}

/* takes image filename and cascade path from the command line */
int main(int argc, char** argv)
{

IplImage* image;
if(argc==3 && (image = cvLoadImage(argv[1], 1)) != 0)
{

CvHaarClassifierCascade* cascade = load_object_detector(argv[2]);
detect_and_draw_objects(image, cascade, 1);
cvNamedWindow("test", 0);
cvShowImage("test", image);
cvWaitKey(0);
cvReleaseHaarClassifierCascade(&cascade);
cvReleaseImage(&image);

}

return 0;
}

SetImagesForHaarClassifierCascade

void cvSetImagesForHaarClassifierCascade(CvHaarClassifierCascade* cascade, const
CvArr* sum, const CvArr* sqsum, const
CvArr* tilted_sum, double scale)

Assigns images to the hidden cascade.

Parameters

• cascade – Hidden Haar classifier cascade, created by CreateHidHaarClassifierCascade

• sum – Integral (sum) single-channel image of 32-bit integer format. This image as well
as the two subsequent images are used for fast feature evaluation and brightness/contrast
normalization. They all can be retrieved from input 8-bit or floating point single-channel
image using the function Integral

216 Chapter 4. objdetect. Object Detection

The OpenCV 1.x C Reference Manual, Release 2.3

• sqsum – Square sum single-channel image of 64-bit floating-point format

• tilted_sum – Tilted sum single-channel image of 32-bit integer format

• scale – Window scale for the cascade. If scale =1, the original window size is used
(objects of that size are searched) - the same size as specified in LoadHaarClassifierCascade
(24x24 in the case of default_face_cascade), if scale =2, a two times larger
window is used (48x48 in the case of default face cascade). While this will speed-up search
about four times, faces smaller than 48x48 cannot be detected

The function assigns images and/or window scale to the hidden classifier cascade. If image pointers are NULL, the
previously set images are used further (i.e. NULLs mean “do not change images”). Scale parameter has no such a
“protection” value, but the previous value can be retrieved by the GetHaarClassifierCascadeScale function and reused
again. The function is used to prepare cascade for detecting object of the particular size in the particular image. The
function is called internally by HaarDetectObjects , but it can be called by the user if they are using the lower-level
function RunHaarClassifierCascade .

ReleaseHaarClassifierCascade

void cvReleaseHaarClassifierCascade(CvHaarClassifierCascade** cascade)
Releases the haar classifier cascade.

Parameters

• cascade – Double pointer to the released cascade. The pointer is cleared by the function

The function deallocates the cascade that has been created manually or loaded using LoadHaarClassifierCascade or
Load .

RunHaarClassifierCascade

int cvRunHaarClassifierCascade(CvHaarClassifierCascade* cascade, CvPoint pt, int start_stage=0)
Runs a cascade of boosted classifiers at the given image location.

Parameters

• cascade – Haar classifier cascade

• pt – Top-left corner of the analyzed region. Size of the region is a original window size
scaled by the currenly set scale. The current window size may be retrieved using the GetH-
aarClassifierCascadeWindowSize function

• start_stage – Initial zero-based index of the cascade stage to start from. The function as-
sumes that all the previous stages are passed. This feature is used internally by HaarDetec-
tObjects for better processor cache utilization

The function runs the Haar classifier cascade at a single image location. Before using this function the integral images
and the appropriate scale (window size) should be set using SetImagesForHaarClassifierCascade . The function
returns a positive value if the analyzed rectangle passed all the classifier stages (it is a candidate) and a zero or negative
value otherwise.

4.1. Cascade Classification 217

The OpenCV 1.x C Reference Manual, Release 2.3

218 Chapter 4. objdetect. Object Detection

CHAPTER

FIVE

VIDEO. VIDEO ANALYSIS

5.1 Motion Analysis and Object Tracking

CalcGlobalOrientation

double cvCalcGlobalOrientation(const CvArr* orientation, const CvArr* mask, const CvArr* mhi,
double timestamp, double duration)

Calculates the global motion orientation of some selected region.

Parameters

• orientation – Motion gradient orientation image; calculated by the function CalcMotion-
Gradient

• mask – Mask image. It may be a conjunction of a valid gradient mask, obtained with
CalcMotionGradient and the mask of the region, whose direction needs to be calculated

• mhi – Motion history image

• timestamp – Current time in milliseconds or other units, it is better to store time passed to
UpdateMotionHistory before and reuse it here, because running UpdateMotionHistory and
CalcMotionGradient on large images may take some time

• duration – Maximal duration of motion track in milliseconds, the same as UpdateMotion-
History

The function calculates the general motion direction in the selected region and returns the angle between 0 degrees and
360 degrees . At first the function builds the orientation histogram and finds the basic orientation as a coordinate of
the histogram maximum. After that the function calculates the shift relative to the basic orientation as a weighted sum
of all of the orientation vectors: the more recent the motion, the greater the weight. The resultant angle is a circular
sum of the basic orientation and the shift.

CalcMotionGradient

void cvCalcMotionGradient(const CvArr* mhi, CvArr* mask, CvArr* orientation, double delta1, dou-
ble delta2, int apertureSize=3)

Calculates the gradient orientation of a motion history image.

Parameters

• mhi – Motion history image

• mask – Mask image; marks pixels where the motion gradient data is correct; output param-
eter

219

The OpenCV 1.x C Reference Manual, Release 2.3

• orientation – Motion gradient orientation image; contains angles from 0 to ~360 degrees

• delta1 – See below

• delta2 – See below

• apertureSize – Aperture size of derivative operators used by the function: CV _ SCHARR,
1, 3, 5 or 7 (see Sobel)

The function calculates the derivatives Dx and Dy of mhi and then calculates gradient orientation as:

orientation(x, y) = arctan
Dy(x, y)
Dx(x, y)

where both Dx(x, y) and Dy(x, y) signs are taken into account (as in the CartToPolar function). After that mask is
filled to indicate where the orientation is valid (see the delta1 and delta2 description).

The function finds the minimum (m(x, y)) and maximum (M(x, y)) mhi values over each pixel (x, y) neighborhood
and assumes the gradient is valid only if

min(delta1,delta2) ≤M(x, y)−m(x, y) ≤ max(delta1,delta2).

CalcOpticalFlowBM

void cvCalcOpticalFlowBM(const CvArr* prev, const CvArr* curr, CvSize blockSize, CvSize shiftSize,
CvSize max_range, int usePrevious, CvArr* velx, CvArr* vely)

Calculates the optical flow for two images by using the block matching method.

Parameters

• prev – First image, 8-bit, single-channel

• curr – Second image, 8-bit, single-channel

• blockSize – Size of basic blocks that are compared

• shiftSize – Block coordinate increments

• max_range – Size of the scanned neighborhood in pixels around the block

• usePrevious – Uses the previous (input) velocity field

• velx – Horizontal component of the optical flow of⌊
prev->width− blockSize.width

shiftSize.width

⌋
×
⌊
prev->height− blockSize.height

shiftSize.height

⌋
size, 32-bit floating-point, single-channel

• vely – Vertical component of the optical flow of the same size velx , 32-bit floating-point,
single-channel

The function calculates the optical flow for overlapped blocks blockSize.width×blockSize.height pixels
each, thus the velocity fields are smaller than the original images. For every block in prev the functions tries to find
a similar block in curr in some neighborhood of the original block or shifted by (velx(x0,y0),vely(x0,y0)) block as
has been calculated by previous function call (if usePrevious=1)

220 Chapter 5. video. Video Analysis

The OpenCV 1.x C Reference Manual, Release 2.3

CalcOpticalFlowHS

void cvCalcOpticalFlowHS(const CvArr* prev, const CvArr* curr, int usePrevious, CvArr* velx,
CvArr* vely, double lambda, CvTermCriteria criteria)

Calculates the optical flow for two images.

Parameters

• prev – First image, 8-bit, single-channel

• curr – Second image, 8-bit, single-channel

• usePrevious – Uses the previous (input) velocity field

• velx – Horizontal component of the optical flow of the same size as input images, 32-bit
floating-point, single-channel

• vely – Vertical component of the optical flow of the same size as input images, 32-bit
floating-point, single-channel

• lambda – Lagrangian multiplier

• criteria – Criteria of termination of velocity computing

The function computes the flow for every pixel of the first input image using the Horn and Schunck algorithm Horn81
.

CalcOpticalFlowLK

void cvCalcOpticalFlowLK(const CvArr* prev, const CvArr* curr, CvSize winSize, CvArr* velx,
CvArr* vely)

Calculates the optical flow for two images.

Parameters

• prev – First image, 8-bit, single-channel

• curr – Second image, 8-bit, single-channel

• winSize – Size of the averaging window used for grouping pixels

• velx – Horizontal component of the optical flow of the same size as input images, 32-bit
floating-point, single-channel

• vely – Vertical component of the optical flow of the same size as input images, 32-bit
floating-point, single-channel

The function computes the flow for every pixel of the first input image using the Lucas and Kanade algorithm Lucas81
.

CalcOpticalFlowPyrLK

void cvCalcOpticalFlowPyrLK(const CvArr* prev, const CvArr* curr, CvArr* prevPyr, CvArr* cur-
rPyr, const CvPoint2D32f* prevFeatures, CvPoint2D32f* cur-
rFeatures, int count, CvSize winSize, int level, char* status,
float* track_error, CvTermCriteria criteria, int flags)

Calculates the optical flow for a sparse feature set using the iterative Lucas-Kanade method with pyramids.

Parameters

• prev – First frame, at time t

5.1. Motion Analysis and Object Tracking 221

The OpenCV 1.x C Reference Manual, Release 2.3

• curr – Second frame, at time t + dt

• prevPyr – Buffer for the pyramid for the first frame. If the pointer is not NULL , the buffer
must have a sufficient size to store the pyramid from level 1 to level level ; the total size
of (image_width+8)*image_height/3 bytes is sufficient

• currPyr – Similar to prevPyr , used for the second frame

• prevFeatures – Array of points for which the flow needs to be found

• currFeatures – Array of 2D points containing the calculated new positions of the input
features in the second image

• count – Number of feature points

• winSize – Size of the search window of each pyramid level

• level – Maximal pyramid level number. If 0 , pyramids are not used (single level), if 1 , two
levels are used, etc

• status – Array. Every element of the array is set to 1 if the flow for the corresponding
feature has been found, 0 otherwise

• track_error – Array of double numbers containing the difference between patches around
the original and moved points. Optional parameter; can be NULL

• criteria – Specifies when the iteration process of finding the flow for each point on each
pyramid level should be stopped

• flags – Miscellaneous flags:

– CV_LKFLOWPyr_A_READY pyramid for the first frame is precalculated before the
call

– CV_LKFLOWPyr_B_READY pyramid for the second frame is precalculated before
the call

– CV_LKFLOW_INITIAL_GUESSES array B contains initial coordinates of features
before the function call

The function implements the sparse iterative version of the Lucas-Kanade optical flow in pyramids Bouguet00 . It
calculates the coordinates of the feature points on the current video frame given their coordinates on the previous
frame. The function finds the coordinates with sub-pixel accuracy.

Both parameters prevPyr and currPyr comply with the following rules: if the image pointer is 0, the function
allocates the buffer internally, calculates the pyramid, and releases the buffer after processing. Otherwise, the function
calculates the pyramid and stores it in the buffer unless the flag CV_LKFLOWPyr_A[B]_READY is set. The image
should be large enough to fit the Gaussian pyramid data. After the function call both pyramids are calculated and the
readiness flag for the corresponding image can be set in the next call (i.e., typically, for all the image pairs except the
very first one CV_LKFLOWPyr_A_READY is set).

CamShift

int cvCamShift(const CvArr* prob_image, CvRect window, CvTermCriteria criteria, CvConnected-
Comp* comp, CvBox2D* box=NULL)

Finds the object center, size, and orientation.

Parameters

• prob_image – Back projection of object histogram (see CalcBackProject)

• window – Initial search window

222 Chapter 5. video. Video Analysis

The OpenCV 1.x C Reference Manual, Release 2.3

• criteria – Criteria applied to determine when the window search should be finished

• comp – Resultant structure that contains the converged search window coordinates (
comp->rect field) and the sum of all of the pixels inside the window (comp->area
field)

• box – Circumscribed box for the object. If not NULL , it contains object size and orientation

The function implements the CAMSHIFT object tracking algrorithm Bradski98 . First, it finds an object center using
MeanShift and, after that, calculates the object size and orientation. The function returns number of iterations made
within MeanShift .

The CamShiftTracker class declared in cv.hpp implements the color object tracker that uses the function.

CvConDensation

ConDenstation state.

typedef struct CvConDensation
{

int MP; //Dimension of measurement vector
int DP; // Dimension of state vector
float* DynamMatr; // Matrix of the linear Dynamics system
float* State; // Vector of State
int SamplesNum; // Number of the Samples
float** flSamples; // array of the Sample Vectors
float** flNewSamples; // temporary array of the Sample Vectors
float* flConfidence; // Confidence for each Sample
float* flCumulative; // Cumulative confidence
float* Temp; // Temporary vector
float* RandomSample; // RandomVector to update sample set
CvRandState* RandS; // Array of structures to generate random vectors

} CvConDensation;

The structure CvConDensation stores the CONditional DENSity propagATION tracker state. The information
about the algorithm can be found at http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/ISARD1/condensation.html
.

CreateConDensation

CvConDensation* cvCreateConDensation(int dynam_params, int measure_params, int sample_count)
Allocates the ConDensation filter structure.

Parameters

• dynam_params – Dimension of the state vector

• measure_params – Dimension of the measurement vector

• sample_count – Number of samples

The function creates a CvConDensation structure and returns a pointer to the structure.

ConDensInitSampleSet

void cvConDensInitSampleSet(CvConDensation* condens, CvMat* lower_bound, CvMat* up-
per_bound)

Initializes the sample set for the ConDensation algorithm.

5.1. Motion Analysis and Object Tracking 223

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/ISARD1/condensation.html

The OpenCV 1.x C Reference Manual, Release 2.3

Parameters

• condens – Pointer to a structure to be initialized

• lower_bound – Vector of the lower boundary for each dimension

• upper_bound – Vector of the upper boundary for each dimension

The function fills the samples arrays in the structure condens with values within the specified ranges.

CvKalman

CvKalman

Kalman filter state.

typedef struct CvKalman
{

int MP; /* number of measurement vector dimensions */
int DP; /* number of state vector dimensions */
int CP; /* number of control vector dimensions */

/* backward compatibility fields */
#if 1

float* PosterState; /* =state_pre->data.fl */
float* PriorState; /* =state_post->data.fl */
float* DynamMatr; /* =transition_matrix->data.fl */
float* MeasurementMatr; /* =measurement_matrix->data.fl */
float* MNCovariance; /* =measurement_noise_cov->data.fl */
float* PNCovariance; /* =process_noise_cov->data.fl */
float* KalmGainMatr; /* =gain->data.fl */
float* PriorErrorCovariance;/* =error_cov_pre->data.fl */
float* PosterErrorCovariance;/* =error_cov_post->data.fl */
float* Temp1; /* temp1->data.fl */
float* Temp2; /* temp2->data.fl */

#endif

CvMat* state_pre; /* predicted state (x’(k)):
x(k)=A*x(k-1)+B*u(k) */

CvMat* state_post; /* corrected state (x(k)):
x(k)=x’(k)+K(k)*(z(k)-H*x’(k)) */

CvMat* transition_matrix; /* state transition matrix (A) */
CvMat* control_matrix; /* control matrix (B)

(it is not used if there is no control)*/
CvMat* measurement_matrix; /* measurement matrix (H) */
CvMat* process_noise_cov; /* process noise covariance matrix (Q) */
CvMat* measurement_noise_cov; /* measurement noise covariance matrix (R) */
CvMat* error_cov_pre; /* priori error estimate covariance matrix (P’(k)):

P’(k)=A*P(k-1)*At + Q*/
CvMat* gain; /* Kalman gain matrix (K(k)):

K(k)=P’(k)*Ht*inv(H*P’(k)*Ht+R)*/
CvMat* error_cov_post; /* posteriori error estimate covariance matrix (P(k)):

P(k)=(I-K(k)*H)*P’(k) */
CvMat* temp1; /* temporary matrices */
CvMat* temp2;
CvMat* temp3;
CvMat* temp4;
CvMat* temp5;

224 Chapter 5. video. Video Analysis

The OpenCV 1.x C Reference Manual, Release 2.3

}
CvKalman;

The structure CvKalman is used to keep the Kalman filter state. It is created by the CreateKalman function, updated
by the KalmanPredict and KalmanCorrect functions and released by the ReleaseKalman function . Normally, the
structure is used for the standard Kalman filter (notation and the formulas below are borrowed from the excellent
Kalman tutorial Welch95)

xk = A · xk−1 +B · uk + wk

zk = H · xk + vk

where:

xk (xk−1) state of the system at the moment k (k-1)
zk measurement of the system state at the moment k
uk external control applied at the moment k

wk and vk are normally-distributed process and measurement noise, respectively:

p(w) ∼ N(0, Q)
p(v) ∼ N(0, R)

that is,

Q process noise covariance matrix, constant or variable,

R measurement noise covariance matrix, constant or variable

In the case of the standard Kalman filter, all of the matrices: A, B, H, Q and R are initialized once after the CvKalman
structure is allocated via CreateKalman . However, the same structure and the same functions may be used to simulate
the extended Kalman filter by linearizing the extended Kalman filter equation in the current system state neighborhood,
in this case A, B, H (and, probably, Q and R) should be updated on every step.

