/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_CUDA #include "opencv2/core/cuda.hpp" #include "opencv2/ts/cuda_test.hpp" namespace opencv_test { namespace { //////////////////////////////////////////////////////////////////////////////// // SetTo PARAM_TEST_CASE(GpuMat_SetTo, cv::cuda::DeviceInfo, cv::Size, MatType, UseRoi) { cv::cuda::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::cuda::setDevice(devInfo.deviceID()); } }; CUDA_TEST_P(GpuMat_SetTo, Zero) { cv::Scalar zero = cv::Scalar::all(0); cv::cuda::GpuMat mat = createMat(size, type, useRoi); mat.setTo(zero); EXPECT_MAT_NEAR(cv::Mat::zeros(size, type), mat, 0.0); } CUDA_TEST_P(GpuMat_SetTo, SameVal) { cv::Scalar val = cv::Scalar::all(randomDouble(0.0, 255.0)); if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE)) { try { cv::cuda::GpuMat mat = createMat(size, type, useRoi); mat.setTo(val); } catch (const cv::Exception& e) { ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code); } } else { cv::cuda::GpuMat mat = createMat(size, type, useRoi); mat.setTo(val); EXPECT_MAT_NEAR(cv::Mat(size, type, val), mat, 0.0); } } CUDA_TEST_P(GpuMat_SetTo, DifferentVal) { cv::Scalar val = randomScalar(0.0, 255.0); if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE)) { try { cv::cuda::GpuMat mat = createMat(size, type, useRoi); mat.setTo(val); } catch (const cv::Exception& e) { ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code); } } else { cv::cuda::GpuMat mat = createMat(size, type, useRoi); mat.setTo(val); EXPECT_MAT_NEAR(cv::Mat(size, type, val), mat, 0.0); } } CUDA_TEST_P(GpuMat_SetTo, Masked) { cv::Scalar val = randomScalar(0.0, 255.0); cv::Mat mat_gold = randomMat(size, type); cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE)) { try { cv::cuda::GpuMat mat = createMat(size, type, useRoi); mat.setTo(val, loadMat(mask)); } catch (const cv::Exception& e) { ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code); } } else { cv::cuda::GpuMat mat = loadMat(mat_gold, useRoi); mat.setTo(val, loadMat(mask, useRoi)); mat_gold.setTo(val, mask); EXPECT_MAT_NEAR(mat_gold, mat, 0.0); } } INSTANTIATE_TEST_CASE_P(CUDA, GpuMat_SetTo, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_TYPES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // CopyTo PARAM_TEST_CASE(GpuMat_CopyTo, cv::cuda::DeviceInfo, cv::Size, MatType, UseRoi) { cv::cuda::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::cuda::setDevice(devInfo.deviceID()); } }; CUDA_TEST_P(GpuMat_CopyTo, WithOutMask) { cv::Mat src = randomMat(size, type); cv::cuda::GpuMat d_src = loadMat(src, useRoi); cv::cuda::GpuMat dst = createMat(size, type, useRoi); d_src.copyTo(dst); EXPECT_MAT_NEAR(src, dst, 0.0); } CUDA_TEST_P(GpuMat_CopyTo, Masked) { cv::Mat src = randomMat(size, type); cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE)) { try { cv::cuda::GpuMat d_src = loadMat(src); cv::cuda::GpuMat dst; d_src.copyTo(dst, loadMat(mask, useRoi)); } catch (const cv::Exception& e) { ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code); } } else { cv::cuda::GpuMat d_src = loadMat(src, useRoi); cv::cuda::GpuMat dst = loadMat(cv::Mat::zeros(size, type), useRoi); d_src.copyTo(dst, loadMat(mask, useRoi)); cv::Mat dst_gold = cv::Mat::zeros(size, type); src.copyTo(dst_gold, mask); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } } INSTANTIATE_TEST_CASE_P(CUDA, GpuMat_CopyTo, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_TYPES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // ConvertTo PARAM_TEST_CASE(GpuMat_ConvertTo, cv::cuda::DeviceInfo, cv::Size, MatDepth, MatDepth, UseRoi) { cv::cuda::DeviceInfo devInfo; cv::Size size; int depth1; int depth2; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth1 = GET_PARAM(2); depth2 = GET_PARAM(3); useRoi = GET_PARAM(4); cv::cuda::setDevice(devInfo.deviceID()); } }; CUDA_TEST_P(GpuMat_ConvertTo, WithOutScaling) { cv::Mat src = randomMat(size, depth1); if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE)) { try { cv::cuda::GpuMat d_src = loadMat(src); cv::cuda::GpuMat dst; d_src.convertTo(dst, depth2); } catch (const cv::Exception& e) { ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code); } } else { cv::cuda::GpuMat d_src = loadMat(src, useRoi); cv::cuda::GpuMat dst = createMat(size, depth2, useRoi); d_src.convertTo(dst, depth2); cv::Mat dst_gold; src.convertTo(dst_gold, depth2); EXPECT_MAT_NEAR(dst_gold, dst, depth2 < CV_32F ? 