/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2014-2015, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include "opencv2/core/hal/intrin.hpp" #include "opencl_kernels_imgproc.hpp" #include "opencv2/core/openvx/ovx_defs.hpp" #include "filter.hpp" #include "fixedpoint.inl.hpp" /****************************************************************************************\ Gaussian Blur \****************************************************************************************/ cv::Mat cv::getGaussianKernel( int n, double sigma, int ktype ) { CV_Assert(n > 0); const int SMALL_GAUSSIAN_SIZE = 7; static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE] = { {1.f}, {0.25f, 0.5f, 0.25f}, {0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f}, {0.03125f, 0.109375f, 0.21875f, 0.28125f, 0.21875f, 0.109375f, 0.03125f} }; const float* fixed_kernel = n % 2 == 1 && n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 ? small_gaussian_tab[n>>1] : 0; CV_Assert( ktype == CV_32F || ktype == CV_64F ); Mat kernel(n, 1, ktype); float* cf = kernel.ptr(); double* cd = kernel.ptr(); double sigmaX = sigma > 0 ? sigma : ((n-1)*0.5 - 1)*0.3 + 0.8; double scale2X = -0.5/(sigmaX*sigmaX); double sum = 0; int i; for( i = 0; i < n; i++ ) { double x = i - (n-1)*0.5; double t = fixed_kernel ? (double)fixed_kernel[i] : std::exp(scale2X*x*x); if( ktype == CV_32F ) { cf[i] = (float)t; sum += cf[i]; } else { cd[i] = t; sum += cd[i]; } } CV_DbgAssert(fabs(sum) > 0); sum = 1./sum; for( i = 0; i < n; i++ ) { if( ktype == CV_32F ) cf[i] = (float)(cf[i]*sum); else cd[i] *= sum; } return kernel; } namespace cv { template static std::vector getFixedpointGaussianKernel( int n, double sigma ) { if (sigma <= 0) { if(n == 1) return std::vector(1, softdouble(1.0)); else if(n == 3) { T v3[] = { softdouble(0.25), softdouble(0.5), softdouble(0.25) }; return std::vector(v3, v3 + 3); } else if(n == 5) { T v5[] = { softdouble(0.0625), softdouble(0.25), softdouble(0.375), softdouble(0.25), softdouble(0.0625) }; return std::vector(v5, v5 + 5); } else if(n == 7) { T v7[] = { softdouble(0.03125), softdouble(0.109375), softdouble(0.21875), softdouble(0.28125), softdouble(0.21875), softdouble(0.109375), softdouble(0.03125) }; return std::vector(v7, v7 + 7); } } softdouble sigmaX = sigma > 0 ? softdouble(sigma) : mulAdd(softdouble(n),softdouble(0.15),softdouble(0.35));// softdouble(((n-1)*0.5 - 1)*0.3 + 0.8) softdouble scale2X = softdouble(-0.5*0.25)/(sigmaX*sigmaX); std::vector values(n); softdouble sum(0.); for(int i = 0, x = 1 - n; i < n; i++, x+=2 ) { // x = i - (n - 1)*0.5 // t = std::exp(scale2X*x*x) values[i] = exp(softdouble(x*x)*scale2X); sum += values[i]; } sum = softdouble::one()/sum; std::vector kernel(n); for(int i = 0; i < n; i++ ) { kernel[i] = values[i] * sum; } return kernel; }; template void hlineSmooth1N(const ET* src, int cn, const FT* m, int, FT* dst, int len, int) { for (int i = 0; i < len*cn; i++, src++, dst++) *dst = (*m) * (*src); } template <> void hlineSmooth1N(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int) { int lencn = len*cn; int i = 0; #if CV_SIMD const int VECSZ = v_uint16::nlanes; v_uint16 v_mul = vx_setall_u16(*((uint16_t*)m)); for (; i <= lencn - VECSZ; i += VECSZ) v_store((uint16_t*)dst + i, v_mul_wrap(v_mul, vx_load_expand(src + i))); #endif for (; i < lencn; i++) dst[i] = m[0] * src[i]; } template void hlineSmooth1N1(const ET* src, int cn, const FT*, int, FT* dst, int len, int) { for (int i = 0; i < len*cn; i++, src++, dst++) *dst = *src; } template <> void hlineSmooth1N1(const uint8_t* src, int cn, const ufixedpoint16*, int, ufixedpoint16* dst, int len, int) { int lencn = len*cn; int i = 0; #if CV_SIMD const int VECSZ = v_uint16::nlanes; for (; i <= lencn - VECSZ; i += VECSZ) v_store((uint16_t*)dst + i, v_shl<8>(vx_load_expand(src + i))); #endif for (; i < lencn; i++) dst[i] = src[i]; } template void hlineSmooth3N(const ET* src, int cn, const FT* m, int, FT* dst, int len, int borderType) { if (len == 1) { FT msum = borderType != BORDER_CONSTANT ? m[0] + m[1] + m[2] : m[1]; for (int k = 0; k < cn; k++) dst[k] = msum * src[k]; } else { // Point that fall left from border for (int k = 0; k < cn; k++) dst[k] = m[1] * src[k] + m[2] * src[cn + k]; if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int src_idx = borderInterpolate(-1, len, borderType); for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[0] * src[src_idx*cn + k]; } src += cn; dst += cn; for (int i = cn; i < (len - 1)*cn; i++, src++, dst++) *dst = m[0] * src[-cn] + m[1] * src[0] + m[2] * src[cn]; // Point that fall right from border for (int k = 0; k < cn; k++) dst[k] = m[0] * src[k - cn] + m[1] * src[k]; if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn; for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[2] * src[src_idx + k]; } } } template <> void hlineSmooth3N(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int borderType) { if (len == 1) { ufixedpoint16 msum = borderType != BORDER_CONSTANT ? m[0] + m[1] + m[2] : m[1]; for (int k = 0; k < cn; k++) dst[k] = msum * src[k]; } else { // Point that fall left from border for (int k = 0; k < cn; k++) dst[k] = m[1] * src[k] + m[2] * src[cn + k]; if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int src_idx = borderInterpolate(-1, len, borderType); for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[0] * src[src_idx*cn + k]; } src += cn; dst += cn; int i = cn, lencn = (len - 1)*cn; #if CV_SIMD const uint16_t* _m = (const uint16_t*)m; const int VECSZ = v_uint16::nlanes; v_uint16 v_mul0 = vx_setall_u16(_m[0]); v_uint16 v_mul1 = vx_setall_u16(_m[1]); v_uint16 v_mul2 = vx_setall_u16(_m[2]); for (; i <= lencn - VECSZ; i += VECSZ, src += VECSZ, dst += VECSZ) v_store((uint16_t*)dst, v_mul_wrap(vx_load_expand(src - cn), v_mul0) + v_mul_wrap(vx_load_expand(src), v_mul1) + v_mul_wrap(vx_load_expand(src + cn), v_mul2)); #endif for (; i < lencn; i++, src++, dst++) *dst = m[0] * src[-cn] + m[1] * src[0] + m[2] * src[cn]; // Point that fall right from border for (int k = 0; k < cn; k++) dst[k] = m[0] * src[k - cn] + m[1] * src[k]; if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn; for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[2] * src[src_idx + k]; } } } template void hlineSmooth3N121(const ET* src, int cn, const FT*, int, FT* dst, int len, int borderType) { if (len == 1) { if(borderType != BORDER_CONSTANT) for (int k = 0; k < cn; k++) dst[k] = FT(src[k]); else for (int k = 0; k < cn; k++) dst[k] = FT(src[k])>>1; } else { // Point that fall left from border for (int k = 0; k < cn; k++) dst[k] = (FT(src[k])>>1) + (FT(src[cn + k])>>2); if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int src_idx = borderInterpolate(-1, len, borderType); for (int k = 0; k < cn; k++) dst[k] = dst[k] + (FT(src[src_idx*cn + k])>>2); } src += cn; dst += cn; for (int i = cn; i < (len - 1)*cn; i++, src++, dst++) *dst = (FT(src[-cn])>>2) + (FT(src[cn])>>2) + (FT(src[0])>>1); // Point that fall right from border for (int k = 0; k < cn; k++) dst[k] = (FT(src[k - cn])>>2) + (FT(src[k])>>1); if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn; for (int k = 0; k < cn; k++) dst[k] = dst[k] + (FT(src[src_idx + k])>>2); } } } template <> void hlineSmooth3N121(const uint8_t* src, int cn, const ufixedpoint16*, int, ufixedpoint16* dst, int len, int borderType) { if (len == 1) { if (borderType != BORDER_CONSTANT) for (int k = 0; k < cn; k++) dst[k] = ufixedpoint16(src[k]); else for (int k = 0; k < cn; k++) dst[k] = ufixedpoint16(src[k]) >> 1; } else { // Point that fall left from border for (int k = 0; k < cn; k++) dst[k] = (ufixedpoint16(src[k])>>1) + (ufixedpoint16(src[cn + k])>>2); if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int src_idx = borderInterpolate(-1, len, borderType); for (int k = 0; k < cn; k++) dst[k] = dst[k] + (ufixedpoint16(src[src_idx*cn + k])>>2); } src += cn; dst += cn; int i = cn, lencn = (len - 1)*cn; #if CV_SIMD const int VECSZ = v_uint16::nlanes; for (; i <= lencn - VECSZ; i += VECSZ, src += VECSZ, dst += VECSZ) v_store((uint16_t*)dst, (vx_load_expand(src - cn) + vx_load_expand(src + cn) + (vx_load_expand(src) << 1)) << 6); #endif for (; i < lencn; i++, src++, dst++) *((uint16_t*)dst) = (uint16_t(src[-cn]) + uint16_t(src[cn]) + (uint16_t(src[0]) << 1)) << 6; // Point that fall right from border for (int k = 0; k < cn; k++) dst[k] = (ufixedpoint16(src[k - cn])>>2) + (ufixedpoint16(src[k])>>1); if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn; for (int k = 0; k < cn; k++) dst[k] = dst[k] + (ufixedpoint16(src[src_idx + k])>>2); } } } template void hlineSmooth3Naba(const ET* src, int cn, const FT* m, int, FT* dst, int len, int borderType) { if (len == 1) { FT msum = borderType != BORDER_CONSTANT ? (m[0]<<1) + m[1] : m[1]; for (int k = 0; k < cn; k++) dst[k] = msum * src[k]; } else { // Point that fall left from border if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int src_idx = borderInterpolate(-1, len, borderType); for (int k = 0; k < cn; k++) dst[k] = m[1] * src[k] + m[0] * src[cn + k] + m[0] * src[src_idx*cn + k]; } else { for (int k = 0; k < cn; k++) dst[k] = m[1] * src[k] + m[0] * src[cn + k]; } src += cn; dst += cn; for (int i = cn; i < (len - 1)*cn; i++, src++, dst++) *dst = m[1] * src[0] + m[0] * src[-cn] + m[0] * src[cn]; // Point that fall right from border if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn; for (int k = 0; k < cn; k++) dst[k] = m[1] * src[k] + m[0] * src[k - cn] + m[0] * src[src_idx + k]; } else { for (int k = 0; k < cn; k++) dst[k] = m[0] * src[k - cn] + m[1] * src[k]; } } } template <> void hlineSmooth3Naba(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int borderType) { if (len == 1) { ufixedpoint16 msum = borderType != BORDER_CONSTANT ? (m[0]<<1) + m[1] : m[1]; for (int k = 0; k < cn; k++) dst[k] = msum * src[k]; } else { // Point that fall left from border if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int src_idx = borderInterpolate(-1, len, borderType); for (int k = 0; k < cn; k++) ((uint16_t*)dst)[k] = ((uint16_t*)m)[1] * src[k] + ((uint16_t*)m)[0] * ((uint16_t)(src[cn + k]) + (uint16_t)(src[src_idx*cn + k])); } else { for (int k = 0; k < cn; k++) dst[k] = m[1] * src[k] + m[0] * src[cn + k]; } src += cn; dst += cn; int i = cn, lencn = (len - 1)*cn; #if CV_SIMD const uint16_t* _m = (const uint16_t*)m; const int VECSZ = v_uint16::nlanes; v_uint16 v_mul0 = vx_setall_u16(_m[0]); v_uint16 v_mul1 = vx_setall_u16(_m[1]); for (; i <= lencn - VECSZ; i += VECSZ, src += VECSZ, dst += VECSZ) v_store((uint16_t*)dst, v_mul_wrap(vx_load_expand(src - cn) + vx_load_expand(src + cn), v_mul0) + v_mul_wrap(vx_load_expand(src), v_mul1)); #endif for (; i < lencn; i++, src++, dst++) *((uint16_t*)dst) = ((uint16_t*)m)[1] * src[0] + ((uint16_t*)m)[0] * ((uint16_t)(src[-cn]) + (uint16_t)(src[cn])); // Point that fall right from border if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn; for (int k = 0; k < cn; k++) ((uint16_t*)dst)[k] = ((uint16_t*)m)[1] * src[k] + ((uint16_t*)m)[0] * ((uint16_t)(src[k - cn]) + (uint16_t)(src[src_idx + k])); } else { for (int k = 0; k < cn; k++) dst[k] = m[0] * src[k - cn] + m[1] * src[k]; } } } template void hlineSmooth5N(const ET* src, int cn, const FT* m, int, FT* dst, int len, int borderType) { if (len == 1) { FT msum = borderType != BORDER_CONSTANT ? m[0] + m[1] + m[2] + m[3] + m[4] : m[2]; for (int k = 0; k < cn; k++) dst[k] = msum * src[k]; } else if (len == 2) { if (borderType == BORDER_CONSTANT) for (int k = 0; k < cn; k++) { dst[k ] = m[2] * src[k] + m[3] * src[k+cn]; dst[k+cn] = m[1] * src[k] + m[2] * src[k+cn]; } else { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; int idxp1 = borderInterpolate(2, len, borderType)*cn; int idxp2 = borderInterpolate(3, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k ] = m[1] * src[k + idxm1] + m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + idxp1] + m[0] * src[k + idxm2]; dst[k + cn] = m[0] * src[k + idxm1] + m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + idxp1] + m[4] * src[k + idxp2]; } } } else if (len == 3) { if (borderType == BORDER_CONSTANT) for (int k = 0; k < cn; k++) { dst[k ] = m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + 2*cn]; dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + 2*cn]; dst[k + 2*cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2*cn]; } else { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; int idxp1 = borderInterpolate(3, len, borderType)*cn; int idxp2 = borderInterpolate(4, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k ] = m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + 2*cn] + m[0] * src[k + idxm2] + m[1] * src[k + idxm1]; dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + 2*cn] + m[0] * src[k + idxm1] + m[4] * src[k + idxp1]; dst[k + 2*cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2*cn] + m[3] * src[k + idxp1] + m[4] * src[k + idxp2]; } } } else { // Points that fall left from border for (int k = 0; k < cn; k++) { dst[k] = m[2] * src[k] + m[3] * src[cn + k] + m[4] * src[2*cn + k]; dst[k + cn] = m[1] * src[k] + m[2] * src[cn + k] + m[3] * src[2*cn + k] + m[4] * src[3*cn + k]; } if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k] = dst[k] + m[0] * src[idxm2 + k] + m[1] * src[idxm1 + k]; dst[k + cn] = dst[k + cn] + m[0] * src[idxm1 + k]; } } src += 2*cn; dst += 2*cn; for (int i = 2*cn; i < (len - 2)*cn; i++, src++, dst++) *dst = m[0] * src[-2*cn] + m[1] * src[-cn] + m[2] * src[0] + m[3] * src[cn] + m[4] * src[2*cn]; // Points that fall right from border for (int k = 0; k < cn; k++) { dst[k] = m[0] * src[k - 2*cn] + m[1] * src[k - cn] + m[2] * src[k] + m[3] * src[k + cn]; dst[k + cn] = m[0] * src[k - cn] + m[1] * src[k] + m[2] * src[k + cn]; } if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn; int idxp2 = (borderInterpolate(len+1, len, borderType) - (len - 2))*cn; for (int k = 0; k < cn; k++) { dst[k] = dst[k] + m[4] * src[idxp1 + k]; dst[k + cn] = dst[k + cn] + m[3] * src[idxp1 + k] + m[4] * src[idxp2 + k]; } } } } template <> void hlineSmooth5N(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int borderType) { if (len == 1) { ufixedpoint16 msum = borderType != BORDER_CONSTANT ? m[0] + m[1] + m[2] + m[3] + m[4] : m[2]; for (int k = 0; k < cn; k++) dst[k] = msum * src[k]; } else if (len == 2) { if (borderType == BORDER_CONSTANT) for (int k = 0; k < cn; k++) { dst[k] = m[2] * src[k] + m[3] * src[k + cn]; dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn]; } else { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; int idxp1 = borderInterpolate(2, len, borderType)*cn; int idxp2 = borderInterpolate(3, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k] = m[1] * src[k + idxm1] + m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + idxp1] + m[0] * src[k + idxm2]; dst[k + cn] = m[0] * src[k + idxm1] + m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + idxp1] + m[4] * src[k + idxp2]; } } } else if (len == 3) { if (borderType == BORDER_CONSTANT) for (int k = 0; k < cn; k++) { dst[k] = m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + 2 * cn]; dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + 2 * cn]; dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn]; } else { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; int idxp1 = borderInterpolate(3, len, borderType)*cn; int idxp2 = borderInterpolate(4, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k] = m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + 2 * cn] + m[0] * src[k + idxm2] + m[1] * src[k + idxm1]; dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + 2 * cn] + m[0] * src[k + idxm1] + m[4] * src[k + idxp1]; dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn] + m[3] * src[k + idxp1] + m[4] * src[k + idxp2]; } } } else { // Points that fall left from border for (int k = 0; k < cn; k++) { dst[k] = m[2] * src[k] + m[3] * src[cn + k] + m[4] * src[2 * cn + k]; dst[k + cn] = m[1] * src[k] + m[2] * src[cn + k] + m[3] * src[2 * cn + k] + m[4] * src[3 * cn + k]; } if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k] = dst[k] + m[0] * src[idxm2 + k] + m[1] * src[idxm1 + k]; dst[k + cn] = dst[k + cn] + m[0] * src[idxm1 + k]; } } src += 2 * cn; dst += 2 * cn; int i = 2*cn, lencn = (len - 2)*cn; #if CV_SIMD const uint16_t* _m = (const uint16_t*)m; const int VECSZ = v_uint16::nlanes; v_uint16 v_mul0 = vx_setall_u16(_m[0]); v_uint16 v_mul1 = vx_setall_u16(_m[1]); v_uint16 v_mul2 = vx_setall_u16(_m[2]); v_uint16 v_mul3 = vx_setall_u16(_m[3]); v_uint16 v_mul4 = vx_setall_u16(_m[4]); for (; i <= lencn - VECSZ; i += VECSZ, src += VECSZ, dst += VECSZ) v_store((uint16_t*)dst, v_mul_wrap(vx_load_expand(src - 2 * cn), v_mul0) + v_mul_wrap(vx_load_expand(src - cn), v_mul1) + v_mul_wrap(vx_load_expand(src), v_mul2) + v_mul_wrap(vx_load_expand(src + cn), v_mul3) + v_mul_wrap(vx_load_expand(src + 2 * cn), v_mul4)); #endif for (; i < lencn; i++, src++, dst++) *dst = m[0] * src[-2*cn] + m[1] * src[-cn] + m[2] * src[0] + m[3] * src[cn] + m[4] * src[2*cn]; // Points that fall right from border for (int k = 0; k < cn; k++) { dst[k] = m[0] * src[k - 2 * cn] + m[1] * src[k - cn] + m[2] * src[k] + m[3] * src[k + cn]; dst[k + cn] = m[0] * src[k - cn] + m[1] * src[k] + m[2] * src[k + cn]; } if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn; int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn; for (int k = 0; k < cn; k++) { dst[k] = dst[k] + m[4] * src[idxp1 + k]; dst[k + cn] = dst[k + cn] + m[3] * src[idxp1 + k] + m[4] * src[idxp2 + k]; } } } } template void hlineSmooth5N14641(const ET* src, int cn, const FT*, int, FT* dst, int len, int borderType) { if (len == 1) { if (borderType == BORDER_CONSTANT) for (int k = 0; k < cn; k++) dst[k] = (FT(src[k])>>3)*(uint8_t)3; else for (int k = 0; k < cn; k++) dst[k] = src[k]; } else if (len == 2) { if (borderType == BORDER_CONSTANT) for (int k = 0; k < cn; k++) { dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2); dst[k + cn] = (FT(src[k]) >> 2) + (FT(src[k + cn])>>4)*(uint8_t)6; } else { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; int idxp1 = borderInterpolate(2, len, borderType)*cn; int idxp2 = borderInterpolate(3, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k + idxm1])>>2) + (FT(src[k + cn])>>2) + (FT(src[k + idxp1])>>4) + (FT(src[k + idxm2])>>4); dst[k + cn] = (FT(src[k + cn])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[k + idxp1])>>2) + (FT(src[k + idxm1])>>4) + (FT(src[k + idxp2])>>4); } } } else if (len == 3) { if (borderType == BORDER_CONSTANT) for (int k = 0; k < cn; k++) { dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2) + (FT(src[k + 2 * cn])>>4); dst[k + cn] = (FT(src[k + cn])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[k + 2 * cn])>>2); dst[k + 2 * cn] = (FT(src[k + 2 * cn])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2) + (FT(src[k])>>4); } else { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; int idxp1 = borderInterpolate(3, len, borderType)*cn; int idxp2 = borderInterpolate(4, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2) + (FT(src[k + idxm1])>>2) + (FT(src[k + 2 * cn])>>4) + (FT(src[k + idxm2])>>4); dst[k + cn] = (FT(src[k + cn])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[k + 2 * cn])>>2) + (FT(src[k + idxm1])>>4) + (FT(src[k + idxp1])>>4); dst[k + 2 * cn] = (FT(src[k + 2 * cn])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2) + (FT(src[k + idxp1])>>2) + (FT(src[k])>>4) + (FT(src[k + idxp2])>>4); } } } else { // Points that fall left from border for (int k = 0; k < cn; k++) { dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[cn + k])>>2) + (FT(src[2 * cn + k])>>4); dst[k + cn] = (FT(src[cn + k])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[2 * cn + k])>>2) + (FT(src[3 * cn + k])>>4); } if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k] = dst[k] + (FT(src[idxm2 + k])>>4) + (FT(src[idxm1 + k])>>2); dst[k + cn] = dst[k + cn] + (FT(src[idxm1 + k])>>4); } } src += 2 * cn; dst += 2 * cn; for (int i = 2 * cn; i < (len - 2)*cn; i++, src++, dst++) *dst = (FT(src[0])>>4)*(uint8_t)6 + (FT(src[-cn])>>2) + (FT(src[cn])>>2) + (FT(src[-2 * cn])>>4) + (FT(src[2 * cn])>>4); // Points that fall right from border for (int k = 0; k < cn; k++) { dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k - cn])>>2) + (FT(src[k + cn])>>2) + (FT(src[k - 2 * cn])>>4); dst[k + cn] = (FT(src[k + cn])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[k - cn])>>4); } if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn; int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn; for (int k = 0; k < cn; k++) { dst[k] = dst[k] + (FT(src[idxp1 + k])>>4); dst[k + cn] = dst[k + cn] + (FT(src[idxp1 + k])>>2) + (FT(src[idxp2 + k])>>4); } } } } template <> void hlineSmooth5N14641(const uint8_t* src, int cn, const ufixedpoint16*, int, ufixedpoint16* dst, int len, int borderType) { if (len == 1) { if (borderType == BORDER_CONSTANT) for (int k = 0; k < cn; k++) dst[k] = (ufixedpoint16(src[k])>>3) * (uint8_t)3; else { for (int k = 0; k < cn; k++) dst[k] = src[k]; } } else if (len == 2) { if (borderType == BORDER_CONSTANT) for (int k = 0; k < cn; k++) { dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2); dst[k + cn] = (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6; } else { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; int idxp1 = borderInterpolate(2, len, borderType)*cn; int idxp2 = borderInterpolate(3, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + idxm1]) >> 2) + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 4) + (ufixedpoint16(src[k + idxm2]) >> 4); dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 4) + (ufixedpoint16(src[k + idxp2]) >> 4); } } } else if (len == 3) { if (borderType == BORDER_CONSTANT) for (int k = 0; k < cn; k++) { dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 4); dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 2); dst[k + 2 * cn] = (ufixedpoint16(src[k + 2 * cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k]) >> 4); } else { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; int idxp1 = borderInterpolate(3, len, borderType)*cn; int idxp2 = borderInterpolate(4, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 4) + (ufixedpoint16(src[k + idxm2]) >> 4); dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 4) + (ufixedpoint16(src[k + idxp1]) >> 4); dst[k + 2 * cn] = (ufixedpoint16(src[k + 2 * cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 2) + (ufixedpoint16(src[k]) >> 4) + (ufixedpoint16(src[k + idxp2]) >> 4); } } } else { // Points that fall left from border for (int k = 0; k < cn; k++) { dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[cn + k]) >> 2) + (ufixedpoint16(src[2 * cn + k]) >> 4); dst[k + cn] = (ufixedpoint16(src[cn + k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[2 * cn + k]) >> 2) + (ufixedpoint16(src[3 * cn + k]) >> 4); } if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k] = dst[k] + (ufixedpoint16(src[idxm2 + k]) >> 4) + (ufixedpoint16(src[idxm1 + k]) >> 2); dst[k + cn] = dst[k + cn] + (ufixedpoint16(src[idxm1 + k]) >> 4); } } src += 2 * cn; dst += 2 * cn; int i = 2 * cn, lencn = (len - 2)*cn; #if CV_SIMD const int VECSZ = v_uint16::nlanes; v_uint16 v_6 = vx_setall_u16(6); for (; i <= lencn - VECSZ; i += VECSZ, src += VECSZ, dst += VECSZ) v_store((uint16_t*)dst, (v_mul_wrap(vx_load_expand(src), v_6) + ((vx_load_expand(src - cn) + vx_load_expand(src + cn)) << 2) + vx_load_expand(src - 2 * cn) + vx_load_expand(src + 2 * cn)) << 4); #endif for (; i < lencn; i++, src++, dst++) *((uint16_t*)dst) = (uint16_t(src[0]) * 6 + ((uint16_t(src[-cn]) + uint16_t(src[cn])) << 2) + uint16_t(src[-2 * cn]) + uint16_t(src[2 * cn])) << 4; // Points that fall right from border for (int k = 0; k < cn; k++) { dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k - cn]) >> 2) + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k - 2 * cn]) >> 4); dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k - cn]) >> 4); } if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn; int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn; for (int k = 0; k < cn; k++) { dst[k] = dst[k] + (ufixedpoint16(src[idxp1 + k]) >> 4); dst[k + cn] = dst[k + cn] + (ufixedpoint16(src[idxp1 + k]) >> 2) + (ufixedpoint16(src[idxp2 + k]) >> 4); } } } } template void hlineSmooth5Nabcba(const ET* src, int cn, const FT* m, int, FT* dst, int len, int borderType) { if (len == 1) { FT msum = borderType != BORDER_CONSTANT ? ((m[0] + m[1])<<1) + m[2] : m[2]; for (int k = 0; k < cn; k++) dst[k] = msum * src[k]; } else if (len == 2) { if (borderType == BORDER_CONSTANT) for (int k = 0; k < cn; k++) { dst[k] = m[2] * src[k] + m[1] * src[k + cn]; dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn]; } else { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; int idxp1 = borderInterpolate(2, len, borderType)*cn; int idxp2 = borderInterpolate(3, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k] = m[1] * src[k + idxm1] + m[2] * src[k] + m[1] * src[k + cn] + m[0] * src[k + idxp1] + m[0] * src[k + idxm2]; dst[k + cn] = m[0] * src[k + idxm1] + m[1] * src[k] + m[2] * src[k + cn] + m[1] * src[k + idxp1] + m[0] * src[k + idxp2]; } } } else if (len == 3) { if (borderType == BORDER_CONSTANT) for (int k = 0; k < cn; k++) { dst[k] = m[2] * src[k] + m[1] * src[k + cn] + m[0] * src[k + 2 * cn]; dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[1] * src[k + 2 * cn]; dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn]; } else { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; int idxp1 = borderInterpolate(3, len, borderType)*cn; int idxp2 = borderInterpolate(4, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k] = m[2] * src[k] + m[1] * src[k + cn] + m[0] * src[k + 2 * cn] + m[0] * src[k + idxm2] + m[1] * src[k + idxm1]; dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[1] * src[k + 2 * cn] + m[0] * src[k + idxm1] + m[0] * src[k + idxp1]; dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn] + m[1] * src[k + idxp1] + m[0] * src[k + idxp2]; } } } else { // Points that fall left from border for (int k = 0; k < cn; k++) { dst[k] = m[2] * src[k] + m[1] * src[cn + k] + m[0] * src[2 * cn + k]; dst[k + cn] = m[1] * src[k] + m[2] * src[cn + k] + m[1] * src[2 * cn + k] + m[0] * src[3 * cn + k]; } if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; for (int k = 0; k < cn; k++) { dst[k] = dst[k] + m[0] * src[idxm2 + k] + m[1] * src[idxm1 + k]; dst[k + cn] = dst[k + cn] + m[0] * src[idxm1 + k]; } } src += 2 * cn; dst += 2 * cn; for (int i = 2 * cn; i < (len - 2)*cn; i++, src++, dst++) *dst = m[0] * src[-2 * cn] + m[1] * src[-cn] + m[2] * src[0] + m[3] * src[cn] + m[4] * src[2 * cn]; // Points that fall right from border for (int k = 0; k < cn; k++) { dst[k] = m[0] * src[k - 2 * cn] + m[1] * src[k - cn] + m[2] * src[k] + m[3] * src[k + cn]; dst[k + cn] = m[0] * src[k - cn] + m[1] * src[k] + m[2] * src[k + cn]; } if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn; int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn; for (int k = 0; k < cn; k++) { dst[k] = dst[k] + m[0] * src[idxp1 + k]; dst[k + cn] = dst[k + cn] + m[1] * src[idxp1 + k] + m[0] * src[idxp2 + k]; } } } } template <> void hlineSmooth5Nabcba(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int borderType) { if (len == 1) { ufixedpoint16 