CreateKalman

CvKalman* cvCreateKalman(int dynam_params, int measure_params, int control_params=0)
Allocates the Kalman filter structure.

Parameters

• dynam_params – dimensionality of the state vector

• measure_params – dimensionality of the measurement vector

• control_params – dimensionality of the control vector

The function allocates CvKalman and all its matrices and initializes them somehow.

KalmanCorrect

const CvMat* cvKalmanCorrect(CvKalman* kalman, const CvMat* measurement)
Adjusts the model state.

Parameters

• kalman – Pointer to the structure to be updated

• measurement – CvMat containing the measurement vector

5.1. Motion Analysis and Object Tracking 225

The OpenCV 1.x C Reference Manual, Release 2.3

The function adjusts the stochastic model state on the basis of the given measurement of the model state:

Kk = P ′k ·HT · (H · P ′k ·HT +R)−1

xk = x′k +Kk · (zk −H · x′k)
Pk = (I −Kk ·H) · P ′k

where

zk given measurement (mesurement parameter)
Kk Kalman “gain” matrix.

The function stores the adjusted state at kalman->state_post and returns it on output.

Example. Using Kalman filter to track a rotating point

#include "cv.h"
#include "highgui.h"
#include <math.h>

int main(int argc, char** argv)
{

/* A matrix data */
const float A[] = { 1, 1, 0, 1 };

IplImage* img = cvCreateImage(cvSize(500,500), 8, 3);
CvKalman* kalman = cvCreateKalman(2, 1, 0);
/* state is (phi, delta_phi) - angle and angle increment */
CvMat* state = cvCreateMat(2, 1, CV_32FC1);
CvMat* process_noise = cvCreateMat(2, 1, CV_32FC1);
/* only phi (angle) is measured */
CvMat* measurement = cvCreateMat(1, 1, CV_32FC1);
CvRandState rng;
int code = -1;

cvRandInit(&rng, 0, 1, -1, CV_RAND_UNI);

cvZero(measurement);
cvNamedWindow("Kalman", 1);

for(;;)
{

cvRandSetRange(&rng, 0, 0.1, 0);
rng.disttype = CV_RAND_NORMAL;

cvRand(&rng, state);

memcpy(kalman->transition_matrix->data.fl, A, sizeof(A));
cvSetIdentity(kalman->measurement_matrix, cvRealScalar(1));
cvSetIdentity(kalman->process_noise_cov, cvRealScalar(1e-5));
cvSetIdentity(kalman->measurement_noise_cov, cvRealScalar(1e-1));
cvSetIdentity(kalman->error_cov_post, cvRealScalar(1));
/* choose random initial state */
cvRand(&rng, kalman->state_post);

rng.disttype = CV_RAND_NORMAL;

for(;;)
{

#define calc_point(angle) \
cvPoint(cvRound(img->width/2 + img->width/3*cos(angle)), \

226 Chapter 5. video. Video Analysis

The OpenCV 1.x C Reference Manual, Release 2.3

cvRound(img->height/2 - img->width/3*sin(angle)))

float state_angle = state->data.fl[0];
CvPoint state_pt = calc_point(state_angle);

/* predict point position */
const CvMat* prediction = cvKalmanPredict(kalman, 0);
float predict_angle = prediction->data.fl[0];
CvPoint predict_pt = calc_point(predict_angle);
float measurement_angle;
CvPoint measurement_pt;

cvRandSetRange(&rng,
0,
sqrt(kalman->measurement_noise_cov->data.fl[0]),
0);

cvRand(&rng, measurement);

/* generate measurement */
cvMatMulAdd(kalman->measurement_matrix, state, measurement, measurement);

measurement_angle = measurement->data.fl[0];
measurement_pt = calc_point(measurement_angle);

/* plot points */
#define draw_cross(center, color, d) \

cvLine(img, cvPoint(center.x - d, center.y - d), \
cvPoint(center.x + d, center.y + d), \
color, 1, 0); \

cvLine(img, cvPoint(center.x + d, center.y - d), \
cvPoint(center.x - d, center.y + d), \
color, 1, 0)

cvZero(img);
draw_cross(state_pt, CV_RGB(255,255,255), 3);
draw_cross(measurement_pt, CV_RGB(255,0,0), 3);
draw_cross(predict_pt, CV_RGB(0,255,0), 3);
cvLine(img, state_pt, predict_pt, CV_RGB(255,255,0), 3, 0);

/* adjust Kalman filter state */
cvKalmanCorrect(kalman, measurement);

cvRandSetRange(&rng,
0,
sqrt(kalman->process_noise_cov->data.fl[0]),
0);

cvRand(&rng, process_noise);
cvMatMulAdd(kalman->transition_matrix,

state,
process_noise,
state);

cvShowImage("Kalman", img);
code = cvWaitKey(100);

if(code > 0) /* break current simulation by pressing a key */
break;

}

5.1. Motion Analysis and Object Tracking 227

The OpenCV 1.x C Reference Manual, Release 2.3

if(code == 27) /* exit by ESCAPE */
break;

}

return 0;
}

KalmanPredict

const CvMat* cvKalmanPredict(CvKalman* kalman, const CvMat* control=NULL)
Estimates the subsequent model state.

Parameters

• kalman – Kalman filter state

• control – Control vector uk , should be NULL iff there is no external control (
control_params =0)

The function estimates the subsequent stochastic model state by its current state and stores it at
kalman->state_pre :

x′k = Axk−1 +Buk

P ′k = APk−1A
T +Q

where

x′k is predicted state kalman->state_pre ,
xk−1 is corrected state on the previous step kalman->state_post (should be initialized somehow in the

beginning, zero vector by default),
uk is external control (control parameter),
P ′k is priori error covariance matrix kalman->error_cov_pre
Pk−1 is posteriori error covariance matrix on the previous step kalman->error_cov_post (should be

initialized somehow in the beginning, identity matrix by default),

The function returns the estimated state.

KalmanUpdateByMeasurement

Synonym for KalmanCorrect

KalmanUpdateByTime

Synonym for KalmanPredict

MeanShift

int cvMeanShift(const CvArr* prob_image, CvRect window, CvTermCriteria criteria, CvConnected-
Comp* comp)

Finds the object center on back projection.

Parameters

• prob_image – Back projection of the object histogram (see CalcBackProject)

• window – Initial search window

228 Chapter 5. video. Video Analysis

The OpenCV 1.x C Reference Manual, Release 2.3

• criteria – Criteria applied to determine when the window search should be finished

• comp – Resultant structure that contains the converged search window coordinates (
comp->rect field) and the sum of all of the pixels inside the window (comp->area
field)

The function iterates to find the object center given its back projection and initial position of search window. The
iterations are made until the search window center moves by less than the given value and/or until the function has
done the maximum number of iterations. The function returns the number of iterations made.

ReleaseConDensation

void cvReleaseConDensation(CvConDensation** condens)
Deallocates the ConDensation filter structure.

Parameters

• condens – Pointer to the pointer to the structure to be released

The function releases the structure condens) and frees all memory previously allocated for the structure.

ReleaseKalman

void cvReleaseKalman(CvKalman** kalman)
Deallocates the Kalman filter structure.

Parameters

• kalman – double pointer to the Kalman filter structure

The function releases the structure CvKalman and all of the underlying matrices.

SegmentMotion

CvSeq* cvSegmentMotion(const CvArr* mhi, CvArr* seg_mask, CvMemStorage* storage, double times-
tamp, double seg_thresh)

Segments a whole motion into separate moving parts.

Parameters

• mhi – Motion history image

• seg_mask – Image where the mask found should be stored, single-channel, 32-bit floating-
point

• storage – Memory storage that will contain a sequence of motion connected components

• timestamp – Current time in milliseconds or other units

• seg_thresh – Segmentation threshold; recommended to be equal to the interval between
motion history “steps” or greater

The function finds all of the motion segments and marks them in seg_mask with individual values (1,2,...). It
also returns a sequence of CvConnectedComp structures, one for each motion component. After that the motion
direction for every component can be calculated with CalcGlobalOrientation using the extracted mask of the particular
component Cmp .

5.1. Motion Analysis and Object Tracking 229

The OpenCV 1.x C Reference Manual, Release 2.3

SnakeImage

void cvSnakeImage(const IplImage* image, CvPoint* points, int length, float* alpha, float* beta,
float* gamma, int coeff_usage, CvSize win, CvTermCriteria criteria,
int calc_gradient=1)

Changes the contour position to minimize its energy.

Parameters

• image – The source image or external energy field

• points – Contour points (snake)

• length – Number of points in the contour

• alpha – Weight[s] of continuity energy, single float or array of length floats, one for each
contour point

• beta – Weight[s] of curvature energy, similar to alpha

• gamma – Weight[s] of image energy, similar to alpha

• coeff_usage – Different uses of the previous three parameters:

– CV_VALUE indicates that each of alpha, beta, gamma is a pointer to a single
value to be used for all points;

– CV_ARRAY indicates that each of alpha, beta, gamma is a pointer to an array
of coefficients different for all the points of the snake. All the arrays must have the size
equal to the contour size.

• win – Size of neighborhood of every point used to search the minimum, both win.width
and win.height must be odd

• criteria – Termination criteria

• calc_gradient – Gradient flag; if not 0, the function calculates the gradient magnitude for
every image pixel and consideres it as the energy field, otherwise the input image itself is
considered

The function updates the snake in order to minimize its total energy that is a sum of internal energy that depends on the
contour shape (the smoother contour is, the smaller internal energy is) and external energy that depends on the energy
field and reaches minimum at the local energy extremums that correspond to the image edges in the case of using an
image gradient.

The parameter criteria.epsilon is used to define the minimal number of points that must be moved during any
iteration to keep the iteration process running.

If at some iteration the number of moved points is less than criteria.epsilon or the function performed
criteria.max_iter iterations, the function terminates.

UpdateMotionHistory

void cvUpdateMotionHistory(const CvArr* silhouette, CvArr* mhi, double timestamp, double dura-
tion)

Updates the motion history image by a moving silhouette.

Parameters

• silhouette – Silhouette mask that has non-zero pixels where the motion occurs

• mhi – Motion history image, that is updated by the function (single-channel, 32-bit floating-
point)

230 Chapter 5. video. Video Analysis

The OpenCV 1.x C Reference Manual, Release 2.3

• timestamp – Current time in milliseconds or other units

• duration – Maximal duration of the motion track in the same units as timestamp

The function updates the motion history image as following:

mhi(x, y) =

 timestamp if silhouette(x, y) 6= 0
0 if silhouette(x, y) = 0 and mhi < (timestamp− duration)
mhi(x, y) otherwise

That is, MHI pixels where motion occurs are set to the current timestamp, while the pixels where motion happened far
ago are cleared.

5.1. Motion Analysis and Object Tracking 231

The OpenCV 1.x C Reference Manual, Release 2.3

232 Chapter 5. video. Video Analysis

CHAPTER

SIX

HIGHGUI. HIGH-LEVEL GUI AND MEDIA
I/O

While OpenCV was designed for use in full-scale applications and can be used within functionally rich UI frameworks
(such as Qt, WinForms or Cocoa) or without any UI at all, sometimes there is a need to try some functionality quickly
and visualize the results. This is what the HighGUI module has been designed for.

It provides easy interface to:

• create and manipulate windows that can display images and “remember” their content (no need to handle repaint
events from OS)

• add trackbars to the windows, handle simple mouse events as well as keyboard commmands

• read and write images to/from disk or memory.

• read video from camera or file and write video to a file.

6.1 User Interface

ConvertImage

void cvConvertImage(const CvArr* src, CvArr* dst, int flags=0)
Converts one image to another with an optional vertical flip.

Parameters

• src – Source image.

• dst – Destination image. Must be single-channel or 3-channel 8-bit image.

• flags – The operation flags:

– CV_CVTIMG_FLIP Flips the image vertically

– CV_CVTIMG_SWAP_RB Swaps the red and blue channels. In OpenCV color images
have BGR channel order, however on some systems the order needs to be reversed before
displaying the image (ShowImage does this automatically).

The function cvConvertImage converts one image to another and flips the result vertically if desired. The function
is used by ShowImage .

233

The OpenCV 1.x C Reference Manual, Release 2.3

CreateTrackbar

int cvCreateTrackbar(const char* trackbarName, const char* windowName, int* value, int count, Cv-
TrackbarCallback onChange)

Creates a trackbar and attaches it to the specified window

Parameters

• trackbarName – Name of the created trackbar.

• windowName – Name of the window which will be used as a parent for created trackbar.

• value – Pointer to an integer variable, whose value will reflect the position of the slider.
Upon creation, the slider position is defined by this variable.

• count – Maximal position of the slider. Minimal position is always 0.

• onChange – Pointer to the function to be called every time the slider changes position.
This function should be prototyped as void Foo(int); Can be NULL if callback is not
required.

The function cvCreateTrackbar creates a trackbar (a.k.a. slider or range control) with the specified name and
range, assigns a variable to be syncronized with trackbar position and specifies a callback function to be called on
trackbar position change. The created trackbar is displayed on the top of the given window. [Qt Backend Only]
qt-specific details:

• windowName Name of the window which will be used as a parent for created trackbar. Can be NULL if the
trackbar should be attached to the control panel.

The created trackbar is displayed at the bottom of the given window if windowName is correctly provided, or displayed
on the control panel if windowName is NULL.

By clicking on the label of each trackbar, it is possible to edit the trackbar’s value manually for a more accurate control
of it.

CV_EXTERN_C_FUNCPTR(void (*CvTrackbarCallback)(int pos));

DestroyAllWindows

void cvDestroyAllWindows(void)
Destroys all of the HighGUI windows.

The function cvDestroyAllWindows destroys all of the opened HighGUI windows.

DestroyWindow

void cvDestroyWindow(const char* name)
Destroys a window.

Parameters

• name – Name of the window to be destroyed.

The function cvDestroyWindow destroys the window with the given name.

GetTrackbarPos

int cvGetTrackbarPos(const char* trackbarName, const char* windowName)
Returns the trackbar position.

234 Chapter 6. highgui. High-level GUI and Media I/O

The OpenCV 1.x C Reference Manual, Release 2.3

Parameters

• trackbarName – Name of the trackbar.

• windowName – Name of the window which is the parent of the trackbar.

The function cvGetTrackbarPos returns the current position of the specified trackbar. [Qt Backend Only] qt-
specific details:

• windowName Name of the window which is the parent of the trackbar. Can be NULL if the trackbar is attached
to the control panel.

GetWindowHandle

void* cvGetWindowHandle(const char* name)
Gets the window’s handle by its name.

Parameters

• name – Name of the window

.

The function cvGetWindowHandle returns the native window handle (HWND in case of Win32 and GtkWidget
in case of GTK+). [Qt Backend Only] qt-specific details: The function cvGetWindowHandle returns the native
window handle inheriting from the Qt class QWidget.

GetWindowName

const char* cvGetWindowName(void* windowHandle)
Gets the window’s name by its handle.

Parameters

• windowHandle – Handle of the window.

The function cvGetWindowName returns the name of the window given its native handle (HWND in case of Win32
and GtkWidget in case of GTK+). [Qt Backend Only] qt-specific details: The function cvGetWindowName returns
the name of the window given its native handle (QWidget).

InitSystem

int cvInitSystem(int argc, char** argv)
Initializes HighGUI.

