/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::cuda; #if !defined HAVE_CUDA || defined(CUDA_DISABLER) Ptr cv::cuda::createBackgroundSubtractorMOG2(int, double, bool) { throw_no_cuda(); return Ptr(); } #else namespace cv { namespace cuda { namespace device { namespace mog2 { void loadConstants(int nmixtures, float Tb, float TB, float Tg, float varInit, float varMin, float varMax, float tau, unsigned char shadowVal); void mog2_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzf variance, PtrStepSzb mean, float alphaT, float prune, bool detectShadows, cudaStream_t stream); void getBackgroundImage2_gpu(int cn, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, cudaStream_t stream); } }}} namespace { // default parameters of gaussian background detection algorithm const int defaultHistory = 500; // Learning rate; alpha = 1/defaultHistory2 const float defaultVarThreshold = 4.0f * 4.0f; const int defaultNMixtures = 5; // maximal number of Gaussians in mixture const float defaultBackgroundRatio = 0.9f; // threshold sum of weights for background test const float defaultVarThresholdGen = 3.0f * 3.0f; const float defaultVarInit = 15.0f; // initial variance for new components const float defaultVarMax = 5.0f * defaultVarInit; const float defaultVarMin = 4.0f; // additional parameters const float defaultCT = 0.05f; // complexity reduction prior constant 0 - no reduction of number of components const unsigned char defaultShadowValue = 127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection const float defaultShadowThreshold = 0.5f; // Tau - shadow threshold, see the paper for explanation class MOG2Impl : public cuda::BackgroundSubtractorMOG2 { public: MOG2Impl(int history, double varThreshold, bool detectShadows); void apply(InputArray image, OutputArray fgmask, double learningRate=-1); void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream); void getBackgroundImage(OutputArray backgroundImage) const; void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const; int getHistory() const { return history_; } void setHistory(int history) { history_ = history; } int getNMixtures() const { return nmixtures_; } void setNMixtures(int nmixtures) { nmixtures_ = nmixtures; } double getBackgroundRatio() const { return backgroundRatio_; } void setBackgroundRatio(double ratio) { backgroundRatio_ = (float) ratio; } double getVarThreshold() const { return varThreshold_; } void setVarThreshold(double varThreshold) { varThreshold_ = (float) varThreshold; } double getVarThresholdGen() const { return varThresholdGen_; } void setVarThresholdGen(double varThresholdGen) { varThresholdGen_ = (float) varThresholdGen; } double getVarInit() const { return varInit_; } void setVarInit(double varInit) { varInit_ = (float) varInit; } double getVarMin() const { return varMin_; } void setVarMin(double varMin) { varMin_ = (float) varMin; } double getVarMax() const { return varMax_; } void setVarMax(double varMax) { varMax_ = (float) varMax; } double getComplexityReductionThreshold() const { return ct_; } void setComplexityReductionThreshold(double ct) { ct_ = (float) ct; } bool getDetectShadows() const { return detectShadows_; } void setDetectShadows(bool detectShadows) { detectShadows_ = detectShadows; } int getShadowValue() const { return shadowValue_; } void setShadowValue(int value) { shadowValue_ = (uchar) value; } double getShadowThreshold() const { return shadowThreshold_; } void setShadowThreshold(double threshold) { shadowThreshold_ = (float) threshold; } private: void initialize(Size frameSize, int frameType); int history_; int nmixtures_; float backgroundRatio_; float varThreshold_; float varThresholdGen_; float varInit_; float varMin_; float varMax_; float ct_; bool detectShadows_; uchar shadowValue_; float shadowThreshold_; Size frameSize_; int frameType_; int nframes_; GpuMat weight_; GpuMat variance_; GpuMat mean_; //keep track of number of modes per pixel GpuMat bgmodelUsedModes_; }; MOG2Impl::MOG2Impl(int history, double varThreshold, bool detectShadows) : frameSize_(0, 0), frameType_(0), nframes_(0) { history_ = history > 0 ? history : defaultHistory; varThreshold_ = varThreshold > 0 ? (float) varThreshold : defaultVarThreshold; detectShadows_ = detectShadows; nmixtures_ = defaultNMixtures; backgroundRatio_ = defaultBackgroundRatio; varInit_ = defaultVarInit; varMax_ = defaultVarMax; varMin_ = defaultVarMin; varThresholdGen_ = defaultVarThresholdGen; ct_ = defaultCT; shadowValue_ = defaultShadowValue; shadowThreshold_ = defaultShadowThreshold; } void MOG2Impl::apply(InputArray image, OutputArray fgmask, double learningRate) { apply(image, fgmask, learningRate, Stream::Null()); } void MOG2Impl::apply(InputArray _frame, OutputArray _fgmask, double learningRate, Stream& stream) { using namespace cv::cuda::device::mog2; GpuMat frame = _frame.getGpuMat(); int ch = frame.channels(); int work_ch = ch; if (nframes_ == 0 || learningRate >= 1.0 || frame.size() != frameSize_ || work_ch != mean_.channels()) initialize(frame.size(), frame.type()); _fgmask.create(frameSize_, CV_8UC1); GpuMat fgmask = _fgmask.getGpuMat(); fgmask.setTo(Scalar::all(0), stream); ++nframes_; learningRate = learningRate >= 0 && nframes_ > 1 ? learningRate : 1.0 / std::min(2 * nframes_, history_); CV_Assert( learningRate >= 0 ); mog2_gpu(frame, frame.channels(), fgmask, bgmodelUsedModes_, weight_, variance_, mean_, (float) learningRate, static_cast(-learningRate * ct_), detectShadows_, StreamAccessor::getStream(stream)); } void MOG2Impl::getBackgroundImage(OutputArray backgroundImage) const { getBackgroundImage(backgroundImage, Stream::Null()); } void MOG2Impl::getBackgroundImage(OutputArray _backgroundImage, Stream& stream) const { using namespace cv::cuda::device::mog2; _backgroundImage.create(frameSize_, frameType_); GpuMat backgroundImage = _backgroundImage.getGpuMat(); getBackgroundImage2_gpu(backgroundImage.channels(), bgmodelUsedModes_, weight_, mean_, backgroundImage, StreamAccessor::getStream(stream)); } void MOG2Impl::initialize(cv::Size frameSize, int frameType) { using namespace cv::cuda::device::mog2; CV_Assert( frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4 ); frameSize_ = frameSize; frameType_ = frameType; nframes_ = 0; int ch = CV_MAT_CN(frameType); int work_ch = ch; // for each gaussian mixture of each pixel bg model we store ... // the mixture weight (w), // the mean (nchannels values) and // the covariance weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); variance_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); //make the array for keeping track of the used modes per pixel - all zeros at start bgmodelUsedModes_.create(frameSize_, CV_8UC1); bgmodelUsedModes_.setTo(Scalar::all(0)); loadConstants(nmixtures_, varThreshold_, backgroundRatio_, varThresholdGen_, varInit_, varMin_, varMax_, shadowThreshold_, shadowValue_); } } Ptr cv::cuda::createBackgroundSubtractorMOG2(int history, double varThreshold, bool detectShadows) { return makePtr(history, varThreshold, detectShadows); } #endif