1.0 : 1e-4); } } CUDA_TEST_P(GpuMat_ConvertTo, WithScaling) { cv::Mat src = randomMat(size, depth1); double a = randomDouble(0.0, 1.0); double b = randomDouble(-10.0, 10.0); if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE)) { try { cv::cuda::GpuMat d_src = loadMat(src); cv::cuda::GpuMat dst; d_src.convertTo(dst, depth2, a, b); } catch (const cv::Exception& e) { ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code); } } else { cv::cuda::GpuMat d_src = loadMat(src, useRoi); cv::cuda::GpuMat dst = createMat(size, depth2, useRoi); d_src.convertTo(dst, depth2, a, b); cv::Mat dst_gold; src.convertTo(dst_gold, depth2, a, b); EXPECT_MAT_NEAR(dst_gold, dst, depth2 < CV_32F ? 1.0 : 1e-4); } } CUDA_TEST_P(GpuMat_ConvertTo, InplaceWithOutScaling) { cv::Mat src = randomMat(size, depth1); if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE)) { try { cv::cuda::GpuMat d_srcDst = loadMat(src); d_srcDst.convertTo(d_srcDst, depth2); } catch (const cv::Exception& e) { ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code); } } else { cv::cuda::GpuMat d_srcDst = loadMat(src, useRoi); d_srcDst.convertTo(d_srcDst, depth2); cv::Mat dst_gold; src.convertTo(dst_gold, depth2); EXPECT_MAT_NEAR(dst_gold, d_srcDst, depth2 < CV_32F ? 1.0 : 1e-4); } } CUDA_TEST_P(GpuMat_ConvertTo, InplaceWithScaling) { cv::Mat src = randomMat(size, depth1); double a = randomDouble(0.0, 1.0); double b = randomDouble(-10.0, 10.0); if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE)) { try { cv::cuda::GpuMat d_srcDst = loadMat(src); d_srcDst.convertTo(d_srcDst, depth2, a, b); } catch (const cv::Exception& e) { ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code); } } else { cv::cuda::GpuMat d_srcDst = loadMat(src, useRoi); d_srcDst.convertTo(d_srcDst, depth2, a, b); cv::Mat dst_gold; src.convertTo(dst_gold, depth2, a, b); EXPECT_MAT_NEAR(dst_gold, d_srcDst, depth2 < CV_32F ? 1.0 : 1e-4); } } INSTANTIATE_TEST_CASE_P(CUDA, GpuMat_ConvertTo, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, ALL_DEPTH, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // ensureSizeIsEnough struct EnsureSizeIsEnough : testing::TestWithParam { virtual void SetUp() { cv::cuda::DeviceInfo devInfo = GetParam(); cv::cuda::setDevice(devInfo.deviceID()); } }; CUDA_TEST_P(EnsureSizeIsEnough, BufferReuse) { cv::cuda::GpuMat buffer(100, 100, CV_8U); cv::cuda::GpuMat old = buffer; // don't reallocate memory cv::cuda::ensureSizeIsEnough(10, 20, CV_8U, buffer); EXPECT_EQ(10, buffer.rows); EXPECT_EQ(20, buffer.cols); EXPECT_EQ(CV_8UC1, buffer.type()); EXPECT_EQ(reinterpret_cast(old.data), reinterpret_cast(buffer.data)); // don't reallocate memory cv::cuda::ensureSizeIsEnough(20, 30, CV_8U, buffer); EXPECT_EQ(20, buffer.rows); EXPECT_EQ(30, buffer.cols); EXPECT_EQ(CV_8UC1, buffer.type()); EXPECT_EQ(reinterpret_cast(old.data), reinterpret_cast(buffer.data)); } INSTANTIATE_TEST_CASE_P(CUDA, EnsureSizeIsEnough, ALL_DEVICES); //////////////////////////////////////////////////////////////////////////////// // createContinuous struct CreateContinuous : testing::TestWithParam { virtual void SetUp() { cv::cuda::DeviceInfo devInfo = GetParam(); cv::cuda::setDevice(devInfo.deviceID()); } }; CUDA_TEST_P(CreateContinuous, BufferReuse) { cv::cuda::GpuMat buffer; cv::cuda::createContinuous(100, 100, CV_8UC1, buffer); EXPECT_EQ(100, buffer.rows); EXPECT_EQ(100, buffer.cols); EXPECT_EQ(CV_8UC1, buffer.type()); EXPECT_TRUE(buffer.isContinuous()); EXPECT_EQ(buffer.cols * sizeof(uchar), buffer.step); cv::cuda::createContinuous(10, 1000, CV_8UC1, buffer); EXPECT_EQ(10, buffer.rows); EXPECT_EQ(1000, buffer.cols); EXPECT_EQ(CV_8UC1, buffer.type()); EXPECT_TRUE(buffer.isContinuous()); EXPECT_EQ(buffer.cols * sizeof(uchar), buffer.step); cv::cuda::createContinuous(10, 10, CV_8UC1, buffer); EXPECT_EQ(10, buffer.rows); EXPECT_EQ(10, buffer.cols); EXPECT_EQ(CV_8UC1, buffer.type()); EXPECT_TRUE(buffer.isContinuous()); EXPECT_EQ(buffer.cols * sizeof(uchar), buffer.step); cv::cuda::createContinuous(100, 100, CV_8UC1, buffer); EXPECT_EQ(100, buffer.rows); EXPECT_EQ(100, buffer.cols); EXPECT_EQ(CV_8UC1, buffer.type()); EXPECT_TRUE(buffer.isContinuous()); EXPECT_EQ(buffer.cols * sizeof(uchar), buffer.step); } INSTANTIATE_TEST_CASE_P(CUDA, CreateContinuous, ALL_DEVICES); }} // namespace #endif // HAVE_CUDA