Parameters

• argc – Number of command line arguments

• argv – Array of command line arguments

The function cvInitSystem initializes HighGUI. If it wasn’t called explicitly by the user before the first window
was created, it is called implicitly then with argc=0 , argv=NULL . Under Win32 there is no need to call it explicitly.
Under X Window the arguments may be used to customize a look of HighGUI windows and controls. [Qt Backend
Only] qt-specific details: The function cvInitSystem is automatically called at the first cvNamedWindow call.

6.1. User Interface 235

The OpenCV 1.x C Reference Manual, Release 2.3

MoveWindow

void cvMoveWindow(const char* name, int x, int y)
Sets the position of the window.

Parameters

• name – Name of the window to be moved.

• x – New x coordinate of the top-left corner

• y – New y coordinate of the top-left corner

The function cvMoveWindow changes the position of the window.

NamedWindow

int cvNamedWindow(const char* name, int flags)
Creates a window.

Parameters

• name – Name of the window in the window caption that may be used as a window identifier.

• flags – Flags of the window. Currently the only supported flag is CV_WINDOW_AUTOSIZE
. If this is set, window size is automatically adjusted to fit the displayed image (see Show-
Image), and the user can not change the window size manually.

The function cvNamedWindow creates a window which can be used as a placeholder for images and trackbars.
Created windows are referred to by their names.

If a window with the same name already exists, the function does nothing. [Qt Backend Only] qt-specific details:

• flags Flags of the window. Currently the supported flags are:

– CV_WINDOW_NORMAL or CV_WINDOW_AUTOSIZE: CV_WINDOW_NORMAL let the
user resize the window, whereas CV_WINDOW_AUTOSIZE adjusts automatically the window’s
size to fit the displayed image (see ShowImage), and the user can not change the window size
manually.

– CV_WINDOW_FREERATIO or CV_WINDOW_KEEPRATIO:
CV_WINDOW_FREERATIO adjust the image without respect the its ration, whereas
CV_WINDOW_KEEPRATIO keep the image’s ratio.

– CV_GUI_NORMAL or CV_GUI_EXPANDED: CV_GUI_NORMAL is the old way to draw
the window without statusbar and toolbar, whereas CV_GUI_EXPANDED is the new enhance
GUI.

This parameter is optional. The default flags set for a new window are CV_WINDOW_AUTOSIZE ,
CV_WINDOW_KEEPRATIO , and CV_GUI_EXPANDED .

However, if you want to modify the flags, you can combine them using OR operator, ie:

cvNamedWindow(‘‘myWindow’’, ‘‘CV_WINDOW_NORMAL‘‘ textbar ‘‘CV_GUI_NORMAL‘‘);

ResizeWindow

void cvResizeWindow(const char* name, int width, int height)
Sets the window size.

Parameters

236 Chapter 6. highgui. High-level GUI and Media I/O

The OpenCV 1.x C Reference Manual, Release 2.3

• name – Name of the window to be resized.

• width – New width

• height – New height

The function cvResizeWindow changes the size of the window.

SetMouseCallback

void cvSetMouseCallback(const char* windowName, CvMouseCallback onMouse,
void* param=NULL)

Assigns callback for mouse events.

Parameters

• windowName – Name of the window.

• onMouse – Pointer to the function to be called every time a mouse event occurs in the spec-
ified window. This function should be prototyped as void Foo(int event, int x,
int y, int flags, void* param); where event is one of CV_EVENT_* , x
and y are the coordinates of the mouse pointer in image coordinates (not window coordi-
nates), flags is a combination of CV_EVENT_FLAG_* , and param is a user-defined
parameter passed to the cvSetMouseCallback function call.

• param – User-defined parameter to be passed to the callback function.

The function cvSetMouseCallback sets the callback function for mouse events occuring within the specified
window.

The event parameter is one of:

• CV_EVENT_MOUSEMOVE Mouse movement

• CV_EVENT_LBUTTONDOWN Left button down

• CV_EVENT_RBUTTONDOWN Right button down

• CV_EVENT_MBUTTONDOWN Middle button down

• CV_EVENT_LBUTTONUP Left button up

• CV_EVENT_RBUTTONUP Right button up

• CV_EVENT_MBUTTONUP Middle button up

• CV_EVENT_LBUTTONDBLCLK Left button double click

• CV_EVENT_RBUTTONDBLCLK Right button double click

• CV_EVENT_MBUTTONDBLCLK Middle button double click

The flags parameter is a combination of :

• CV_EVENT_FLAG_LBUTTON Left button pressed

• CV_EVENT_FLAG_RBUTTON Right button pressed

• CV_EVENT_FLAG_MBUTTON Middle button pressed

• CV_EVENT_FLAG_CTRLKEY Control key pressed

• CV_EVENT_FLAG_SHIFTKEY Shift key pressed

• CV_EVENT_FLAG_ALTKEY Alt key pressed

6.1. User Interface 237

The OpenCV 1.x C Reference Manual, Release 2.3

SetTrackbarPos

void cvSetTrackbarPos(const char* trackbarName, const char* windowName, int pos)
Sets the trackbar position.

Parameters

• trackbarName – Name of the trackbar.

• windowName – Name of the window which is the parent of trackbar.

• pos – New position.

The function cvSetTrackbarPos sets the position of the specified trackbar. [Qt Backend Only] qt-specific details:

• windowName Name of the window which is the parent of trackbar. Can be NULL if the trackbar is attached to
the control panel.

ShowImage

void cvShowImage(const char* name, const CvArr* image)
Displays the image in the specified window

Parameters

• name – Name of the window.

• image – Image to be shown.

The function cvShowImage displays the image in the specified window. If the window was created with the
CV_WINDOW_AUTOSIZE flag then the image is shown with its original size, otherwise the image is scaled to fit
in the window. The function may scale the image, depending on its depth:

• If the image is 8-bit unsigned, it is displayed as is.

• If the image is 16-bit unsigned or 32-bit integer, the pixels are divided by 256. That is, the value range
[0,255*256] is mapped to [0,255].

• If the image is 32-bit floating-point, the pixel values are multiplied by 255. That is, the value range [0,1] is
mapped to [0,255].

WaitKey

int cvWaitKey(int delay=0)
Waits for a pressed key.

Parameters

• delay – Delay in milliseconds.

The function cvWaitKey waits for key event infinitely (delay <= 0) or for delay milliseconds. Returns the
code of the pressed key or -1 if no key was pressed before the specified time had elapsed.

Notes:

• This function is the only method in HighGUI that can fetch and handle events, so it needs to be called period-
ically for normal event processing, unless HighGUI is used within some environment that takes care of event
processing.

[Qt Backend Only] qt-specific details: With this current Qt implementation, this is the only way to process event such
as repaint for the windows, and so on ldots

238 Chapter 6. highgui. High-level GUI and Media I/O

The OpenCV 1.x C Reference Manual, Release 2.3

• The function only works if there is at least one HighGUI window created and the window is active. If there are
several HighGUI windows, any of them can be active.

6.2 Reading and Writing Images and Video

LoadImage

IplImage* cvLoadImage(const char* filename, int iscolor=CV_LOAD_IMAGE_COLOR)
Loads an image from a file as an IplImage.

Parameters

• filename – Name of file to be loaded.

• iscolor – Specific color type of the loaded image:

– CV_LOAD_IMAGE_COLOR the loaded image is forced to be a 3-channel color image

– CV_LOAD_IMAGE_GRAYSCALE the loaded image is forced to be grayscale

– CV_LOAD_IMAGE_UNCHANGED the loaded image will be loaded as is.

The function cvLoadImage loads an image from the specified file and returns the pointer to the loaded image.
Currently the following file formats are supported:

• Windows bitmaps - BMP, DIB

• JPEG files - JPEG, JPG, JPE

• Portable Network Graphics - PNG

• Portable image format - PBM, PGM, PPM

• Sun rasters - SR, RAS

• TIFF files - TIFF, TIF

Note that in the current implementation the alpha channel, if any, is stripped from the output image, e.g. 4-channel
RGBA image will be loaded as RGB.

LoadImageM

CvMat* cvLoadImageM(const char* filename, int iscolor=CV_LOAD_IMAGE_COLOR)
Loads an image from a file as a CvMat.

Parameters

• filename – Name of file to be loaded.

• iscolor – Specific color type of the loaded image:

– CV_LOAD_IMAGE_COLOR the loaded image is forced to be a 3-channel color image

– CV_LOAD_IMAGE_GRAYSCALE the loaded image is forced to be grayscale

– CV_LOAD_IMAGE_UNCHANGED the loaded image will be loaded as is.

The function cvLoadImageM loads an image from the specified file and returns the pointer to the loaded image.
urrently the following file formats are supported:

• Windows bitmaps - BMP, DIB

• JPEG files - JPEG, JPG, JPE

6.2. Reading and Writing Images and Video 239

The OpenCV 1.x C Reference Manual, Release 2.3

• Portable Network Graphics - PNG

• Portable image format - PBM, PGM, PPM

• Sun rasters - SR, RAS

• TIFF files - TIFF, TIF

Note that in the current implementation the alpha channel, if any, is stripped from the output image, e.g. 4-channel
RGBA image will be loaded as RGB.

SaveImage

int cvSaveImage(const char* filename, const CvArr* image)
Saves an image to a specified file.

Parameters

• filename – Name of the file.

• image – Image to be saved.

The function cvSaveImage saves the image to the specified file. The image format is chosen based on the
filename extension, see LoadImage . Only 8-bit single-channel or 3-channel (with ‘BGR’ channel order) im-
ages can be saved using this function. If the format, depth or channel order is different, use cvCvtScale and
cvCvtColor to convert it before saving, or use universal cvSave to save the image to XML or YAML format.

CvCapture

CvCapture

Video capturing structure.

typedef struct CvCapture CvCapture()

The structure CvCapture does not have a public interface and is used only as a parameter for video capturing
functions.

CaptureFromCAM

CvCapture* cvCaptureFromCAM(int index)
Initializes capturing a video from a camera.

Parameters

• index – Index of the camera to be used. If there is only one camera or it does not matter
what camera is used -1 may be passed.

The function cvCaptureFromCAM allocates and initializes the CvCapture structure for reading a video stream from
the camera. Currently two camera interfaces can be used on Windows: Video for Windows (VFW) and Matrox
Imaging Library (MIL); and two on Linux: V4L and FireWire (IEEE1394).

To release the structure, use ReleaseCapture .

240 Chapter 6. highgui. High-level GUI and Media I/O

The OpenCV 1.x C Reference Manual, Release 2.3

CaptureFromFile

CvCapture* cvCaptureFromFile(const char* filename)
Initializes capturing a video from a file.

Parameters

• filename – Name of the video file.

The function cvCaptureFromFile allocates and initializes the CvCapture structure for reading the video stream
from the specified file. Which codecs and file formats are supported depends on the back end library. On Windows
HighGui uses Video for Windows (VfW), on Linux ffmpeg is used and on Mac OS X the back end is QuickTime. See
VideoCodecs for some discussion on what to expect and how to prepare your video files.

After the allocated structure is not used any more it should be released by the ReleaseCapture function.

GetCaptureProperty

double cvGetCaptureProperty(CvCapture* capture, int property_id)
Gets video capturing properties.

Parameters

• capture – video capturing structure.

• property_id – Property identifier. Can be one of the following:

– CV_CAP_PROP_POS_MSEC Film current position in milliseconds or video capture
timestamp

– CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured
next

– CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file (0 - start of the
film, 1 - end of the film)

– CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream

– CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream

– CV_CAP_PROP_FPS Frame rate

– CV_CAP_PROP_FOURCC 4-character code of codec

– CV_CAP_PROP_FRAME_COUNT Number of frames in the video file

– CV_CAP_PROP_FORMAT The format of the Mat objects returned by retrieve()

– CV_CAP_PROP_MODE A backend-specific value indicating the current capture mode

– CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras)

– CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras)

– CV_CAP_PROP_SATURATION Saturation of the image (only for cameras)

– CV_CAP_PROP_HUE Hue of the image (only for cameras)

– CV_CAP_PROP_GAIN Gain of the image (only for cameras)

– CV_CAP_PROP_EXPOSURE Exposure (only for cameras)

– CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should
be converted to RGB

6.2. Reading and Writing Images and Video 241

The OpenCV 1.x C Reference Manual, Release 2.3

– CV_CAP_PROP_WHITE_BALANCE Currently unsupported

– CV_CAP_PROP_RECTIFICATION TOWRITE (note: only supported by DC1394 v
2.x backend currently)

The function cvGetCaptureProperty retrieves the specified property of the camera or video file.

GrabFrame

int cvGrabFrame(CvCapture* capture)
Grabs the frame from a camera or file.

Parameters

• capture – video capturing structure.

The function cvGrabFrame grabs the frame from a camera or file. The grabbed frame is stored internally. The
purpose of this function is to grab the frame quickly so that syncronization can occur if it has to read from several
cameras simultaneously. The grabbed frames are not exposed because they may be stored in a compressed format (as
defined by the camera/driver). To retrieve the grabbed frame, RetrieveFrame should be used.

QueryFrame

IplImage* cvQueryFrame(CvCapture* capture)
Grabs and returns a frame from a camera or file.

Parameters

• capture – video capturing structure.

The function cvQueryFrame grabs a frame from a camera or video file, decompresses it and returns it. This function
is just a combination of GrabFrame and RetrieveFrame , but in one call. The returned image should not be released or
modified by the user. In the event of an error, the return value may be NULL.

ReleaseCapture

void cvReleaseCapture(CvCapture** capture)
Releases the CvCapture structure.

Parameters

• capture – Pointer to video the capturing structure.

The function cvReleaseCapture releases the CvCapture structure allocated by CaptureFromFile or CaptureFrom-
CAM .

RetrieveFrame

IplImage* cvRetrieveFrame(CvCapture* capture)
Gets the image grabbed with cvGrabFrame.

Parameters

• capture – video capturing structure.

The function cvRetrieveFrame returns the pointer to the image grabbed with the GrabFrame function. The
returned image should not be released or modified by the user. In the event of an error, the return value may be NULL.

242 Chapter 6. highgui. High-level GUI and Media I/O

The OpenCV 1.x C Reference Manual, Release 2.3

SetCaptureProperty

int cvSetCaptureProperty(CvCapture* capture, int property_id, double value)
Sets video capturing properties.

Parameters

• capture – video capturing structure.

• property_id – property identifier. Can be one of the following:

– CV_CAP_PROP_POS_MSEC Film current position in milliseconds or video capture
timestamp

– CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured
next

– CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file (0 - start of the
film, 1 - end of the film)

– CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream

– CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream

– CV_CAP_PROP_FPS Frame rate

– CV_CAP_PROP_FOURCC 4-character code of codec

– CV_CAP_PROP_FRAME_COUNT Number of frames in the video file

– CV_CAP_PROP_FORMAT The format of the Mat objects returned by retrieve()

– CV_CAP_PROP_MODE A backend-specific value indicating the current capture mode

– CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras)

– CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras)

– CV_CAP_PROP_SATURATION Saturation of the image (only for cameras)

– CV_CAP_PROP_HUE Hue of the image (only for cameras)

– CV_CAP_PROP_GAIN Gain of the image (only for cameras)

– CV_CAP_PROP_EXPOSURE Exposure (only for cameras)

– CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should
be converted to RGB

– CV_CAP_PROP_WHITE_BALANCE Currently unsupported

– CV_CAP_PROP_RECTIFICATION TOWRITE (note: only supported by DC1394 v
2.x backend currently)

• value – value of the property.

The function cvSetCaptureProperty sets the specified property of video capturing. Currently
the function supports only video files: CV_CAP_PROP_POS_MSEC, CV_CAP_PROP_POS_FRAMES,
CV_CAP_PROP_POS_AVI_RATIO .

NB This function currently does nothing when using the latest CVS download on linux with FFMPEG (the function
contents are hidden if 0 is used and returned).

6.2. Reading and Writing Images and Video 243

The OpenCV 1.x C Reference Manual, Release 2.3

CreateVideoWriter

typedef struct CvVideoWriter CvVideoWriter CvVideoWriter* cvCreateVideoWriter(const char* file-
name, int fourcc,
double fps, Cv-
Size frame_size,
int is_color=1)

Creates the video file writer.

Parameters

• filename – Name of the output video file.

