// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2021, Wanli Zhong #include "test_ptcloud_utils.hpp" namespace opencv_test { void generatePlane(OutputArray plane_pts, const vector &model, float thr, int num, const vector &limit) { if (plane_pts.channels() == 3 && plane_pts.isVector()) { // std::vector plane_pts.create(1, num, CV_32FC3); } else { // cv::Mat plane_pts.create(num, 3, CV_32F); } cv::RNG rng(0); auto *plane_pts_ptr = (float *) plane_pts.getMat().data; // Part of the points are generated for the specific model // The other part of the points are used to increase the thickness of the plane int std_num = (int) (num / 2); // Difference of maximum d between two parallel planes float d_thr = thr * sqrt(model[0] * model[0] + model[1] * model[1] + model[2] * model[2]); for (int i = 0; i < num; i++) { // Let d change then generate thickness float d = i < std_num ? model[3] : rng.uniform(model[3] - d_thr, model[3] + d_thr); float x, y, z; // c is 0 means the plane is vertical if (model[2] == 0) { z = rng.uniform(limit[4], limit[5]); if (model[0] == 0) { x = rng.uniform(limit[0], limit[1]); y = -d / model[1]; } else if (model[1] == 0) { x = -d / model[0]; y = rng.uniform(limit[2], limit[3]); } else { x = rng.uniform(limit[0], limit[1]); y = -(model[0] * x + d) / model[1]; } } // c is not 0 else { x = rng.uniform(limit[0], limit[1]); y = rng.uniform(limit[2], limit[3]); z = -(model[0] * x + model[1] * y + d) / model[2]; } plane_pts_ptr[3 * i] = x; plane_pts_ptr[3 * i + 1] = y; plane_pts_ptr[3 * i + 2] = z; } } void generateSphere(OutputArray sphere_pts, const vector &model, float thr, int num, const vector &limit) { if (sphere_pts.channels() == 3 && sphere_pts.isVector()) { // std::vector sphere_pts.create(1, num, CV_32FC3); } else { // cv::Mat sphere_pts.create(num, 3, CV_32F); } cv::RNG rng(0); auto *sphere_pts_ptr = (float *) sphere_pts.getMat().data; // Part of the points are generated for the specific model // The other part of the points are used to increase the thickness of the sphere int sphere_num = (int) (num / 1.5); for (int i = 0; i < num; i++) { // Let r change then generate thickness float r = i < sphere_num ? model[3] : rng.uniform(model[3] - thr, model[3] + thr); // Generate a random vector and normalize it. // Note: these vectors are not spread uniformly across the sphere Vec3f vec(rng.uniform(limit[0], limit[1]), rng.uniform(limit[2], limit[3]), rng.uniform(limit[4], limit[5])); float l = sqrt(vec.dot(vec)); // Normalizes it to have a magnitude of r vec /= l / r; sphere_pts_ptr[3 * i] = model[0] + vec[0]; sphere_pts_ptr[3 * i + 1] = model[1] + vec[1]; sphere_pts_ptr[3 * i + 2] = model[2] + vec[2]; } } } // opencv_test