• fourcc – 4-character code of codec used to compress the frames.
For example, CV_FOURCC(’P’,’I’,’M,’1’) is a MPEG-1 codec,
CV_FOURCC(’M’,’J’,’P’,’G’) is a motion-jpeg codec etc. Under Win32 it is
possible to pass -1 in order to choose compression method and additional compression
parameters from dialog. Under Win32 if 0 is passed while using an avi filename it will
create a video writer that creates an uncompressed avi file.

• fps – Framerate of the created video stream.

• frame_size – Size of the video frames.

• is_color – If it is not zero, the encoder will expect and encode color frames, otherwise it
will work with grayscale frames (the flag is currently supported on Windows only).

The function cvCreateVideoWriter creates the video writer structure.

Which codecs and file formats are supported depends on the back end library. On Windows HighGui uses Video for
Windows (VfW), on Linux ffmpeg is used and on Mac OS X the back end is QuickTime. See VideoCodecs for some
discussion on what to expect.

ReleaseVideoWriter

void cvReleaseVideoWriter(CvVideoWriter** writer)
Releases the AVI writer.

Parameters

• writer – Pointer to the video file writer structure.

The function cvReleaseVideoWriter finishes writing to the video file and releases the structure.

WriteFrame

int cvWriteFrame(CvVideoWriter* writer, const IplImage* image)
Writes a frame to a video file.

Parameters

• writer – Video writer structure

• image – The written frame

The function cvWriteFrame writes/appends one frame to a video file.

244 Chapter 6. highgui. High-level GUI and Media I/O

The OpenCV 1.x C Reference Manual, Release 2.3

6.3 Qt new functions

This figure explains the new functionalities implemented with Qt GUI. As we can see, the new GUI provides a
statusbar, a toolbar, and a control panel. The control panel can have trackbars and buttonbars attached to it.

• To attach a trackbar, the window _ name parameter must be NULL.

• To attach a buttonbar, a button must be created. If the last bar attached to the control panel is a buttonbar, the
new button is added on the right of the last button. If the last bar attached to the control panel is a trackbar, or
the control panel is empty, a new buttonbar is created. Then a new button is attached to it.

The following code is an example used to generate the figure.

int main(int argc, char *argv[])
int value = 50;
int value2 = 0;

cvNamedWindow("main1",CV_WINDOW_NORMAL);
cvNamedWindow("main2",CV_WINDOW_AUTOSIZE | CV_GUI_NORMAL);

cvCreateTrackbar("track1", "main1", &value, 255, NULL);//OK tested
char* nameb1 = "button1";
char* nameb2 = "button2";
cvCreateButton(nameb1,callbackButton,nameb1,CV_CHECKBOX,1);

cvCreateButton(nameb2,callbackButton,nameb2,CV_CHECKBOX,0);
cvCreateTrackbar("track2", NULL, &value2, 255, NULL);
cvCreateButton("button5",callbackButton1,NULL,CV_RADIOBOX,0);
cvCreateButton("button6",callbackButton2,NULL,CV_RADIOBOX,1);

cvSetMouseCallback("main2",on_mouse,NULL);

IplImage* img1 = cvLoadImage("files/flower.jpg");

6.3. Qt new functions 245

The OpenCV 1.x C Reference Manual, Release 2.3

IplImage* img2 = cvCreateImage(cvGetSize(img1),8,3);
CvCapture* video = cvCaptureFromFile("files/hockey.avi");
IplImage* img3 = cvCreateImage(cvGetSize(cvQueryFrame(video)),8,3);

while(cvWaitKey(33) != 27)
{

cvAddS(img1,cvScalarAll(value),img2);
cvAddS(cvQueryFrame(video),cvScalarAll(value2),img3);
cvShowImage("main1",img2);
cvShowImage("main2",img3);

}

cvDestroyAllWindows();
cvReleaseImage(&img1);
cvReleaseImage(&img2);
cvReleaseImage(&img3);
cvReleaseCapture(&video);
return 0;

}

SetWindowProperty

void cvSetWindowProperty(const char* name, int prop_id, double prop_value)
Change the parameters of the window dynamically.

Parameters

• name – Name of the window.

• prop_id – Window’s property to edit. The operation flags:

– CV_WND_PROP_FULLSCREEN Change if the window is fullscreen (
CV_WINDOW_NORMAL or CV_WINDOW_FULLSCREEN).

– CV_WND_PROP_AUTOSIZE Change if the user can resize the window (texttt
{CV_WINDOW_NORMAL} or CV_WINDOW_AUTOSIZE).

– CV_WND_PROP_ASPECTRATIO Change if the image’s aspect ratio is preserved
(texttt {CV_WINDOW_FREERATIO} or CV_WINDOW_KEEPRATIO).

• prop_value – New value of the Window’s property. The operation flags:

– CV_WINDOW_NORMAL Change the window in normal size, or allows the user to
resize the window.

– CV_WINDOW_AUTOSIZE The user cannot resize the window, the size is constrainted
by the image displayed.

– CV_WINDOW_FULLSCREEN Change the window to fullscreen.

– CV_WINDOW_FREERATIO The image expends as much as it can (no ratio constraint)

– CV_WINDOW_KEEPRATIO The ration image is respected.

The function ‘‘ cvSetWindowProperty‘‘ allows to change the window’s properties.

GetWindowProperty

void cvGetWindowProperty(const char* name, int prop_id)
Get the parameters of the window.

246 Chapter 6. highgui. High-level GUI and Media I/O

The OpenCV 1.x C Reference Manual, Release 2.3

Parameters

• name – Name of the window.

• prop_id – Window’s property to retrive. The operation flags:

– CV_WND_PROP_FULLSCREEN Change if the window is fullscreen (
CV_WINDOW_NORMAL or CV_WINDOW_FULLSCREEN).

– CV_WND_PROP_AUTOSIZE Change if the user can resize the window (texttt
{CV_WINDOW_NORMAL} or CV_WINDOW_AUTOSIZE).

– CV_WND_PROP_ASPECTRATIO Change if the image’s aspect ratio is preserved
(texttt {CV_WINDOW_FREERATIO} or CV_WINDOW_KEEPRATIO).

See SetWindowProperty to know the meaning of the returned values.

The function ‘‘ cvGetWindowProperty‘‘ return window’s properties.

FontQt

AddText

CvFont cvFontQt(const char* nameFont, int pointSize = -1, CvScalar color = cvScalarAll(0), int weight
= CV_FONT_NORMAL, int style = CV_STYLE_NORMAL, int spacing = 0)

Create the font to be used to draw text on an image (with).

Parameters

• nameFont – Name of the font. The name should match the name of a system font (such as
‘‘Times’‘). If the font is not found, a default one will be used.

• pointSize – Size of the font. If not specified, equal zero or negative, the point size of the
font is set to a system-dependent default value. Generally, this is 12 points.

• color – Color of the font in BGRA – A = 255 is fully transparent. Use the macro CV _ RGB
for simplicity.

• weight – The operation flags:

– CV_FONT_LIGHT Weight of 25

– CV_FONT_NORMAL Weight of 50

– CV_FONT_DEMIBOLD Weight of 63

– CV_FONT_BOLD Weight of 75

– CV_FONT_BLACK Weight of 87

You can also specify a positive integer for more control.

• style – The operation flags:

– CV_STYLE_NORMAL Font is normal

– CV_STYLE_ITALIC Font is in italic

– CV_STYLE_OBLIQUE Font is oblique

• spacing – Spacing between characters. Can be negative or positive

The function cvFontQt creates a CvFont object to be used with AddText . This CvFont is not compatible with
cvPutText.

A basic usage of this function is:

6.3. Qt new functions 247

The OpenCV 1.x C Reference Manual, Release 2.3

CvFont font = cvFontQt(’’Times’’);
cvAddText(img1, ‘‘Hello World !’’, cvPoint(50,50), font);

AddText

void cvAddText(const CvArr* img, const char* text, CvPoint location, CvFont *font)
Create the font to be used to draw text on an image

Parameters

• img – Image where the text should be drawn

• text – Text to write on the image

• location – Point(x,y) where the text should start on the image

• font – Font to use to draw the text

The function cvAddText draw text on the image img using a specific font font (see example FontQt)

DisplayOverlay

void cvDisplayOverlay(const char* name, const char* text, int delay)
Display text on the window’s image as an overlay for delay milliseconds. This is not editing the image’s data.
The text is display on the top of the image.

Parameters

• name – Name of the window

• text – Overlay text to write on the window’s image

• delay – Delay to display the overlay text. If this function is called before the previous
overlay text time out, the timer is restarted and the text updated. . If this value is zero, the
text never disapers.

The function cvDisplayOverlay aims at displaying useful information/tips on the window for a certain amount
of time delay . This information is display on the top of the window.

DisplayStatusBar

void cvDisplayStatusBar(const char* name, const char* text, int delayms)
Display text on the window’s statusbar as for delay milliseconds.

Parameters

• name – Name of the window

• text – Text to write on the window’s statusbar

• delay – Delay to display the text. If this function is called before the previous text time out,
the timer is restarted and the text updated. If this value is zero, the text never disapers.

The function cvDisplayOverlay aims at displaying useful information/tips on the window for a certain amount
of time delay . This information is displayed on the window’s statubar (the window must be created with
CV_GUI_EXPANDED flags).

248 Chapter 6. highgui. High-level GUI and Media I/O

The OpenCV 1.x C Reference Manual, Release 2.3

CreateOpenGLCallback

_

void cvCreateOpenGLCallback(const char* window_name, CvOpenGLCallback callbackOpenGL,
void* userdata CV_DEFAULT(NULL), double angle CV_DEFAULT(-1),
double zmin CV_DEFAULT(-1), double zmax CV_DEFAULT(-1)

Create a callback function called to draw OpenGL on top the the image display by windowname.

Parameters

• window_name – Name of the window

• callbackOpenGL – Pointer to the function to be called every frame. This function should
be prototyped as void Foo(*void); .

• userdata – pointer passed to the callback function. (Optional)

• angle – Specifies the field of view angle, in degrees, in the y direction.. (Optional - Default
45 degree)

• zmin – Specifies the distance from the viewer to the near clipping plane (always positive).
(Optional - Default 0.01)

• zmax – Specifies the distance from the viewer to the far clipping plane (always positive).
(Optional - Default 1000)

The function cvCreateOpenGLCallback can be used to draw 3D data on the window. An example of callback
could be:

void on_opengl(void* param)
{

//draw scene here
glLoadIdentity();

glTranslated(0.0, 0.0, -1.0);

glRotatef(55, 1, 0, 0);
glRotatef(45, 0, 1, 0);
glRotatef(0, 0, 0, 1);

static const int coords[6][4][3] = {
{ { +1, -1, -1 }, { -1, -1, -1 }, { -1, +1, -1 }, { +1, +1, -1 } },
{ { +1, +1, -1 }, { -1, +1, -1 }, { -1, +1, +1 }, { +1, +1, +1 } },
{ { +1, -1, +1 }, { +1, -1, -1 }, { +1, +1, -1 }, { +1, +1, +1 } },
{ { -1, -1, -1 }, { -1, -1, +1 }, { -1, +1, +1 }, { -1, +1, -1 } },
{ { +1, -1, +1 }, { -1, -1, +1 }, { -1, -1, -1 }, { +1, -1, -1 } },
{ { -1, -1, +1 }, { +1, -1, +1 }, { +1, +1, +1 }, { -1, +1, +1 } }

};

for (int i = 0; i < 6; ++i) {
glColor3ub(i*20, 100+i*10, i*42);
glBegin(GL_QUADS);
for (int j = 0; j < 4; ++j) {

glVertex3d(0.2 * coords[i][j][0], 0.2 * coords[i][j][1], 0.2 * coords[i][j][2]);
}
glEnd();

}
}

6.3. Qt new functions 249

The OpenCV 1.x C Reference Manual, Release 2.3

CV_EXTERN_C_FUNCPTR(*CvOpenGLCallback)(void* userdata));

SaveWindowParameters

_

void cvSaveWindowParameters(const char* name)
Save parameters of the window windowname.

Parameters

• name – Name of the window

The function cvSaveWindowParameters saves size, location, flags, trackbars’ value, zoom and panning location
of the window window_name

LoadWindowParameters

_

void cvLoadWindowParameters(const char* name)
Load parameters of the window windowname.

Parameters

• name – Name of the window

The function cvLoadWindowParameters load size, location, flags, trackbars’ value, zoom and panning location
of the window window_name

CreateButton

_

cvCreateButton(const char* button_name CV_DEFAULT(NULL), CvButtonCallback
on_change CV_DEFAULT(NULL), void* userdata CV_DEFAULT(NULL),
int button_type CV_DEFAULT(CV_PUSH_BUTTON), int ini-
tial_button_state CV_DEFAULT(0)

Create a callback function called to draw OpenGL on top the the image display by windowname.

Parameters

• button_name – Name of the button (if NULL, the name will be “button <number of bout-
ton>”)

• on_change – Pointer to the function to be called every time the button changed its state.
This function should be prototyped as void Foo(int state,*void); . state is the
current state of the button. It could be -1 for a push button, 0 or 1 for a check/radio box
button.

• userdata – pointer passed to the callback function. (Optional)

The button_type parameter can be : *(Optional – Will be a push button by default.)

• CV_PUSH_BUTTON The button will be a push button.

• CV_CHECKBOX The button will be a checkbox button.

250 Chapter 6. highgui. High-level GUI and Media I/O

The OpenCV 1.x C Reference Manual, Release 2.3

• CV_RADIOBOX The button will be a radiobox button. The radiobox on the same buttonbar (same line) are
exclusive; one on can be select at the time.

•

• initial_button_state Default state of the button. Use for checkbox and radiobox, its value could be 0 or 1.
(Optional)

The function cvCreateButton attach button to the control panel. Each button is added to a buttonbar on the right
of the last button. A new buttonbar is create if nothing was attached to the control panel before, or if the last element
attached to the control panel was a trackbar.

Here are various example of cvCreateButton function call:

cvCreateButton(NULL,callbackButton);//create a push button "button 0", that will call callbackButton.
cvCreateButton("button2",callbackButton,NULL,CV_CHECKBOX,0);
cvCreateButton("button3",callbackButton,&value);
cvCreateButton("button5",callbackButton1,NULL,CV_RADIOBOX);
cvCreateButton("button6",callbackButton2,NULL,CV_PUSH_BUTTON,1);

CV_EXTERN_C_FUNCPTR(*CvButtonCallback)(int state, void* userdata));

6.3. Qt new functions 251

The OpenCV 1.x C Reference Manual, Release 2.3

252 Chapter 6. highgui. High-level GUI and Media I/O

CHAPTER

SEVEN

CALIB3D. CAMERA CALIBRATION,
POSE ESTIMATION AND STEREO

7.1 Camera Calibration and 3d Reconstruction

The functions in this section use the so-called pinhole camera model. That is, a scene view is formed by projecting 3D
points into the image plane using a perspective transformation.

s m′ = A[R|t]M ′

or

s

uv
1

 =

fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

X
Y
Z
1

Where (X,Y, Z) are the coordinates of a 3D point in the world coordinate space, (u, v) are the coordinates of the
projection point in pixels. A is called a camera matrix, or a matrix of intrinsic parameters. (cx, cy) is a principal point
(that is usually at the image center), and fx, fy are the focal lengths expressed in pixel-related units. Thus, if an image
from camera is scaled by some factor, all of these parameters should be scaled (multiplied/divided, respectively) by
the same factor. The matrix of intrinsic parameters does not depend on the scene viewed and, once estimated, can
be re-used (as long as the focal length is fixed (in case of zoom lens)). The joint rotation-translation matrix [R|t] is
called a matrix of extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa,
rigid motion of an object in front of still camera. That is, [R|t] translates coordinates of a point (X,Y, Z) to some
coordinate system, fixed with respect to the camera. The transformation above is equivalent to the following (when
z 6= 0): xy

z

 = R

XY
Z

+ t

x′ = x/z
y′ = y/z
u = fx ∗ x′ + cx
v = fy ∗ y′ + cy

253

The OpenCV 1.x C Reference Manual, Release 2.3

Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion. So, the above model
is extended as: xy

z

 = R

XY
Z

+ t

x′ = x/z
y′ = y/z

x′′ = x′ 1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6 + 2p1x
′y′ + p2(r2 + 2x′2)

y′′ = y′ 1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6 + p1(r2 + 2y′2) + 2p2x
′y′

where r2 = x′2 + y′2

u = fx ∗ x′′ + cx
v = fy ∗ y′′ + cy

k1 , k2 , k3 , k4 , k5 , k6 are radial distortion coefficients, p1 , p2 are tangential distortion coefficients. Higher-order
coefficients are not considered in OpenCV. In the functions below the coefficients are passed or returned as

(k1, k2, p1, p2[, k3[, k4, k5, k6]])

vector. That is, if the vector contains 4 elements, it means that k3 = 0 . The distortion coefficients do not depend on
the scene viewed, thus they also belong to the intrinsic camera parameters. And they remain the same regardless of the
captured image resolution. That is, if, for example, a camera has been calibrated on images of 320 × 240 resolution,
absolutely the same distortion coefficients can be used for images of 640×480 resolution from the same camera (while
fx , fy , cx and cy need to be scaled appropriately).

The functions below use the above model to

• Project 3D points to the image plane given intrinsic and extrinsic parameters

• Compute extrinsic parameters given intrinsic parameters, a few 3D points and their projections.

• Estimate intrinsic and extrinsic camera parameters from several views of a known calibration pattern (i.e. every
view is described by several 3D-2D point correspondences).

• Estimate the relative position and orientation of the stereo camera “heads” and compute the rectification trans-
formation that makes the camera optical axes parallel.

CalcImageHomography

void cvCalcImageHomography(float* line, CvPoint3D32f* center, float* intrinsic, float* homography)
Calculates the homography matrix for an oblong planar object (e.g. arm).

Parameters

• line – the main object axis direction (vector (dx,dy,dz))

• center – object center ((cx,cy,cz))

• intrinsic – intrinsic camera parameters (3x3 matrix)

• homography – output homography matrix (3x3)

The function calculates the homography matrix for the initial image transformation from image plane to the plane,
defined by a 3D oblong object line (See _ _ Figure 6-10 _ _ in the OpenCV Guide 3D Reconstruction Chapter).

254 Chapter 7. calib3d. Camera Calibration, Pose Estimation and Stereo

The OpenCV 1.x C Reference Manual, Release 2.3

CalibrateCamera2

double cvCalibrateCamera2(const CvMat* objectPoints, const CvMat* imagePoints, const Cv-
Mat* pointCounts, CvSize imageSize, CvMat* cameraMatrix, CvMat* dist-
Coeffs, CvMat* rvecs=NULL, CvMat* tvecs=NULL, int flags=0)

Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.

Parameters

• objectPoints – The joint matrix of object points - calibration pattern features in the model
coordinate space. It is floating-point 3xN or Nx3 1-channel, or 1xN or Nx1 3-channel array,
where N is the total number of points in all views.

• imagePoints – The joint matrix of object points projections in the camera views. It is
floating-point 2xN or Nx2 1-channel, or 1xN or Nx1 2-channel array, where N is the total
number of points in all views

• pointCounts – Integer 1xM or Mx1 vector (where M is the number of calibration pattern
views) containing the number of points in each particular view. The sum of vector elements
must match the size of objectPoints and imagePoints (=N).

• imageSize – Size of the image, used only to initialize the intrinsic camera matrix

• cameraMatrix – The output 3x3 floating-point camera matrix A =

fx 0 cx
0 fy cy
0 0 1

 . If

CV_CALIB_USE_INTRINSIC_GUESS and/or CV_CALIB_FIX_ASPECT_RATIO are
specified, some or all of fx, fy, cx, cy must be initialized before calling the function

• distCoeffs – The output vector of distortion coefficients (k1, k2, p1, p2[, k3[, k4, k5, k6]]) of
4, 5 or 8 elements

• rvecs – The output 3x M or M x3 1-channel, or 1x M or M x1 3-channel array of rotation
vectors (see Rodrigues2), estimated for each pattern view. That is, each k-th rotation vec-
tor together with the corresponding k-th translation vector (see the next output parameter
description) brings the calibration pattern from the model coordinate space (in which ob-
ject points are specified) to the world coordinate space, i.e. real position of the calibration
pattern in the k-th pattern view (k=0.. M -1)

• tvecs – The output 3x M or M x3 1-channel, or 1x M or M x1 3-channel array of translation
vectors, estimated for each pattern view.

• flags – Different flags, may be 0 or combination of the following values:

– CV_CALIB_USE_INTRINSIC_GUESS cameraMatrix contains the valid initial
values of fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is ini-
tially set to the image center (imageSize is used here), and focal distances are com-
puted in some least-squares fashion. Note, that if intrinsic parameters are known, there is
no need to use this function just to estimate the extrinsic parameters. Use FindExtrinsic-
CameraParams2 instead.

– CV_CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during
the global optimization, it stays at the center or at the other location specified when
CV_CALIB_USE_INTRINSIC_GUESS is set too.

– CV_CALIB_FIX_ASPECT_RATIO The functions considers only fy as a free pa-
rameter, the ratio fx/fy stays the same as in the input cameraMatrix . When
CV_CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and
fy are ignored, only their ratio is computed and used further.

7.1. Camera Calibration and 3d Reconstruction 255

The OpenCV 1.x C Reference Manual, Release 2.3

– CV_CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients (p1, p2) will
be set to zeros and stay zero.

– CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6 Do not change the cor-
responding radial distortion coefficient during the optimization. If
CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the supplied
distCoeffs matrix is used, otherwise it is set to 0.

– CV_CALIB_RATIONAL_MODEL Enable coefficients k4, k5 and k6. To provide the
backward compatibility, this extra flag should be explicitly specified to make the calibra-
tion function use the rational model and return 8 coefficients. If the flag is not set, the
function will compute only 5 distortion coefficients.

The function estimates the intrinsic camera parameters and extrinsic parameters for each of the views. The coordinates
of 3D object points and their correspondent 2D projections in each view must be specified. That may be achieved by
using an object with known geometry and easily detectable feature points. Such an object is called a calibration rig or
calibration pattern, and OpenCV has built-in support for a chessboard as a calibration rig (see FindChessboardCorners
). Currently, initialization of intrinsic parameters (when CV_CALIB_USE_INTRINSIC_GUESS is not set) is only
implemented for planar calibration patterns (where z-coordinates of the object points must be all 0’s). 3D calibration
rigs can also be used as long as initial cameraMatrix is provided.

The algorithm does the following:

1. First, it computes the initial intrinsic parameters (the option only available for planar calibration patterns) or
reads them from the input parameters. The distortion coefficients are all set to zeros initially (unless some of
CV_CALIB_FIX_K? are specified).

2. The initial camera pose is estimated as if the intrinsic parameters have been already known. This is done using
FindExtrinsicCameraParams2

3. After that the global Levenberg-Marquardt optimization algorithm is run to minimize the reprojection error, i.e.
the total sum of squared distances between the observed feature points imagePoints and the projected (using
the current estimates for camera parameters and the poses) object points objectPoints ; see ProjectPoints2
.

The function returns the final re-projection error. Note: if you’re using a non-square (=non-NxN) grid and
findChessboardCorners() for calibration, and calibrateCamera returns bad values (i.e. zero distor-
tion coefficients, an image center very far from (w/2 − 0.5, h/2 − 0.5) , and / or large differences between fx and
fy (ratios of 10:1 or more)), then you’ve probably used patternSize=cvSize(rows,cols) , but should use
patternSize=cvSize(cols,rows) in FindChessboardCorners .

See also: FindChessboardCorners , FindExtrinsicCameraParams2 , initCameraMatrix2D() , StereoCalibrate ,
Undistort2

ComputeCorrespondEpilines

void cvComputeCorrespondEpilines(const CvMat* points, int whichImage, const CvMat* F, Cv-
Mat* lines)

For points in one image of a stereo pair, computes the corresponding epilines in the other image.

Parameters

• points – The input points. 2xN, Nx2, 3xN or Nx3 array (where N number of points).
Multi-channel 1xN or Nx1 array is also acceptable

• whichImage – Index of the image (1 or 2) that contains the points

• F – The fundamental matrix that can be estimated using FindFundamentalMat or Stereo-
Rectify .

256 Chapter 7. calib3d. Camera Calibration, Pose Estimation and Stereo

The OpenCV 1.x C Reference Manual, Release 2.3

• lines – The output epilines, a 3xN or Nx3 array. Each line ax + by + c = 0 is encoded by
3 numbers (a, b, c)

For every point in one of the two images of a stereo-pair the function finds the equation of the corresponding epipolar
line in the other image.

From the fundamental matrix definition (see FindFundamentalMat), line l(2)i in the second image for the point p(1)
i in

the first image (i.e. when whichImage=1) is computed as:

l
(2)
i = Fp

(1)
i

and, vice versa, when whichImage=2 , l(1)i is computed from p
(2)
i as:

l
(1)
i = FT p

(2)
i

Line coefficients are defined up to a scale. They are normalized, such that a2
i + b2i = 1 .

ConvertPointsHomogeneous

void cvConvertPointsHomogeneous(const CvMat* src, CvMat* dst)
Convert points to/from homogeneous coordinates.

Parameters

• src – The input point array, 2xN, Nx2, 3xN, Nx3, 4xN or Nx4 (where ‘‘N is
the number of points)‘‘ . Multi-channel 1xN or Nx1 array is also acceptable

• dst – The output point array, must contain the same number of points as the input; The
dimensionality must be the same, 1 less or 1 more than the input, and also within 2 to 4

The function converts 2D or 3D points from/to homogeneous coordinates, or simply copies or transposes the array. If
the input array dimensionality is larger than the output, each coordinate is divided by the last coordinate:

(x, y[, z], w)− > (x′, y′[, z′])
where
x′ = x/w
y′ = y/w
z′ = z/w (if output is 3D)

If the output array dimensionality is larger, an extra 1 is appended to each point. Otherwise, the input array is simply
copied (with optional transposition) to the output.

Note because the function accepts a large variety of array layouts, it may report an error when input/output array
dimensionality is ambiguous. It is always safe to use the function with number of points N ≥ 5 , or to use multi-
channel Nx1 or 1xN arrays.

CreatePOSITObject

CvPOSITObject* cvCreatePOSITObject(CvPoint3D32f* points, int point_count)
Initializes a structure containing object information.

Parameters

• points – Pointer to the points of the 3D object model

• point_count – Number of object points

7.1. Camera Calibration and 3d Reconstruction 257

The OpenCV 1.x C Reference Manual, Release 2.3

The function allocates memory for the object structure and computes the object inverse matrix.

The preprocessed object data is stored in the structure CvPOSITObject , internal for OpenCV, which means that the
user cannot directly access the structure data. The user may only create this structure and pass its pointer to the
function.

An object is defined as a set of points given in a coordinate system. The function POSIT computes a vector that begins
at a camera-related coordinate system center and ends at the points[0] of the object.

Once the work with a given object is finished, the function ReleasePOSITObject must be called to free memory.

CreateStereoBMState

CvStereoBMState* cvCreateStereoBMState(int preset=CV_STEREO_BM_BASIC, int numberOfDis-
parities=0)

Creates block matching stereo correspondence structure.

Parameters

• preset – ID of one of the pre-defined parameter sets. Any of the parameters can be overrid-
den after creating the structure. Values are

– CV_STEREO_BM_BASIC Parameters suitable for general cameras

– CV_STEREO_BM_FISH_EYE Parameters suitable for wide-angle cameras

– CV_STEREO_BM_NARROW Parameters suitable for narrow-angle cameras

• numberOfDisparities – The number of disparities. If the parameter is 0, it is taken from
the preset, otherwise the supplied value overrides the one from preset.

The function creates the stereo correspondence structure and initializes it. It is possible to override any of the parame-
ters at any time between the calls to FindStereoCorrespondenceBM .

CreateStereoGCState

CvStereoGCState* cvCreateStereoGCState(int numberOfDisparities, int maxIters)
Creates the state of graph cut-based stereo correspondence algorithm.

Parameters

• numberOfDisparities – The number of disparities. The disparity search range
will be state->minDisparity ≤ disparity < state->minDisparity +
state->numberOfDisparities

• maxIters – Maximum number of iterations. On each iteration all possible (or reasonable)
alpha-expansions are tried. The algorithm may terminate earlier if it could not find an alpha-
expansion that decreases the overall cost function value. See Kolmogorov03 for details.

The function creates the stereo correspondence structure and initializes it. It is possible to override any of the parame-
ters at any time between the calls to FindStereoCorrespondenceGC .

CvStereoBMState

CvStereoBMState

The structure for block matching stereo correspondence algorithm.

258 Chapter 7. calib3d. Camera Calibration, Pose Estimation and Stereo

The OpenCV 1.x C Reference Manual, Release 2.3

typedef struct CvStereoBMState
{

//pre filters (normalize input images):
int preFilterType; // 0 for now
int preFilterSize; // ~5x5..21x21
int preFilterCap; // up to ~31
//correspondence using Sum of Absolute Difference (SAD):
int SADWindowSize; // Could be 5x5..21x21
int minDisparity; // minimum disparity (=0)
int numberOfDisparities; // maximum disparity - minimum disparity
//post filters (knock out bad matches):
int textureThreshold; // areas with no texture are ignored
int uniquenessRatio;// invalidate disparity at pixels where there are other close matches

// with different disparity
int speckleWindowSize; // the maximum area of speckles to remove

// (set to 0 to disable speckle filtering)
int speckleRange; // acceptable range of disparity variation in each connected component

int trySmallerWindows; // not used
CvRect roi1, roi2; // clipping ROIs

int disp12MaxDiff; // maximum allowed disparity difference in the left-right check

// internal data
...

}
CvStereoBMState;

preFilterType
type of the prefilter, CV_STEREO_BM_NORMALIZED_RESPONSE or the default and the recom-
mended CV_STEREO_BM_XSOBEL , int

preFilterSize
~5x5..21x21, int

preFilterCap
up to ~31, int

SADWindowSize
Could be 5x5..21x21 or higher, but with 21x21 or smaller windows the processing speed is much
higher, int

minDisparity
minimum disparity (=0), int

numberOfDisparities
maximum disparity - minimum disparity, int

textureThreshold
the textureness threshold. That is, if the sum of absolute values of x-derivatives computed over
SADWindowSize by SADWindowSize pixel neighborhood is smaller than the parameter, no
disparity is computed at the pixel, int

uniquenessRatio
the minimum margin in percents between the best (minimum) cost function value and the second
best value to accept the computed disparity, int

speckleWindowSize
the maximum area of speckles to remove (set to 0 to disable speckle filtering), int

7.1. Camera Calibration and 3d Reconstruction 259

The OpenCV 1.x C Reference Manual, Release 2.3

speckleRange
acceptable range of disparity variation in each connected component, int

trySmallerWindows
not used currently (0), int

roi1, roi2
These are the clipping ROIs for the left and the right images. The function StereoRectify returns
the largest rectangles in the left and right images where after the rectification all the pixels are
valid. If you copy those rectangles to the CvStereoBMState structure, the stereo correspondence
function will automatically clear out the pixels outside of the “valid” disparity rectangle computed
by GetValidDisparityROI . Thus you will get more “invalid disparity” pixels than usual, but the
remaining pixels are more probable to be valid.

disp12MaxDiff
The maximum allowed difference between the explicitly computed left-to-right disparity map and
the implicitly (by ValidateDisparity) computed right-to-left disparity. If for some pixel the differ-
ence is larger than the specified threshold, the disparity at the pixel is invalidated. By default this
parameter is set to (-1), which means that the left-right check is not performed.

The block matching stereo correspondence algorithm, by Kurt Konolige, is very fast single-pass stereo matching algo-
rithm that uses sliding sums of absolute differences between pixels in the left image and the pixels in the right image,
shifted by some varying amount of pixels (from minDisparity to minDisparity+numberOfDisparities
). On a pair of images WxH the algorithm computes disparity in O(W*H*numberOfDisparities) time. In
order to improve quality and readability of the disparity map, the algorithm includes pre-filtering and post-filtering
procedures.

Note that the algorithm searches for the corresponding blocks in x direction only. It means that the supplied stereo pair
should be rectified. Vertical stereo layout is not directly supported, but in such a case the images could be transposed
by user.

CvStereoGCState

CvStereoGCState

The structure for graph cuts-based stereo correspondence algorithm

typedef struct CvStereoGCState
{

int Ithreshold; // threshold for piece-wise linear data cost function (5 by default)
int interactionRadius; // radius for smoothness cost function (1 by default; means Potts model)
float K, lambda, lambda1, lambda2; // parameters for the cost function

// (usually computed adaptively from the input data)
int occlusionCost; // 10000 by default
int minDisparity; // 0 by default; see CvStereoBMState
int numberOfDisparities; // defined by user; see CvStereoBMState
int maxIters; // number of iterations; defined by user.

// internal buffers
CvMat* left;
CvMat* right;
CvMat* dispLeft;
CvMat* dispRight;
CvMat* ptrLeft;
CvMat* ptrRight;
CvMat* vtxBuf;
CvMat* edgeBuf;

260 Chapter 7. calib3d. Camera Calibration, Pose Estimation and Stereo

The OpenCV 1.x C Reference Manual, Release 2.3

}
CvStereoGCState;

The graph cuts stereo correspondence algorithm, described in Kolmogorov03 (as KZ1), is non-realtime stereo corre-
spondence algorithm that usually gives very accurate depth map with well-defined object boundaries. The algorithm
represents stereo problem as a sequence of binary optimization problems, each of those is solved using maximum
graph flow algorithm. The state structure above should not be allocated and initialized manually; instead, use Creat-
eStereoGCState and then override necessary parameters if needed.

DecomposeProjectionMatrix

void cvDecomposeProjectionMatrix(const CvMat *projMatrix, CvMat *cameraMatrix, Cv-
Mat *rotMatrix, CvMat *transVect, CvMat *rotMatrX=NULL,
CvMat *rotMatrY=NULL, CvMat *rotMatrZ=NULL, Cv-
Point3D64f *eulerAngles=NULL)

Decomposes the projection matrix into a rotation matrix and a camera matrix.

Parameters

• projMatrix – The 3x4 input projection matrix P

• cameraMatrix – The output 3x3 camera matrix K

• rotMatrix – The output 3x3 external rotation matrix R

• transVect – The output 4x1 translation vector T

• rotMatrX – Optional 3x3 rotation matrix around x-axis

• rotMatrY – Optional 3x3 rotation matrix around y-axis

• rotMatrZ – Optional 3x3 rotation matrix around z-axis

• eulerAngles – Optional 3 points containing the three Euler angles of rotation

The function computes a decomposition of a projection matrix into a calibration and a rotation matrix and the position
of the camera.

It optionally returns three rotation matrices, one for each axis, and the three Euler angles that could be used in OpenGL.

The function is based on RQDecomp3x3 .

DrawChessboardCorners

void cvDrawChessboardCorners(CvArr* image, CvSize patternSize, CvPoint2D32f* corners, int count,
int patternWasFound)

Renders the detected chessboard corners.

Parameters

• image – The destination image; it must be an 8-bit color image

• patternSize – The number of inner corners per chessboard row and column. (patternSize =
cv::Size(points _ per _ row,points _ per _ column) = cv::Size(rows,columns))

• corners – The array of corners detected, this should be the output from findChessboard-
Corners wrapped in a cv::Mat().

• count – The number of corners

• patternWasFound – Indicates whether the complete board was found (6= 0) or not (= 0) .
One may just pass the return value FindChessboardCorners here

7.1. Camera Calibration and 3d Reconstruction 261

The OpenCV 1.x C Reference Manual, Release 2.3

The function draws the individual chessboard corners detected as red circles if the board was not found or as colored
corners connected with lines if the board was found.

FindChessboardCorners

int cvFindChessboardCorners(const void* image, CvSize patternSize, Cv-
Point2D32f* corners, int* cornerCount=NULL,
int flags=CV_CALIB_CB_ADAPTIVE_THRESH)

Finds the positions of the internal corners of the chessboard.

Parameters

• image – Source chessboard view; it must be an 8-bit grayscale or color image

• patternSize – The number of inner corners per chessboard row and column (patternSize =
cvSize(points _ per _ row,points _ per _ colum) = cvSize(columns,rows))

• corners – The output array of corners detected

• cornerCount – The output corner counter. If it is not NULL, it stores the number of corners
found

• flags – Various operation flags, can be 0 or a combination of the following values:

– CV_CALIB_CB_ADAPTIVE_THRESH use adaptive thresholding to convert the im-
age to black and white, rather than a fixed threshold level (computed from the average
image brightness).

– CV_CALIB_CB_NORMALIZE_IMAGE normalize the image gamma with Equalize-
Hist before applying fixed or adaptive thresholding.

– CV_CALIB_CB_FILTER_QUADS use additional criteria (like contour area, perimeter,
square-like shape) to filter out false quads that are extracted at the contour retrieval stage.

– CALIB_CB_FAST_CHECK Runs a fast check on the image that looks for chessboard corners, and shortcuts the call if none are found. This can drastically speed up the call in the degenerate condition when
no chessboard is observed.

The function attempts to determine whether the input image is a view of the chessboard pattern and locate the internal
chessboard corners. The function returns a non-zero value if all of the corners have been found and they have been
placed in a certain order (row by row, left to right in every row), otherwise, if the function fails to find all the corners
or reorder them, it returns 0. For example, a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is,
points, where the black squares touch each other. The coordinates detected are approximate, and to determine their
position more accurately, the user may use the function FindCornerSubPix .

Sample usage of detecting and drawing chessboard corners:

Size patternsize(8,6); //interior number of corners
Mat gray =; //source image
vector<Point2f> corners; //this will be filled by the detected corners

//CALIB_CB_FAST_CHECK saves a lot of time on images
//that don’t contain any chessboard corners
bool patternfound = findChessboardCorners(gray, patternsize, corners,

CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
+ CALIB_CB_FAST_CHECK);

if(patternfound)
cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));

drawChessboardCorners(img, patternsize, Mat(corners), patternfound);

262 Chapter 7. calib3d. Camera Calibration, Pose Estimation and Stereo

The OpenCV 1.x C Reference Manual, Release 2.3

Note: the function requires some white space (like a square-thick border, the wider the better) around the board to
make the detection more robust in various environment (otherwise if there is no border and the background is dark,
the outer black squares could not be segmented properly and so the square grouping and ordering algorithm will fail).

FindExtrinsicCameraParams2

void cvFindExtrinsicCameraParams2(const CvMat* objectPoints, const CvMat* imagePoints,
const CvMat* cameraMatrix, const CvMat* distCoeffs, Cv-
Mat* rvec, CvMat* tvec, int useExtrinsicGuess=0)

Finds the object pose from the 3D-2D point correspondences

Parameters

• objectPoints – The array of object points in the object coordinate space, 3xN or Nx3 1-
channel, or 1xN or Nx1 3-channel, where N is the number of points.

• imagePoints – The array of corresponding image points, 2xN or Nx2 1-channel or 1xN or
Nx1 2-channel, where N is the number of points.

• cameraMatrix – The input camera matrix A =

fx 0 cx
0 fy cy
0 0 1

• distCoeffs – The input vector of distortion coefficients (k1, k2, p1, p2[, k3[, k4, k5, k6]]) of 4,

5 or 8 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

• rvec – The output rotation vector (see Rodrigues2) that (together with tvec) brings points
from the model coordinate system to the camera coordinate system

• tvec – The output translation vector

• useExtrinsicGuess – If true (1), the function will use the provided rvec and tvec as the
initial approximations of the rotation and translation vectors, respectively, and will further
optimize them.

The function estimates the object pose given a set of object points, their corresponding image projections, as well as the
camera matrix and the distortion coefficients. This function finds such a pose that minimizes reprojection error, i.e. the
sum of squared distances between the observed projections imagePoints and the projected (using ProjectPoints2)
objectPoints .

The function’s counterpart in the C++ API is

FindFundamentalMat

int cvFindFundamentalMat(const CvMat* points1, const CvMat* points2, CvMat* fundamentalMatrix,
int method=CV_FM_RANSAC, double param1=1., double param2=0.99,
CvMat* status=NULL)

Calculates the fundamental matrix from the corresponding points in two images.

Parameters

• points1 – Array of N points from the first image. It can be 2xN, Nx2, 3xN or Nx3
1-channel array or 1xN or Nx1 2- or 3-channel array . The point coordinates should be
floating-point (single or double precision)

• points2 – Array of the second image points of the same size and format as points1

• fundamentalMatrix – The output fundamental matrix or matrices. The size should be 3x3
or 9x3 (7-point method may return up to 3 matrices)

7.1. Camera Calibration and 3d Reconstruction 263

The OpenCV 1.x C Reference Manual, Release 2.3

• method – Method for computing the fundamental matrix

– CV_FM_7POINT for a 7-point algorithm. N = 7

– CV_FM_8POINT for an 8-point algorithm. N ≥ 8

– CV_FM_RANSAC for the RANSAC algorithm. N ≥ 8

– CV_FM_LMEDS for the LMedS algorithm. N ≥ 8

• param1 – The parameter is used for RANSAC. It is the maximum distance from point to
epipolar line in pixels, beyond which the point is considered an outlier and is not used for
computing the final fundamental matrix. It can be set to something like 1-3, depending on
the accuracy of the point localization, image resolution and the image noise

• param2 – The parameter is used for RANSAC or LMedS methods only. It specifies the
desirable level of confidence (probability) that the estimated matrix is correct

• status – The optional output array of N elements, every element of which is set to 0 for
outliers and to 1 for the other points. The array is computed only in RANSAC and LMedS
methods. For other methods it is set to all 1’s

The epipolar geometry is described by the following equation:

[p2; 1]TF [p1; 1] = 0

where F is fundamental matrix, p1 and p2 are corresponding points in the first and the second images, respectively.

The function calculates the fundamental matrix using one of four methods listed above and returns the number of
fundamental matrices found (1 or 3) and 0, if no matrix is found . Normally just 1 matrix is found, but in the case of
7-point algorithm the function may return up to 3 solutions (9× 3 matrix that stores all 3 matrices sequentially).

The calculated fundamental matrix may be passed further to ComputeCorrespondEpilines that finds the epipolar lines
corresponding to the specified points. It can also be passed to StereoRectifyUncalibrated to compute the rectification
transformation.

int point_count = 100;
CvMat* points1;
CvMat* points2;
CvMat* status;
CvMat* fundamental_matrix;

points1 = cvCreateMat(1,point_count,CV_32FC2);
points2 = cvCreateMat(1,point_count,CV_32FC2);
status = cvCreateMat(1,point_count,CV_8UC1);

/* Fill the points here ... */
for(i = 0; i < point_count; i++)
{

points1->data.fl[i*2] = <x,,1,i,,>;
points1->data.fl[i*2+1] = <y,,1,i,,>;
points2->data.fl[i*2] = <x,,2,i,,>;
points2->data.fl[i*2+1] = <y,,2,i,,>;

}

fundamental_matrix = cvCreateMat(3,3,CV_32FC1);
int fm_count = cvFindFundamentalMat(points1,points2,fundamental_matrix,

CV_FM_RANSAC,1.0,0.99,status);

264 Chapter 7. calib3d. Camera Calibration, Pose Estimation and Stereo

The OpenCV 1.x C Reference Manual, Release 2.3

FindHomography

void cvFindHomography(const CvMat* srcPoints, const CvMat* dstPoints, CvMat* H int method=0, dou-
ble ransacReprojThreshold=3, CvMat* status=NULL)

Finds the perspective transformation between two planes.

Parameters

• srcPoints – Coordinates of the points in the original plane, 2xN, Nx2, 3xN or Nx3 1-channel
array (the latter two are for representation in homogeneous coordinates), where N is the
number of points. 1xN or Nx1 2- or 3-channel array can also be passed.

• dstPoints – Point coordinates in the destination plane, 2xN, Nx2, 3xN or Nx3 1-channel, or
1xN or Nx1 2- or 3-channel array.

• H – The output 3x3 homography matrix

• method – The method used to computed homography matrix; one of the following:

– 0 a regular method using all the points

– CV_RANSAC RANSAC-based robust method

– CV_LMEDS Least-Median robust method

• ransacReprojThreshold – The maximum allowed reprojection error to treat a point pair as
an inlier (used in the RANSAC method only). That is, if

‖dstPointsi − convertPointsHomogeneous(HsrcPointsi)‖ > ransacReprojThreshold

then the point i is considered an outlier. If srcPoints and dstPoints are measured in
pixels, it usually makes sense to set this parameter somewhere in the range 1 to 10.

• status – The optional output mask set by a robust method (CV_RANSAC or CV_LMEDS).
Note that the input mask values are ignored.

The function finds the perspective transformation H between the source and the destination planes:

si

x′iy′i
1

 ∼ H
xi

yi

1

So that the back-projection error

∑
i

(
x′i −

h11xi + h12yi + h13

h31xi + h32yi + h33

)2

+
(
y′i −

h21xi + h22yi + h23

h31xi + h32yi + h33

)2

is minimized. If the parameter method is set to the default value 0, the function uses all the point pairs to compute
the initial homography estimate with a simple least-squares scheme.

However, if not all of the point pairs (srcPointsi , dstPointsi) fit the rigid perspective transformation (i.e. there are
some outliers), this initial estimate will be poor. In this case one can use one of the 2 robust methods. Both methods,
RANSAC and LMeDS , try many different random subsets of the corresponding point pairs (of 4 pairs each), estimate
the homography matrix using this subset and a simple least-square algorithm and then compute the quality/goodness of
the computed homography (which is the number of inliers for RANSAC or the median re-projection error for LMeDs).
The best subset is then used to produce the initial estimate of the homography matrix and the mask of inliers/outliers.

Regardless of the method, robust or not, the computed homography matrix is refined further (using inliers only in the
case of a robust method) with the Levenberg-Marquardt method in order to reduce the re-projection error even more.

The method RANSAC can handle practically any ratio of outliers, but it needs the threshold to distinguish inliers from
outliers. The method LMeDS does not need any threshold, but it works correctly only when there are more than 50

7.1. Camera Calibration and 3d Reconstruction 265

The OpenCV 1.x C Reference Manual, Release 2.3

% of inliers. Finally, if you are sure in the computed features, where can be only some small noise present, but no
outliers, the default method could be the best choice.

The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is determined up to a scale,
thus it is normalized so that h33 = 1 .

See also: GetAffineTransform , GetPerspectiveTransform , EstimateRigidMotion , WarpPerspective , PerspectiveTrans-
form

FindStereoCorrespondenceBM

void cvFindStereoCorrespondenceBM(const CvArr* left, const CvArr* right, CvArr* disparity,
CvStereoBMState* state)

Computes the disparity map using block matching algorithm.

Parameters

• left – The left single-channel, 8-bit image.

• right – The right image of the same size and the same type.

• disparity – The output single-channel 16-bit signed, or 32-bit floating-point disparity map
of the same size as input images. In the first case the computed disparities are represented as
fixed-point numbers with 4 fractional bits (i.e. the computed disparity values are multiplied
by 16 and rounded to integers).

• state – Stereo correspondence structure.

The function cvFindStereoCorrespondenceBM computes disparity map for the input rectified stereo pair. In-
valid pixels (for which disparity can not be computed) are set to state->minDisparity - 1 (or to
(state->minDisparity-1)*16 in the case of 16-bit fixed-point disparity map)

FindStereoCorrespondenceGC

void cvFindStereoCorrespondenceGC(const CvArr* left, const CvArr* right, CvArr* dispLeft,
CvArr* dispRight, CvStereoGCState* state, int useDispari-
tyGuess = CV_DEFAULT(0))

Computes the disparity map using graph cut-based algorithm.

Parameters

• left – The left single-channel, 8-bit image.

• right – The right image of the same size and the same type.

• dispLeft – The optional output single-channel 16-bit signed left disparity map of the same
size as input images.

• dispRight – The optional output single-channel 16-bit signed right disparity map of the
same size as input images.

• state – Stereo correspondence structure.

• useDisparityGuess – If the parameter is not zero, the algorithm will start with pre-defined
disparity maps. Both dispLeft and dispRight should be valid disparity maps. Otherwise, the
function starts with blank disparity maps (all pixels are marked as occlusions).

The function computes disparity maps for the input rectified stereo pair. Note that the left disparity image will contain
values in the following range:

−state->numberOfDisparities− state->minDisparity < dispLeft(x, y) ≤ −state->minDisparity,

266 Chapter 7. calib3d. Camera Calibration, Pose Estimation and Stereo

The OpenCV 1.x C Reference Manual, Release 2.3

or

dispLeft(x, y) == CV_STEREO_GC_OCCLUSION

and for the right disparity image the following will be true:

state->minDisparity ≤ dispRight(x, y) < state->minDisparity+ state->numberOfDisparities

or

dispRight(x, y) == CV_STEREO_GC_OCCLUSION

that is, the range for the left disparity image will be inversed, and the pixels for which no good match has been found,
will be marked as occlusions.

Here is how the function can be used:

// image_left and image_right are the input 8-bit single-channel images
// from the left and the right cameras, respectively
CvSize size = cvGetSize(image_left);
CvMat* disparity_left = cvCreateMat(size.height, size.width, CV_16S);
CvMat* disparity_right = cvCreateMat(size.height, size.width, CV_16S);
CvStereoGCState* state = cvCreateStereoGCState(16, 2);
cvFindStereoCorrespondenceGC(image_left, image_right,

disparity_left, disparity_right, state, 0);
cvReleaseStereoGCState(&state);
// now process the computed disparity images as you want ...

and this is the output left disparity image computed from the well-known Tsukuba stereo pair and multiplied by -16
(because the values in the left disparity images are usually negative):

CvMat* disparity_left_visual = cvCreateMat(size.height, size.width, CV_8U);
cvConvertScale(disparity_left, disparity_left_visual, -16);
cvSave("disparity.pgm", disparity_left_visual);

7.1. Camera Calibration and 3d Reconstruction 267

The OpenCV 1.x C Reference Manual, Release 2.3

GetOptimalNewCameraMatrix

void cvGetOptimalNewCameraMatrix(const CvMat* cameraMatrix, const CvMat* distCoeffs, Cv-
Size imageSize, double alpha, CvMat* newCameraMatrix, Cv-
Size newImageSize=cvSize(0, 0), CvRect* validPixROI=0)

Returns the new camera matrix based on the free scaling parameter

Parameters

• cameraMatrix – The input camera matrix

• distCoeffs – The input vector of distortion coefficients (k1, k2, p1, p2[, k3[, k4, k5, k6]]) of 4,
5 or 8 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

• imageSize – The original image size

• alpha – The free scaling parameter between 0 (when all the pixels in the undistorted image
will be valid) and 1 (when all the source image pixels will be retained in the undistorted
image); see StereoRectify

• newCameraMatrix – The output new camera matrix.

• newImageSize – The image size after rectification. By default it will be set to imageSize
.

• validPixROI – The optional output rectangle that will outline all-good-pixels region in the
undistorted image. See roi1, roi2 description in StereoRectify

The function computes the optimal new camera matrix based on the free scaling parameter. By varying this parameter
the user may retrieve only sensible pixels alpha=0 , keep all the original image pixels if there is valuable informa-
tion in the corners alpha=1 , or get something in between. When alpha>0 , the undistortion result will likely
have some black pixels corresponding to “virtual” pixels outside of the captured distorted image. The original cam-
era matrix, distortion coefficients, the computed new camera matrix and the newImageSize should be passed to
InitUndistortRectifyMap to produce the maps for Remap .

InitIntrinsicParams2D

void cvInitIntrinsicParams2D(const CvMat* objectPoints, const CvMat* imagePoints, const Cv-
Mat* npoints, CvSize imageSize, CvMat* cameraMatrix, double as-
pectRatio=1.)

Finds the initial camera matrix from the 3D-2D point correspondences

Parameters

• objectPoints – The joint array of object points; see CalibrateCamera2

• imagePoints – The joint array of object point projections; see CalibrateCamera2

• npoints – The array of point counts; see CalibrateCamera2

• imageSize – The image size in pixels; used to initialize the principal point

• cameraMatrix – The output camera matrix

fx 0 cx
0 fy cy
0 0 1

• aspectRatio – If it is zero or negative, both fx and fy are estimated independently. Other-

wise fx = fy ∗ aspectRatio

The function estimates and returns the initial camera matrix for camera calibration process. Currently, the function
only supports planar calibration patterns, i.e. patterns where each object point has z-coordinate =0.

268 Chapter 7. calib3d. Camera Calibration, Pose Estimation and Stereo

The OpenCV 1.x C Reference Manual, Release 2.3

InitUndistortMap

void cvInitUndistortMap(const CvMat* cameraMatrix, const CvMat* distCoeffs, CvArr* map1,
CvArr* map2)

Computes an undistortion map.

Parameters

• cameraMatrix – The input camera matrix A =

fx 0 cx
0 fy cy
0 0 1

• distCoeffs – The input vector of distortion coefficients (k1, k2, p1, p2[, k3[, k4, k5, k6]]) of 4,

5 or 8 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

• map1 – The first output map of type CV_32FC1 or CV_16SC2 - the second variant is more
efficient

• map2 – The second output map of type CV_32FC1 or CV_16UC1 - the second variant is
more efficient

The function is a simplified variant of InitUndistortRectifyMap where the rectification transformation R is identity
matrix and newCameraMatrix=cameraMatrix .

InitUndistortRectifyMap

void cvInitUndistortRectifyMap(const CvMat* cameraMatrix, const CvMat* distCoeffs, const
CvMat* R, const CvMat* newCameraMatrix, CvArr* map1,
CvArr* map2)

Computes the undistortion and rectification transformation map.

Parameters

• cameraMatrix – The input camera matrix A =

fx 0 cx
0 fy cy
0 0 1

• distCoeffs – The input vector of distortion coefficients (k1, k2, p1, p2[, k3[, k4, k5, k6]]) of 4,

5 or 8 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

• R – The optional rectification transformation in object space (3x3 matrix). R1 or R2 ,
computed by StereoRectify can be passed here. If the matrix is NULL , the identity transfor-
mation is assumed

• newCameraMatrix – The new camera matrix A′ =

f ′x 0 c′x
0 f ′y c′y
0 0 1

• map1 – The first output map of type CV_32FC1 or CV_16SC2 - the second variant is more

efficient

• map2 – The second output map of type CV_32FC1 or CV_16UC1 - the second variant is
more efficient

The function computes the joint undistortion+rectification transformation and represents the result in the form of maps
for Remap . The undistorted image will look like the original, as if it was captured with a camera with camera matrix
=newCameraMatrix and zero distortion. In the case of monocular camera newCameraMatrix is usually equal
to cameraMatrix , or it can be computed by GetOptimalNewCameraMatrix for a better control over scaling. In the
case of stereo camera newCameraMatrix is normally set to P1 or P2 computed by StereoRectify .

7.1. Camera Calibration and 3d Reconstruction 269

The OpenCV 1.x C Reference Manual, Release 2.3

Also, this new camera will be oriented differently in the coordinate space, according to R . That, for example, helps to
align two heads of a stereo camera so that the epipolar lines on both images become horizontal and have the same y-
coordinate (in the case of horizontally aligned stereo camera).

The function actually builds the maps for the inverse mapping algorithm that is used by Remap . That is, for each
pixel (u, v) in the destination (corrected and rectified) image the function computes the corresponding coordinates in
the source image (i.e. in the original image from camera). The process is the following:

x← (u− c′x)/f ′x
y ← (v − c′y)/f ′y
[X Y W]T ← R−1 ∗ [x y 1]T

x′ ← X/W
y′ ← Y/W
x”← x′(1 + k1r

2 + k2r
4 + k3r

6) + 2p1x
′y′ + p2(r2 + 2x′2)

y”← y′(1 + k1r
2 + k2r

4 + k3r
6) + p1(r2 + 2y′2) + 2p2x

′y′

mapx(u, v)← x”fx + cx
mapy(u, v)← y”fy + cy

where (k1, k2, p1, p2[, k3]) are the distortion coefficients.

In the case of a stereo camera this function is called twice, once for each camera head, after StereoRectify , which in
its turn is called after StereoCalibrate . But if the stereo camera was not calibrated, it is still possible to compute the
rectification transformations directly from the fundamental matrix using StereoRectifyUncalibrated . For each camera
the function computes homography H as the rectification transformation in pixel domain, not a rotation matrix R in 3D
space. The R can be computed from H as

R = cameraMatrix−1 · H · cameraMatrix

where the cameraMatrix can be chosen arbitrarily.

POSIT

void cvPOSIT(CvPOSITObject* posit_object, CvPoint2D32f* imagePoints, double focal_length, CvTerm-
Criteria criteria, CvMatr32f rotationMatrix, CvVect32f translation_vector)

Implements the POSIT algorithm.

Parameters

• posit_object – Pointer to the object structure

• imagePoints – Pointer to the object points projections on the 2D image plane

• focal_length – Focal length of the camera used

• criteria – Termination criteria of the iterative POSIT algorithm

• rotationMatrix – Matrix of rotations

• translation_vector – Translation vector

The function implements the POSIT algorithm. Image coordinates are given in a camera-related coordinate system.
The focal length may be retrieved using the camera calibration functions. At every iteration of the algorithm a new
perspective projection of the estimated pose is computed.

Difference norm between two projections is the maximal distance between corresponding points. The parameter
criteria.epsilon serves to stop the algorithm if the difference is small.

270 Chapter 7. calib3d. Camera Calibration, Pose Estimation and Stereo

The OpenCV 1.x C Reference Manual, Release 2.3

ProjectPoints2

void cvProjectPoints2(const CvMat* objectPoints, const CvMat* rvec, const CvMat* tvec, const
CvMat* cameraMatrix, const CvMat* distCoeffs, CvMat* imagePoints,
CvMat* dpdrot=NULL, CvMat* dpdt=NULL, CvMat* dpdf=NULL, Cv-
Mat* dpdc=NULL, CvMat* dpddist=NULL)

Project 3D points on to an image plane.

Parameters

• objectPoints – The array of object points, 3xN or Nx3 1-channel or 1xN or Nx1 3-channel
, where N is the number of points in the view

• rvec – The rotation vector, see Rodrigues2

• tvec – The translation vector

• cameraMatrix – The camera matrix A =

fx 0 cx
0 fy cy
0 0 1

• distCoeffs – The input vector of distortion coefficients (k1, k2, p1, p2[, k3[, k4, k5, k6]]) of 4,

5 or 8 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

• imagePoints – The output array of image points, 2xN or Nx2 1-channel or 1xN or Nx1
2-channel

• dpdrot – Optional 2Nx3 matrix of derivatives of image points with respect to components
of the rotation vector

• dpdt – Optional 2Nx3 matrix of derivatives of image points with respect to components of
the translation vector

• dpdf – Optional 2Nx2 matrix of derivatives of image points with respect to fx and fy

• dpdc – Optional 2Nx2 matrix of derivatives of image points with respect to cx and cy

• dpddist – Optional 2Nx4 matrix of derivatives of image points with respect to distortion
coefficients

The function computes projections of 3D points to the image plane given intrinsic and extrinsic camera parameters.
Optionally, the function computes jacobians - matrices of partial derivatives of image points coordinates (as functions
of all the input parameters) with respect to the particular parameters, intrinsic and/or extrinsic. The jacobians are
used during the global optimization in CalibrateCamera2 , FindExtrinsicCameraParams2 and StereoCalibrate . The
function itself can also used to compute re-projection error given the current intrinsic and extrinsic parameters.

Note, that by setting rvec=tvec=(0,0,0) , or by setting cameraMatrix to 3x3 identity matrix, or by passing
zero distortion coefficients, you can get various useful partial cases of the function, i.e. you can compute the distorted
coordinates for a sparse set of points, or apply a perspective transformation (and also compute the derivatives) in the
ideal zero-distortion setup etc.

ReprojectImageTo3D

void cvReprojectImageTo3D(const CvArr* disparity, CvArr* _3dImage, const CvMat* Q, int handle-
MissingValues=0)

Reprojects disparity image to 3D space.

Parameters

• disparity – The input single-channel 16-bit signed or 32-bit floating-point disparity image

7.1. Camera Calibration and 3d Reconstruction 271

The OpenCV 1.x C Reference Manual, Release 2.3

• _3dImage – The output 3-channel floating-point image of the same size as disparity .
Each element of _3dImage(x,y) will contain the 3D coordinates of the point (x,y) ,
computed from the disparity map.

• Q – The 4× 4 perspective transformation matrix that can be obtained with StereoRectify

• handleMissingValues – If true, when the pixels with the minimal disparity (that corre-
sponds to the outliers; see FindStereoCorrespondenceBM) will be transformed to 3D points
with some very large Z value (currently set to 10000)

The function transforms 1-channel disparity map to 3-channel image representing a 3D surface. That is, for each pixel
(x,y) and the corresponding disparity d=disparity(x,y) it computes:

[X Y Z W]T = Q ∗ [x y disparity(x, y) 1]T

_3dImage(x, y) = (X/W, Y/W, Z/W)

The matrix Q can be arbitrary 4×4 matrix, e.g. the one computed by StereoRectify . To reproject a sparse set of points
{(x,y,d),...} to 3D space, use PerspectiveTransform .

RQDecomp3x3

void cvRQDecomp3x3(const CvMat *M, CvMat *R, CvMat *Q, CvMat *Qx=NULL, CvMat *Qy=NULL,
CvMat *Qz=NULL, CvPoint3D64f *eulerAngles=NULL)

Computes the ‘RQ’ decomposition of 3x3 matrices.

Parameters

• M – The 3x3 input matrix

• R – The output 3x3 upper-triangular matrix

• Q – The output 3x3 orthogonal matrix

• Qx – Optional 3x3 rotation matrix around x-axis

• Qy – Optional 3x3 rotation matrix around y-axis

• Qz – Optional 3x3 rotation matrix around z-axis

• eulerAngles – Optional three Euler angles of rotation

The function computes a RQ decomposition using the given rotations. This function is used in DecomposeProjection-
Matrix to decompose the left 3x3 submatrix of a projection matrix into a camera and a rotation matrix.

It optionally returns three rotation matrices, one for each axis, and the three Euler angles that could be used in OpenGL.

ReleasePOSITObject

void cvReleasePOSITObject(CvPOSITObject** posit_object)
Deallocates a 3D object structure.

Parameters

• posit_object – Double pointer to CvPOSIT structure

The function releases memory previously allocated by the function CreatePOSITObject .

272 Chapter 7. calib3d. Camera Calibration, Pose Estimation and Stereo

The OpenCV 1.x C Reference Manual, Release 2.3

ReleaseStereoBMState

void cvReleaseStereoBMState(CvStereoBMState** state)
Releases block matching stereo correspondence structure.

Parameters

• state – Double pointer to the released structure.

The function releases the stereo correspondence structure and all the associated internal buffers.

ReleaseStereoGCState

void cvReleaseStereoGCState(CvStereoGCState** state)
Releases the state structure of the graph cut-based stereo correspondence algorithm.

Parameters

• state – Double pointer to the released structure.

The function releases the stereo correspondence structure and all the associated internal buffers.

Rodrigues2

int cvRodrigues2(const CvMat* src, CvMat* dst, CvMat* jacobian=0)
Converts a rotation matrix to a rotation vector or vice versa.

Parameters

• src – The input rotation vector (3x1 or 1x3) or rotation matrix (3x3)

• dst – The output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively

• jacobian – Optional output Jacobian matrix, 3x9 or 9x3 - partial derivatives of the output
array components with respect to the input array components

θ ← norm(r)
r ← r/θ

R = cos θI + (1− cos θ)rrT + sin θ

 0 −rz ry
rz 0 −rx
−ry rx 0

Inverse transformation can also be done easily, since

sin(θ)

 0 −rz ry
rz 0 −rx
−ry rx 0

 =
R−RT

2

A rotation vector is a convenient and most-compact representation of a rotation matrix (since any rotation matrix
has just 3 degrees of freedom). The representation is used in the global 3D geometry optimization procedures like
CalibrateCamera2 , StereoCalibrate or FindExtrinsicCameraParams2 .

7.1. Camera Calibration and 3d Reconstruction 273

The OpenCV 1.x C Reference Manual, Release 2.3

StereoCalibrate

double cvStereoCalibrate(const CvMat* objectPoints, const CvMat* imagePoints1, const CvMat* im-
agePoints2, const CvMat* pointCounts, CvMat* cameraMatrix1, Cv-
Mat* distCoeffs1, CvMat* cameraMatrix2, CvMat* distCoeffs2, CvSize im-
ageSize, CvMat* R, CvMat* T, CvMat* E=0, CvMat* F=0, CvTermCriteria
term_crit=cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,
30, 1e-6), int flags=CV_CALIB_FIX_INTRINSIC)

Calibrates stereo camera.

Parameters

• objectPoints – The joint matrix of object points - calibration pattern features in the model
coordinate space. It is floating-point 3xN or Nx3 1-channel, or 1xN or Nx1 3-channel array,
where N is the total number of points in all views.

• imagePoints1 – The joint matrix of object points projections in the first camera views. It is
floating-point 2xN or Nx2 1-channel, or 1xN or Nx1 2-channel array, where N is the total
number of points in all views

• imagePoints2 – The joint matrix of object points projections in the second camera views. It
is floating-point 2xN or Nx2 1-channel, or 1xN or Nx1 2-channel array, where N is the total
number of points in all views

• pointCounts – Integer 1xM or Mx1 vector (where M is the number of calibration pattern
views) containing the number of points in each particular view. The sum of vector elements
must match the size of objectPoints and imagePoints* (=N).

• cameraMatrix1 – The input/output first camera matrix:

f (j)
x 0 c

(j)
x

0 f
(j)
y c

(j)
y

0 0 1

 , j = 0, 1 .

If any of CV_CALIB_USE_INTRINSIC_GUESS , CV_CALIB_FIX_ASPECT_RATIO
, CV_CALIB_FIX_INTRINSIC or CV_CALIB_FIX_FOCAL_LENGTH are specified,
some or all of the matrices’ components must be initialized; see the flags description

• distCoeffs1 – The input/output vector of distortion coefficients
(k1, k2, p1, p2[, k3[, k4, k5, k6]]) of 4, 5 or 8 elements.

• cameraMatrix2 – The input/output second camera matrix, as cameraMatrix1.

• distCoeffs2 – The input/output lens distortion coefficients for the second camera, as
distCoeffs1 .

• imageSize – Size of the image, used only to initialize intrinsic camera matrix.

• R – The output rotation matrix between the 1st and the 2nd cameras’ coordinate systems.

• T – The output translation vector between the cameras’ coordinate systems.

• E – The optional output essential matrix.

• F – The optional output fundamental matrix.

• term_crit – The termination criteria for the iterative optimization algorithm.

• flags – Different flags, may be 0 or combination of the following values:

– CV_CALIB_FIX_INTRINSIC If it is set, cameraMatrix? , as well as
distCoeffs? are fixed, so that only R, T, E and F are estimated.

– CV_CALIB_USE_INTRINSIC_GUESS The flag allows the function to optimize some
or all of the intrinsic parameters, depending on the other flags, but the initial values are
provided by the user.

274 Chapter 7. calib3d. Camera Calibration, Pose Estimation and Stereo

The OpenCV 1.x C Reference Manual, Release 2.3

– CV_CALIB_FIX_PRINCIPAL_POINT The principal points are fixed during the opti-
mization.

– CV_CALIB_FIX_FOCAL_LENGTH f
(j)
x and f (j)

y are fixed.

– CV_CALIB_FIX_ASPECT_RATIO f
(j)
y is optimized, but the ratio f (j)

x /f
(j)
y is fixed.

– CV_CALIB_SAME_FOCAL_LENGTH Enforces f (0)
x = f

(1)
x and f (0)

y = f
(1)
y

– CV_CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients for each cam-
era are set to zeros and fixed there.

– CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6 Do not change the cor-
responding radial distortion coefficient during the optimization. If
CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the supplied
distCoeffs matrix is used, otherwise it is set to 0.

– CV_CALIB_RATIONAL_MODEL Enable coefficients k4, k5 and k6. To provide the
backward compatibility, this extra flag should be explicitly specified to make the calibra-
tion function use the rational model and return 8 coefficients. If the flag is not set, the
function will compute only 5 distortion coefficients.

The function estimates transformation between the 2 cameras making a stereo pair. If we have a stereo camera, where
the relative position and orientation of the 2 cameras is fixed, and if we computed poses of an object relative to the fist
camera and to the second camera, (R1, T1) and (R2, T2), respectively (that can be done with FindExtrinsicCamera-
Params2), obviously, those poses will relate to each other, i.e. given (R1 , T1) it should be possible to compute (R2

, T2) - we only need to know the position and orientation of the 2nd camera relative to the 1st camera. That’s what
the described function does. It computes (R , T) such that:

R2 = R ∗R1T2 = R ∗ T1 + T,

Optionally, it computes the essential matrix E:

E =

 0 −T2 T1

T2 0 −T0

−T1 T0 0

 ∗R
where Ti are components of the translation vector T : T = [T0, T1, T2]T . And also the function can compute the
fundamental matrix F:

F = cameraMatrix2−TEcameraMatrix1−1

Besides the stereo-related information, the function can also perform full calibration of each of the 2 cameras. How-
ever, because of the high dimensionality of the parameter space and noise in the input data the function can diverge
from the correct solution. Thus, if intrinsic parameters can be estimated with high accuracy for each of the cameras in-
dividually (e.g. using CalibrateCamera2), it is recommended to do so and then pass CV_CALIB_FIX_INTRINSIC
flag to the function along with the computed intrinsic parameters. Otherwise, if all the parameters are esti-
mated at once, it makes sense to restrict some parameters, e.g. pass CV_CALIB_SAME_FOCAL_LENGTH and
CV_CALIB_ZERO_TANGENT_DIST flags, which are usually reasonable assumptions.

Similarly to CalibrateCamera2 , the function minimizes the total re-projection error for all the points in all the available
views from both cameras. The function returns the final value of the re-projection error.

7.1. Camera Calibration and 3d Reconstruction 275

The OpenCV 1.x C Reference Manual, Release 2.3

StereoRectify

void cvStereoRectify(const CvMat* cameraMatrix1, const CvMat* cameraMatrix2, const CvMat* dist-
Coeffs1, const CvMat* distCoeffs2, CvSize imageSize, const CvMat* R, const
CvMat* T, CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2, CvMat* Q=0,
int flags=CV_CALIB_ZERO_DISPARITY, double alpha=-1, CvSize newImage-
Size=cvSize(0, 0), CvRect* roi1=0, CvRect* roi2=0)

Computes rectification transforms for each head of a calibrated stereo camera.

Parameters

• cameraMatrix1 – The first camera matrix.

• cameraMatrix2 – The second camera matrix.

• distCoeffs1 – The first camera distortion parameters.

• distCoeffs2 – The second camera distortion parameters.

• imageSize – Size of the image used for stereo calibration.

• R – The rotation matrix between the 1st and the 2nd cameras’ coordinate systems.

• T – The translation vector between the cameras’ coordinate systems.

• R2 (R1,) – The output 3× 3 rectification transforms (rotation matrices) for the first and the
second cameras, respectively.

• P2 (P1,) – The output 3× 4 projection matrices in the new (rectified) coordinate systems.

• Q – The output 4× 4 disparity-to-depth mapping matrix, see reprojectImageTo3D()
.

• flags – The operation flags; may be 0 or CV_CALIB_ZERO_DISPARITY . If the flag is
set, the function makes the principal points of each camera have the same pixel coordinates
in the rectified views. And if the flag is not set, the function may still shift the images in
horizontal or vertical direction (depending on the orientation of epipolar lines) in order to
maximize the useful image area.

• alpha – The free scaling parameter. If it is -1 , the functions performs some default scaling.
Otherwise the parameter should be between 0 and 1. alpha=0 means that the rectified
images will be zoomed and shifted so that only valid pixels are visible (i.e. there will be no
black areas after rectification). alpha=1 means that the rectified image will be decimated
and shifted so that all the pixels from the original images from the cameras are retained in
the rectified images, i.e. no source image pixels are lost. Obviously, any intermediate value
yields some intermediate result between those two extreme cases.

• newImageSize – The new image resolution after rectification. The same size should be
passed to InitUndistortRectifyMap , see the stereo_calib.cpp sample in OpenCV
samples directory. By default, i.e. when (0,0) is passed, it is set to the original imageSize
. Setting it to larger value can help you to preserve details in the original image, especially
when there is big radial distortion.

• roi2 (roi1,) – The optional output rectangles inside the rectified images where all the pixels
are valid. If alpha=0 , the ROIs will cover the whole images, otherwise they likely be
smaller, see the picture below

The function computes the rotation matrices for each camera that (virtually) make both camera image planes the same
plane. Consequently, that makes all the epipolar lines parallel and thus simplifies the dense stereo correspondence
problem. On input the function takes the matrices computed by stereoCalibrate() and on output it gives 2
rotation matrices and also 2 projection matrices in the new coordinates. The 2 cases are distinguished by the function
are:

276 Chapter 7. calib3d. Camera Calibration, Pose Estimation and Stereo

The OpenCV 1.x C Reference Manual, Release 2.3

1. Horizontal stereo, when 1st and 2nd camera views are shifted relative to each other mainly along the x axis
(with possible small vertical shift). Then in the rectified images the corresponding epipolar lines in left and right
cameras will be horizontal and have the same y-coordinate. P1 and P2 will look as:

P1 =

f 0 cx1 0
0 f cy 0
0 0 1 0

P2 =

f 0 cx2 Tx ∗ f
0 f cy 0
0 0 1 0

 ,
where Tx is horizontal shift between the cameras and cx1 = cx2 if CV_CALIB_ZERO_DISPARITY is set.

2. Vertical stereo, when 1st and 2nd camera views are shifted relative to each other mainly in vertical direction (and
probably a bit in the horizontal direction too). Then the epipolar lines in the rectified images will be vertical and
have the same x coordinate. P2 and P2 will look as:

P1 =

f 0 cx 0
0 f cy1 0
0 0 1 0

P2 =

f 0 cx 0
0 f cy2 Ty ∗ f
0 0 1 0

 ,
where Ty is vertical shift between the cameras and cy1 = cy2 if CALIB_ZERO_DISPARITY is set.

As you can see, the first 3 columns of P1 and P2 will effectively be the new “rectified” camera matrices. The matrices,
together with R1 and R2 , can then be passed to InitUndistortRectifyMap to initialize the rectification map for each
camera.

Below is the screenshot from stereo_calib.cpp sample. Some red horizontal lines, as you can see, pass through
the corresponding image regions, i.e. the images are well rectified (which is what most stereo correspondence algo-
rithms rely on). The green rectangles are roi1 and roi2 - indeed, their interior are all valid pixels.

7.1. Camera Calibration and 3d Reconstruction 277

The OpenCV 1.x C Reference Manual, Release 2.3

StereoRectifyUncalibrated

void cvStereoRectifyUncalibrated(const CvMat* points1, const CvMat* points2, const CvMat* F,
CvSize imageSize, CvMat* H1, CvMat* H2, double thresh-
old=5)

Computes rectification transform for uncalibrated stereo camera.

Parameters

• points2 (points1,) – The 2 arrays of corresponding 2D points. The same formats as in
FindFundamentalMat are supported

• F – The input fundamental matrix. It can be computed from the same set of point pairs using
FindFundamentalMat .

• imageSize – Size of the image.

• H2 (H1,) – The output rectification homography matrices for the first and for the second
images.

• threshold – The optional threshold used to filter out the outliers. If the parameter is greater
than zero, then all the point pairs that do not comply the epipolar geometry well enough (that
is, the points for which |points2[i]T ∗F∗points1[i]| > threshold) are rejected
prior to computing the homographies. Otherwise all the points are considered inliers.

278 Chapter 7. calib3d. Camera Calibration, Pose Estimation and Stereo

The OpenCV 1.x C Reference Manual, Release 2.3

The function computes the rectification transformations without knowing intrinsic parameters of the cameras and
their relative position in space, hence the suffix “Uncalibrated”. Another related difference from StereoRectify is
that the function outputs not the rectification transformations in the object (3D) space, but the planar perspective
transformations, encoded by the homography matrices H1 and H2 . The function implements the algorithm Hartley99
.

Note that while the algorithm does not need to know the intrinsic parameters of the cameras, it heavily depends on
the epipolar geometry. Therefore, if the camera lenses have significant distortion, it would better be corrected before
computing the fundamental matrix and calling this function. For example, distortion coefficients can be estimated
for each head of stereo camera separately by using CalibrateCamera2 and then the images can be corrected using
Undistort2 , or just the point coordinates can be corrected with UndistortPoints .

Undistort2

void cvUndistort2(const CvArr* src, CvArr* dst, const CvMat* cameraMatrix, const CvMat* distCoeffs,
const CvMat* newCameraMatrix=0)

Transforms an image to compensate for lens distortion.

Parameters

• src – The input (distorted) image

• dst – The output (corrected) image; will have the same size and the same type as src

• cameraMatrix – The input camera matrix A =

fx 0 cx
0 fy cy
0 0 1

• distCoeffs – The input vector of distortion coefficients (k1, k2, p1, p2[, k3[, k4, k5, k6]]) of 4,

5 or 8 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

The function transforms the image to compensate radial and tangential lens distortion.

The function is simply a combination of InitUndistortRectifyMap (with unity R) and Remap (with bilinear interpola-
tion). See the former function for details of the transformation being performed.

Those pixels in the destination image, for which there is no correspondent pixels in the source image, are filled with
0’s (black color).

The particular subset of the source image that will be visible in the corrected image can be regu-
lated by newCameraMatrix . You can use GetOptimalNewCameraMatrix to compute the appropriate
newCameraMatrix , depending on your requirements.

The camera matrix and the distortion parameters can be determined using CalibrateCamera2 . If the resolution of
images is different from the used at the calibration stage, fx, fy, cx and cy need to be scaled accordingly, while the
distortion coefficients remain the same.

UndistortPoints

void cvUndistortPoints(const CvMat* src, CvMat* dst, const CvMat* cameraMatrix, const Cv-
Mat* distCoeffs, const CvMat* R=NULL, const CvMat* P=NULL)

Computes the ideal point coordinates from the observed point coordinates.

Parameters

• src – The observed point coordinates, 1xN or Nx1 2-channel (CV _ 32FC2 or CV _ 64FC2).

• dst – The output ideal point coordinates, after undistortion and reverse perspective transfor-
mation , same format as src .

7.1. Camera Calibration and 3d Reconstruction 279

The OpenCV 1.x C Reference Manual, Release 2.3

• cameraMatrix – The camera matrix

fx 0 cx
0 fy cy
0 0 1

• distCoeffs – The input vector of distortion coefficients (k1, k2, p1, p2[, k3[, k4, k5, k6]]) of 4,

5 or 8 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

• R – The rectification transformation in object space (3x3 matrix). R1 or R2 , computed by
StereoRectify() can be passed here. If the matrix is empty, the identity transformation
is used

• P – The new camera matrix (3x3) or the new projection matrix (3x4). P1 or P2 , computed
by StereoRectify() can be passed here. If the matrix is empty, the identity new camera
matrix is used

The function is similar to Undistort2 and InitUndistortRectifyMap , but it operates on a sparse set of points instead of a
raster image. Also the function does some kind of reverse transformation to ProjectPoints2 (in the case of 3D object it
will not reconstruct its 3D coordinates, of course; but for a planar object it will, up to a translation vector, if the proper
R is specified).

// (u,v) is the input point, (u’, v’) is the output point
// camera_matrix=[fx 0 cx; 0 fy cy; 0 0 1]
// P=[fx’ 0 cx’ tx; 0 fy’ cy’ ty; 0 0 1 tz]
x" = (u - cx)/fx
y" = (v - cy)/fy
(x’,y’) = undistort(x",y",dist_coeffs)
[X,Y,W]T = R*[x’ y’ 1]T
x = X/W, y = Y/W
u’ = x*fx’ + cx’
v’ = y*fy’ + cy’,

where undistort() is approximate iterative algorithm that estimates the normalized original point coordinates out of the
normalized distorted point coordinates (“normalized” means that the coordinates do not depend on the camera matrix).

The function can be used both for a stereo camera head or for monocular camera (when R is NULL).

280 Chapter 7. calib3d. Camera Calibration, Pose Estimation and Stereo

	core. The Core Functionality
	Basic Structures
	Operations on Arrays
	Dynamic Structures
	Drawing Functions
	XML/YAML Persistence
	Clustering
	Utility and System Functions and Macros

	imgproc. Image Processing
	Histograms
	Image Filtering
	Geometric Image Transformations
	Miscellaneous Image Transformations
	Structural Analysis and Shape Descriptors
	Planar Subdivisions
	Motion Analysis and Object Tracking
	Feature Detection
	Object Detection

	features2d. Feature Detection and Descriptor Extraction
	Feature detection and description

	objdetect. Object Detection
	Cascade Classification

	video. Video Analysis
	Motion Analysis and Object Tracking

	highgui. High-level GUI and Media I/O
	User Interface
	Reading and Writing Images and Video
	Qt new functions

	calib3d. Camera Calibration, Pose Estimation and Stereo
	Camera Calibration and 3d Reconstruction