msum = borderType != BORDER_CONSTANT ? ((m[0] + m[1]) << 1) + m[2] : m[2]; for (int k = 0; k < cn; k++) dst[k] = msum * src[k]; } else if (len == 2) { if (borderType == BORDER_CONSTANT) for (int k = 0; k < cn; k++) { dst[k] = m[2] * src[k] + m[1] * src[k + cn]; dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn]; } else { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; int idxp1 = borderInterpolate(2, len, borderType)*cn; int idxp2 = borderInterpolate(3, len, borderType)*cn; for (int k = 0; k < cn; k++) { ((uint16_t*)dst)[k] = ((uint16_t*)m)[1] * ((uint16_t)(src[k + idxm1]) + (uint16_t)(src[k + cn])) + ((uint16_t*)m)[2] * src[k] + ((uint16_t*)m)[0] * ((uint16_t)(src[k + idxp1]) + (uint16_t)(src[k + idxm2])); ((uint16_t*)dst)[k + cn] = ((uint16_t*)m)[0] * ((uint16_t)(src[k + idxm1]) + (uint16_t)(src[k + idxp2])) + ((uint16_t*)m)[1] * ((uint16_t)(src[k]) + (uint16_t)(src[k + idxp1])) + ((uint16_t*)m)[2] * src[k + cn]; } } } else if (len == 3) { if (borderType == BORDER_CONSTANT) for (int k = 0; k < cn; k++) { dst[k] = m[2] * src[k] + m[1] * src[k + cn] + m[0] * src[k + 2 * cn]; ((uint16_t*)dst)[k + cn] = ((uint16_t*)m)[1] * ((uint16_t)(src[k]) + (uint16_t)(src[k + 2 * cn])) + ((uint16_t*)m)[2] * src[k + cn]; dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn]; } else { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; int idxp1 = borderInterpolate(3, len, borderType)*cn; int idxp2 = borderInterpolate(4, len, borderType)*cn; for (int k = 0; k < cn; k++) { ((uint16_t*)dst)[k] = ((uint16_t*)m)[2] * src[k] + ((uint16_t*)m)[1] * ((uint16_t)(src[k + cn]) + (uint16_t)(src[k + idxm1])) + ((uint16_t*)m)[0] * ((uint16_t)(src[k + 2 * cn]) + (uint16_t)(src[k + idxm2])); ((uint16_t*)dst)[k + cn] = ((uint16_t*)m)[2] * src[k + cn] + ((uint16_t*)m)[1] * ((uint16_t)(src[k]) + (uint16_t)(src[k + 2 * cn])) + ((uint16_t*)m)[0] * ((uint16_t)(src[k + idxm1]) + (uint16_t)(src[k + idxp1])); ((uint16_t*)dst)[k + 2 * cn] = ((uint16_t*)m)[0] * ((uint16_t)(src[k]) + (uint16_t)(src[k + idxp2])) + ((uint16_t*)m)[1] * ((uint16_t)(src[k + cn]) + (uint16_t)(src[k + idxp1])) + ((uint16_t*)m)[2] * src[k + 2 * cn]; } } } else { // Points that fall left from border if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int idxm2 = borderInterpolate(-2, len, borderType)*cn; int idxm1 = borderInterpolate(-1, len, borderType)*cn; for (int k = 0; k < cn; k++) { ((uint16_t*)dst)[k] = ((uint16_t*)m)[2] * src[k] + ((uint16_t*)m)[1] * ((uint16_t)(src[cn + k]) + (uint16_t)(src[idxm1 + k])) + ((uint16_t*)m)[0] * ((uint16_t)(src[2 * cn + k]) + (uint16_t)(src[idxm2 + k])); ((uint16_t*)dst)[k + cn] = ((uint16_t*)m)[1] * ((uint16_t)(src[k]) + (uint16_t)(src[2 * cn + k])) + ((uint16_t*)m)[2] * src[cn + k] + ((uint16_t*)m)[0] * ((uint16_t)(src[3 * cn + k]) + (uint16_t)(src[idxm1 + k])); } } else { for (int k = 0; k < cn; k++) { dst[k] = m[2] * src[k] + m[1] * src[cn + k] + m[0] * src[2 * cn + k]; ((uint16_t*)dst)[k + cn] = ((uint16_t*)m)[1] * ((uint16_t)(src[k]) + (uint16_t)(src[2 * cn + k])) + ((uint16_t*)m)[2] * src[cn + k] + ((uint16_t*)m)[0] * src[3 * cn + k]; } } src += 2 * cn; dst += 2 * cn; int i = 2 * cn, lencn = (len - 2)*cn; #if CV_SIMD const uint16_t* _m = (const uint16_t*)m; const int VECSZ = v_uint16::nlanes; v_uint16 v_mul0 = vx_setall_u16(_m[0]); v_uint16 v_mul1 = vx_setall_u16(_m[1]); v_uint16 v_mul2 = vx_setall_u16(_m[2]); for (; i <= lencn - VECSZ; i += VECSZ, src += VECSZ, dst += VECSZ) v_store((uint16_t*)dst, v_mul_wrap(vx_load_expand(src - 2 * cn) + vx_load_expand(src + 2 * cn), v_mul0) + v_mul_wrap(vx_load_expand(src - cn) + vx_load_expand(src + cn), v_mul1) + v_mul_wrap(vx_load_expand(src), v_mul2)); #endif for (; i < lencn; i++, src++, dst++) *((uint16_t*)dst) = ((uint16_t*)m)[0] * ((uint16_t)(src[-2 * cn]) + (uint16_t)(src[2 * cn])) + ((uint16_t*)m)[1] * ((uint16_t)(src[-cn]) + (uint16_t)(src[cn])) + ((uint16_t*)m)[2] * src[0]; // Points that fall right from border if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn; int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn; for (int k = 0; k < cn; k++) { ((uint16_t*)dst)[k] = ((uint16_t*)m)[0] * ((uint16_t)(src[k - 2 * cn]) + (uint16_t)(src[idxp1 + k])) + ((uint16_t*)m)[1] * ((uint16_t)(src[k - cn]) + (uint16_t)(src[k + cn])) + ((uint16_t*)m)[2] * src[k]; ((uint16_t*)dst)[k + cn] = ((uint16_t*)m)[0] * ((uint16_t)(src[k - cn]) + (uint16_t)(src[idxp2 + k])) + ((uint16_t*)m)[1] * ((uint16_t)(src[k]) + (uint16_t)(src[idxp1 + k])) + ((uint16_t*)m)[2] * src[k + cn]; } } else { for (int k = 0; k < cn; k++) { ((uint16_t*)dst)[k] = ((uint16_t*)m)[0] * src[k - 2 * cn] + ((uint16_t*)m)[1] * ((uint16_t)(src[k - cn]) + (uint16_t)(src[k + cn])) + ((uint16_t*)m)[2] * src[k]; dst[k + cn] = m[0] * src[k - cn] + m[1] * src[k] + m[2] * src[k + cn]; } } } } template void hlineSmooth(const ET* src, int cn, const FT* m, int n, FT* dst, int len, int borderType) { int pre_shift = n / 2; int post_shift = n - pre_shift; int i = 0; for (; i < min(pre_shift, len); i++, dst += cn) // Points that fall left from border { for (int k = 0; k < cn; k++) dst[k] = m[pre_shift-i] * src[k]; if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped for (int j = i - pre_shift, mid = 0; j < 0; j++, mid++) { int src_idx = borderInterpolate(j, len, borderType); for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; } int j, mid; for (j = 1, mid = pre_shift - i + 1; j < min(i + post_shift, len); j++, mid++) for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[mid] * src[j*cn + k]; if (borderType != BORDER_CONSTANT) for (; j < i + post_shift; j++, mid++) { int src_idx = borderInterpolate(j, len, borderType); for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; } } i *= cn; for (; i < (len - post_shift + 1)*cn; i++, src++, dst++) { *dst = m[0] * src[0]; for (int j = 1; j < n; j++) *dst = *dst + m[j] * src[j*cn]; } i /= cn; for (i -= pre_shift; i < len - pre_shift; i++, src += cn, dst += cn) // Points that fall right from border { for (int k = 0; k < cn; k++) dst[k] = m[0] * src[k]; int j = 1; for (; j < len - i; j++) for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[j] * src[j*cn + k]; if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped for (; j < n; j++) { int src_idx = borderInterpolate(i + j, len, borderType) - i; for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[j] * src[src_idx*cn + k]; } } } template <> void hlineSmooth(const uint8_t* src, int cn, const ufixedpoint16* m, int n, ufixedpoint16* dst, int len, int borderType) { int pre_shift = n / 2; int post_shift = n - pre_shift; int i = 0; for (; i < min(pre_shift, len); i++, dst += cn) // Points that fall left from border { for (int k = 0; k < cn; k++) dst[k] = m[pre_shift - i] * src[k]; if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped for (int j = i - pre_shift, mid = 0; j < 0; j++, mid++) { int src_idx = borderInterpolate(j, len, borderType); for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; } int j, mid; for (j = 1, mid = pre_shift - i + 1; j < min(i + post_shift, len); j++, mid++) for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[mid] * src[j*cn + k]; if (borderType != BORDER_CONSTANT) for (; j < i + post_shift; j++, mid++) { int src_idx = borderInterpolate(j, len, borderType); for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; } } i *= cn; int lencn = (len - post_shift + 1)*cn; #if CV_SIMD const int VECSZ = v_uint16::nlanes; for (; i <= lencn - VECSZ; i+=VECSZ, src+=VECSZ, dst+=VECSZ) { v_uint16 v_res0 = v_mul_wrap(vx_load_expand(src), vx_setall_u16(*((uint16_t*)m))); for (int j = 1; j < n; j++) v_res0 += v_mul_wrap(vx_load_expand(src + j * cn), vx_setall_u16(*((uint16_t*)(m + j)))); v_store((uint16_t*)dst, v_res0); } #endif for (; i < lencn; i++, src++, dst++) { *dst = m[0] * src[0]; for (int j = 1; j < n; j++) *dst = *dst + m[j] * src[j*cn]; } i /= cn; for (i -= pre_shift; i < len - pre_shift; i++, src += cn, dst += cn) // Points that fall right from border { for (int k = 0; k < cn; k++) dst[k] = m[0] * src[k]; int j = 1; for (; j < len - i; j++) for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[j] * src[j*cn + k]; if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped for (; j < n; j++) { int src_idx = borderInterpolate(i + j, len, borderType) - i; for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[j] * src[src_idx*cn + k]; } } } template void hlineSmoothONa_yzy_a(const ET* src, int cn, const FT* m, int n, FT* dst, int len, int borderType) { int pre_shift = n / 2; int post_shift = n - pre_shift; int i = 0; for (; i < min(pre_shift, len); i++, dst += cn) // Points that fall left from border { for (int k = 0; k < cn; k++) dst[k] = m[pre_shift - i] * src[k]; if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped for (int j = i - pre_shift, mid = 0; j < 0; j++, mid++) { int src_idx = borderInterpolate(j, len, borderType); for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; } int j, mid; for (j = 1, mid = pre_shift - i + 1; j < min(i + post_shift, len); j++, mid++) for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[mid] * src[j*cn + k]; if (borderType != BORDER_CONSTANT) for (; j < i + post_shift; j++, mid++) { int src_idx = borderInterpolate(j, len, borderType); for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; } } i *= cn; for (; i < (len - post_shift + 1)*cn; i++, src++, dst++) { *dst = m[pre_shift] * src[pre_shift*cn]; for (int j = 0; j < pre_shift; j++) *dst = *dst + m[j] * src[j*cn] + m[j] * src[(n-1-j)*cn]; } i /= cn; for (i -= pre_shift; i < len - pre_shift; i++, src += cn, dst += cn) // Points that fall right from border { for (int k = 0; k < cn; k++) dst[k] = m[0] * src[k]; int j = 1; for (; j < len - i; j++) for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[j] * src[j*cn + k]; if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped for (; j < n; j++) { int src_idx = borderInterpolate(i + j, len, borderType) - i; for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[j] * src[src_idx*cn + k]; } } } template <> void hlineSmoothONa_yzy_a(const uint8_t* src, int cn, const ufixedpoint16* m, int n, ufixedpoint16* dst, int len, int borderType) { int pre_shift = n / 2; int post_shift = n - pre_shift; int i = 0; for (; i < min(pre_shift, len); i++, dst += cn) // Points that fall left from border { for (int k = 0; k < cn; k++) dst[k] = m[pre_shift - i] * src[k]; if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped for (int j = i - pre_shift, mid = 0; j < 0; j++, mid++) { int src_idx = borderInterpolate(j, len, borderType); for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; } int j, mid; for (j = 1, mid = pre_shift - i + 1; j < min(i + post_shift, len); j++, mid++) for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[mid] * src[j*cn + k]; if (borderType != BORDER_CONSTANT) for (; j < i + post_shift; j++, mid++) { int src_idx = borderInterpolate(j, len, borderType); for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; } } i *= cn; int lencn = (len - post_shift + 1)*cn; #if CV_SIMD const int VECSZ = v_uint16::nlanes; for (; i <= lencn - VECSZ; i += VECSZ, src += VECSZ, dst += VECSZ) { v_uint16 v_res0 = v_mul_wrap(vx_load_expand(src + pre_shift * cn), vx_setall_u16(*((uint16_t*)(m + pre_shift)))); for (int j = 0; j < pre_shift; j ++) v_res0 += v_mul_wrap(vx_load_expand(src + j * cn) + vx_load_expand(src + (n - 1 - j)*cn), vx_setall_u16(*((uint16_t*)(m + j)))); v_store((uint16_t*)dst, v_res0); } #endif for (; i < lencn; i++, src++, dst++) { *dst = m[pre_shift] * src[pre_shift*cn]; for (int j = 0; j < pre_shift; j++) *dst = *dst + m[j] * src[j*cn] + m[j] * src[(n - 1 - j)*cn]; } i /= cn; for (i -= pre_shift; i < len - pre_shift; i++, src += cn, dst += cn) // Points that fall right from border { for (int k = 0; k < cn; k++) dst[k] = m[0] * src[k]; int j = 1; for (; j < len - i; j++) for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[j] * src[j*cn + k]; if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped for (; j < n; j++) { int src_idx = borderInterpolate(i + j, len, borderType) - i; for (int k = 0; k < cn; k++) dst[k] = dst[k] + m[j] * src[src_idx*cn + k]; } } } template void vlineSmooth1N(const FT* const * src, const FT* m, int, ET* dst, int len) { const FT* src0 = src[0]; for (int i = 0; i < len; i++) dst[i] = *m * src0[i]; } template <> void vlineSmooth1N(const ufixedpoint16* const * src, const ufixedpoint16* m, int, uint8_t* dst, int len) { const ufixedpoint16* src0 = src[0]; int i = 0; #if CV_SIMD const int VECSZ = v_uint16::nlanes; v_uint16 v_mul = vx_setall_u16(*((uint16_t*)m)<<1); for (; i <= len - VECSZ; i += VECSZ) v_rshr_pack_store<1>(dst + i, v_mul_hi(vx_load((uint16_t*)src0 + i), v_mul)); #endif for (; i < len; i++) dst[i] = m[0] * src0[i]; } template void vlineSmooth1N1(const FT* const * src, const FT*, int, ET* dst, int len) { const FT* src0 = src[0]; for (int i = 0; i < len; i++) dst[i] = src0[i]; } template <> void vlineSmooth1N1(const ufixedpoint16* const * src, const ufixedpoint16*, int, uint8_t* dst, int len) { const ufixedpoint16* src0 = src[0]; int i = 0; #if CV_SIMD const int VECSZ = v_uint16::nlanes; for (; i <= len - VECSZ; i += VECSZ) v_rshr_pack_store<8>(dst + i, vx_load((uint16_t*)(src0 + i))); #endif for (; i < len; i++) dst[i] = src0[i]; } template void vlineSmooth3N(const FT* const * src, const FT* m, int, ET* dst, int len) { for (int i = 0; i < len; i++) dst[i] = m[0] * src[0][i] + m[1] * src[1][i] + m[2] * src[2][i]; } template <> void vlineSmooth3N(const ufixedpoint16* const * src, const ufixedpoint16* m, int, uint8_t* dst, int len) { int i = 0; #if CV_SIMD static const v_int16 v_128 = v_reinterpret_as_s16(vx_setall_u16((uint16_t)1 << 15)); v_int32 v_128_4 = vx_setall_s32(128 << 16); const int VECSZ = v_uint16::nlanes; if (len >= VECSZ) { ufixedpoint32 val[] = { (m[0] + m[1] + m[2]) * ufixedpoint16((uint8_t)128) }; v_128_4 = vx_setall_s32(*((int32_t*)val)); } v_int16 v_mul01 = v_reinterpret_as_s16(vx_setall_u32(*((uint32_t*)m))); v_int16 v_mul2 = v_reinterpret_as_s16(vx_setall_u16(*((uint16_t*)(m + 2)))); for (; i <= len - 4*VECSZ; i += 4*VECSZ) { v_int16 v_src00, v_src10, v_src01, v_src11, v_src02, v_src12, v_src03, v_src13; v_int16 v_tmp0, v_tmp1; const int16_t* src0 = (const int16_t*)src[0] + i; const int16_t* src1 = (const int16_t*)src[1] + i; v_src00 = vx_load(src0); v_src01 = vx_load(src0 + VECSZ); v_src02 = vx_load(src0 + 2*VECSZ); v_src03 = vx_load(src0 + 3*VECSZ); v_src10 = vx_load(src1); v_src11 = vx_load(src1 + VECSZ); v_src12 = vx_load(src1 + 2*VECSZ); v_src13 = vx_load(src1 + 3*VECSZ); v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1); v_int32 v_res0 = v_dotprod(v_tmp0, v_mul01); v_int32 v_res1 = v_dotprod(v_tmp1, v_mul01); v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1); v_int32 v_res2 = v_dotprod(v_tmp0, v_mul01); v_int32 v_res3 = v_dotprod(v_tmp1, v_mul01); v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1); v_int32 v_res4 = v_dotprod(v_tmp0, v_mul01); v_int32 v_res5 = v_dotprod(v_tmp1, v_mul01); v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1); v_int32 v_res6 = v_dotprod(v_tmp0, v_mul01); v_int32 v_res7 = v_dotprod(v_tmp1, v_mul01); v_int32 v_resj0, v_resj1; const int16_t* src2 = (const int16_t*)src[2] + i; v_src00 = vx_load(src2); v_src01 = vx_load(src2 + VECSZ); v_src02 = vx_load(src2 + 2*VECSZ); v_src03 = vx_load(src2 + 3*VECSZ); v_mul_expand(v_add_wrap(v_src00, v_128), v_mul2, v_resj0, v_resj1); v_res0 += v_resj0; v_res1 += v_resj1; v_mul_expand(v_add_wrap(v_src01, v_128), v_mul2, v_resj0, v_resj1); v_res2 += v_resj0; v_res3 += v_resj1; v_mul_expand(v_add_wrap(v_src02, v_128), v_mul2, v_resj0, v_resj1); v_res4 += v_resj0; v_res5 += v_resj1; v_mul_expand(v_add_wrap(v_src03, v_128), v_mul2, v_resj0, v_resj1); v_res6 += v_resj0; v_res7 += v_resj1; v_res0 += v_128_4; v_res1 += v_128_4; v_res2 += v_128_4; v_res3 += v_128_4; v_res4 += v_128_4; v_res5 += v_128_4; v_res6 += v_128_4; v_res7 += v_128_4; v_store(dst + i , v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1)), v_reinterpret_as_u16(v_rshr_pack<16>(v_res2, v_res3)))); v_store(dst + i + 2*VECSZ, v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res4, v_res5)), v_reinterpret_as_u16(v_rshr_pack<16>(v_res6, v_res7)))); } #endif for (; i < len; i++) dst[i] = m[0] * src[0][i] + m[1] * src[1][i] + m[2] * src[2][i]; } template void vlineSmooth3N121(const FT* const * src, const FT*, int, ET* dst, int len) { for (int i = 0; i < len; i++) dst[i] = (FT::WT(src[0][i]) >> 2) + (FT::WT(src[2][i]) >> 2) + (FT::WT(src[1][i]) >> 1); } template <> void vlineSmooth3N121(const ufixedpoint16* const * src, const ufixedpoint16*, int, uint8_t* dst, int len) { int i = 0; #if CV_SIMD const int VECSZ = v_uint16::nlanes; for (; i <= len - 2*VECSZ; i += 2*VECSZ) { v_uint32 v_src00, v_src01, v_src02, v_src03, v_src10, v_src11, v_src12, v_src13, v_src20, v_src21, v_src22, v_src23; v_expand(vx_load((uint16_t*)(src[0]) + i), v_src00, v_src01); v_expand(vx_load((uint16_t*)(src[0]) + i + VECSZ), v_src02, v_src03); v_expand(vx_load((uint16_t*)(src[1]) + i), v_src10, v_src11); v_expand(vx_load((uint16_t*)(src[1]) + i + VECSZ), v_src12, v_src13); v_expand(vx_load((uint16_t*)(src[2]) + i), v_src20, v_src21); v_expand(vx_load((uint16_t*)(src[2]) + i + VECSZ), v_src22, v_src23); v_store(dst + i, v_pack(v_rshr_pack<10>(v_src00 + v_src20 + (v_src10 + v_src10), v_src01 + v_src21 + (v_src11 + v_src11)), v_rshr_pack<10>(v_src02 + v_src22 + (v_src12 + v_src12), v_src03 + v_src23 + (v_src13 + v_src13)))); } #endif for (; i < len; i++) dst[i] = (((uint32_t)(((uint16_t*)(src[0]))[i]) + (uint32_t)(((uint16_t*)(src[2]))[i]) + ((uint32_t)(((uint16_t*)(src[1]))[i]) << 1)) + (1 << 9)) >> 10; } template void vlineSmooth5N(const FT* const * src, const FT* m, int, ET* dst, int len) { for (int i = 0; i < len; i++) dst[i] = m[0] * src[0][i] + m[1] * src[1][i] + m[2] * src[2][i] + m[3] * src[3][i] + m[4] * src[4][i]; } template <> void vlineSmooth5N(const ufixedpoint16* const * src, const ufixedpoint16* m, int, uint8_t* dst, int len) { int i = 0; #if CV_SIMD const int VECSZ = v_uint16::nlanes; if (len >= 4 * VECSZ) { ufixedpoint32 val[] = { (m[0] + m[1] + m[2] + m[3] + m[4]) * ufixedpoint16((uint8_t)128) }; v_int32 v_128_4 = vx_setall_s32(*((int32_t*)val)); static const v_int16 v_128 = v_reinterpret_as_s16(vx_setall_u16((uint16_t)1 << 15)); v_int16 v_mul01 = v_reinterpret_as_s16(vx_setall_u32(*((uint32_t*)m))); v_int16 v_mul23 = v_reinterpret_as_s16(vx_setall_u32(*((uint32_t*)(m + 2)))); v_int16 v_mul4 = v_reinterpret_as_s16(vx_setall_u16(*((uint16_t*)(m + 4)))); for (; i <= len - 4*VECSZ; i += 4*VECSZ) { v_int16 v_src00, v_src10, v_src01, v_src11, v_src02, v_src12, v_src03, v_src13; v_int16 v_tmp0, v_tmp1; const int16_t* src0 = (const int16_t*)src[0] + i; const int16_t* src1 = (const int16_t*)src[1] + i; v_src00 = vx_load(src0); v_src01 = vx_load(src0 + VECSZ); v_src02 = vx_load(src0 + 2*VECSZ); v_src03 = vx_load(src0 + 3*VECSZ); v_src10 = vx_load(src1); v_src11 = vx_load(src1 + VECSZ); v_src12 = vx_load(src1 + 2*VECSZ); v_src13 = vx_load(src1 + 3*VECSZ); v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1); v_int32 v_res0 = v_dotprod(v_tmp0, v_mul01); v_int32 v_res1 = v_dotprod(v_tmp1, v_mul01); v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1); v_int32 v_res2 = v_dotprod(v_tmp0, v_mul01); v_int32 v_res3 = v_dotprod(v_tmp1, v_mul01); v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1); v_int32 v_res4 = v_dotprod(v_tmp0, v_mul01); v_int32 v_res5 = v_dotprod(v_tmp1, v_mul01); v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1); v_int32 v_res6 = v_dotprod(v_tmp0, v_mul01); v_int32 v_res7 = v_dotprod(v_tmp1, v_mul01); const int16_t* src2 = (const int16_t*)src[2] + i; const int16_t* src3 = (const int16_t*)src[3] + i; v_src00 = vx_load(src2); v_src01 = vx_load(src2 + VECSZ); v_src02 = vx_load(src2 + 2*VECSZ); v_src03 = vx_load(src2 + 3*VECSZ); v_src10 = vx_load(src3); v_src11 = vx_load(src3 + VECSZ); v_src12 = vx_load(src3 + 2*VECSZ); v_src13 = vx_load(src3 + 3*VECSZ); v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1); v_res0 += v_dotprod(v_tmp0, v_mul23); v_res1 += v_dotprod(v_tmp1, v_mul23); v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1); v_res2 += v_dotprod(v_tmp0, v_mul23); v_res3 += v_dotprod(v_tmp1, v_mul23); v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1); v_res4 += v_dotprod(v_tmp0, v_mul23); v_res5 += v_dotprod(v_tmp1, v_mul23); v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1); v_res6 += v_dotprod(v_tmp0, v_mul23); v_res7 += v_dotprod(v_tmp1, v_mul23); v_int32 v_resj0, v_resj1; const int16_t* src4 = (const int16_t*)src[4] + i; v_src00 = vx_load(src4); v_src01 = vx_load(src4 + VECSZ); v_src02 = vx_load(src4 + 2*VECSZ); v_src03 = vx_load(src4 + 3*VECSZ); v_mul_expand(v_add_wrap(v_src00, v_128), v_mul4, v_resj0, v_resj1); v_res0 += v_resj0; v_res1 += v_resj1; v_mul_expand(v_add_wrap(v_src01, v_128), v_mul4, v_resj0, v_resj1); v_res2 += v_resj0; v_res3 += v_resj1; v_mul_expand(v_add_wrap(v_src02, v_128), v_mul4, v_resj0, v_resj1); v_res4 += v_resj0; v_res5 += v_resj1; v_mul_expand(v_add_wrap(v_src03, v_128), v_mul4, v_resj0, v_resj1); v_res6 += v_resj0; v_res7 += v_resj1; v_res0 += v_128_4; v_res1 += v_128_4; v_res2 += v_128_4; v_res3 += v_128_4; v_res4 += v_128_4; v_res5 += v_128_4; v_res6 += v_128_4; v_res7 += v_128_4; v_store(dst + i , v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1)), v_reinterpret_as_u16(v_rshr_pack<16>(v_res2, v_res3)))); v_store(dst + i + 2*VECSZ, v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res4, v_res5)), v_reinterpret_as_u16(v_rshr_pack<16>(v_res6, v_res7)))); } } #endif for (; i < len; i++) dst[i] = m[0] * src[0][i] + m[1] * src[1][i] + m[2] * src[2][i] + m[3] * src[3][i] + m[4] * src[4][i]; } template void vlineSmooth5N14641(const FT* const * src, const FT*, int, ET* dst, int len) { for (int i = 0; i < len; i++) dst[i] = (FT::WT(src[2][i])*(uint8_t)6 + ((FT::WT(src[1][i]) + FT::WT(src[3][i]))<<2) + FT::WT(src[0][i]) + FT::WT(src[4][i])) >> 4; } template <> void vlineSmooth5N14641(const ufixedpoint16* const * src, const ufixedpoint16*, int, uint8_t* dst, int len) { int i = 0; #if CV_SIMD v_uint32 v_6 = vx_setall_u32(6); const int VECSZ = v_uint16::nlanes; for (; i <= len - 2*VECSZ; i += 2*VECSZ) { v_uint32 v_src00, v_src10, v_src20, v_src30, v_src40; v_uint32 v_src01, v_src11, v_src21, v_src31, v_src41; v_uint32 v_src02, v_src12, v_src22, v_src32, v_src42; v_uint32 v_src03, v_src13, v_src23, v_src33, v_src43; v_expand(vx_load((uint16_t*)(src[0]) + i), v_src00, v_src01); v_expand(vx_load((uint16_t*)(src[0]) + i + VECSZ), v_src02, v_src03); v_expand(vx_load((uint16_t*)(src[1]) + i), v_src10, v_src11); v_expand(vx_load((uint16_t*)(src[1]) + i + VECSZ), v_src12, v_src13); v_expand(vx_load((uint16_t*)(src[2]) + i), v_src20, v_src21); v_expand(vx_load((uint16_t*)(src[2]) + i + VECSZ), v_src22, v_src23); v_expand(vx_load((uint16_t*)(src[3]) + i), v_src30, v_src31); v_expand(vx_load((uint16_t*)(src[3]) + i + VECSZ), v_src32, v_src33); v_expand(vx_load((uint16_t*)(src[4]) + i), v_src40, v_src41); v_expand(vx_load((uint16_t*)(src[4]) + i + VECSZ), v_src42, v_src43); v_store(dst + i, v_pack(v_rshr_pack<12>(v_src20*v_6 + ((v_src10 + v_src30) << 2) + v_src00 + v_src40, v_src21*v_6 + ((v_src11 + v_src31) << 2) + v_src01 + v_src41), v_rshr_pack<12>(v_src22*v_6 + ((v_src12 + v_src32) << 2) + v_src02 + v_src42, v_src23*v_6 + ((v_src13 + v_src33) << 2) + v_src03 + v_src43))); } #endif for (; i < len; i++) dst[i] = ((uint32_t)(((uint16_t*)(src[2]))[i]) * 6 + (((uint32_t)(((uint16_t*)(src[1]))[i]) + (uint32_t)(((uint16_t*)(src[3]))[i])) << 2) + (uint32_t)(((uint16_t*)(src[0]))[i]) + (uint32_t)(((uint16_t*)(src[4]))[i]) + (1 << 11)) >> 12; } template void vlineSmooth(const FT* const * src, const FT* m, int n, ET* dst, int len) { for (int i = 0; i < len; i++) { typename FT::WT val = m[0] * src[0][i]; for (int j = 1; j < n; j++) val = val + m[j] * src[j][i]; dst[i] = val; } } template <> void vlineSmooth(const ufixedpoint16* const * src, const ufixedpoint16* m, int n, uint8_t* dst, int len) { int i = 0; #if CV_SIMD static const v_int16 v_128 = v_reinterpret_as_s16(vx_setall_u16((uint16_t)1 << 15)); v_int32 v_128_4 = vx_setall_s32(128 << 16); const int VECSZ = v_uint16::nlanes; if (len >= VECSZ) { ufixedpoint16 msum = m[0] + m[1]; for (int j = 2; j < n; j++) msum = msum + m[j]; ufixedpoint32 val[] = { msum * ufixedpoint16((uint8_t)128) }; v_128_4 = vx_setall_s32(*((int32_t*)val)); } for (; i <= len - 4*VECSZ; i += 4*VECSZ) { v_int16 v_src00, v_src10, v_src01, v_src11, v_src02, v_src12, v_src03, v_src13; v_int16 v_tmp0, v_tmp1; v_int16 v_mul = v_reinterpret_as_s16(vx_setall_u32(*((uint32_t*)m))); const int16_t* src0 = (const int16_t*)src[0] + i; const int16_t* src1 = (const int16_t*)src[1] + i; v_src00 = vx_load(src0); v_src01 = vx_load(src0 + VECSZ); v_src02 = vx_load(src0 + 2*VECSZ); v_src03 = vx_load(src0 + 3*VECSZ); v_src10 = vx_load(src1); v_src11 = vx_load(src1 + VECSZ); v_src12 = vx_load(src1 + 2*VECSZ); v_src13 = vx_load(src1 + 3*VECSZ); v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1); v_int32 v_res0 = v_dotprod(v_tmp0, v_mul); v_int32 v_res1 = v_dotprod(v_tmp1, v_mul); v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1); v_int32 v_res2 = v_dotprod(v_tmp0, v_mul); v_int32 v_res3 = v_dotprod(v_tmp1, v_mul); v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1); v_int32 v_res4 = v_dotprod(v_tmp0, v_mul); v_int32 v_res5 = v_dotprod(v_tmp1, v_mul); v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1); v_int32 v_res6 = v_dotprod(v_tmp0, v_mul); v_int32 v_res7 = v_dotprod(v_tmp1, v_mul); int j = 2; for (; j < n - 1; j+=2) { v_mul = v_reinterpret_as_s16(vx_setall_u32(*((uint32_t*)(m+j)))); const int16_t* srcj0 = (const int16_t*)src[j] + i; const int16_t* srcj1 = (const int16_t*)src[j + 1] + i; v_src00 = vx_load(srcj0); v_src01 = vx_load(srcj0 + VECSZ); v_src02 = vx_load(srcj0 + 2*VECSZ); v_src03 = vx_load(srcj0 + 3*VECSZ); v_src10 = vx_load(srcj1); v_src11 = vx_load(srcj1 + VECSZ); v_src12 = vx_load(srcj1 + 2*VECSZ); v_src13 = vx_load(srcj1 + 3*VECSZ); v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1); v_res0 += v_dotprod(v_tmp0, v_mul); v_res1 += v_dotprod(v_tmp1, v_mul); v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1); v_res2 += v_dotprod(v_tmp0, v_mul); v_res3 += v_dotprod(v_tmp1, v_mul); v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1); v_res4 += v_dotprod(v_tmp0, v_mul); v_res5 += v_dotprod(v_tmp1, v_mul); v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1); v_res6 += v_dotprod(v_tmp0, v_mul); v_res7 += v_dotprod(v_tmp1, v_mul); } if(j < n) { v_int32 v_resj0, v_resj1; v_mul = v_reinterpret_as_s16(vx_setall_u16(*((uint16_t*)(m + j)))); const int16_t* srcj = (const int16_t*)src[j] + i; v_src00 = vx_load(srcj); v_src01 = vx_load(srcj + VECSZ); v_src02 = vx_load(srcj + 2*VECSZ); v_src03 = vx_load(srcj + 3*VECSZ); v_mul_expand(v_add_wrap(v_src00, v_128), v_mul, v_resj0, v_resj1); v_res0 += v_resj0; v_res1 += v_resj1; v_mul_expand(v_add_wrap(v_src01, v_128), v_mul, v_resj0, v_resj1); v_res2 += v_resj0; v_res3 += v_resj1; v_mul_expand(v_add_wrap(v_src02, v_128), v_mul, v_resj0, v_resj1); v_res4 += v_resj0; v_res5 += v_resj1; v_mul_expand(v_add_wrap(v_src03, v_128), v_mul, v_resj0, v_resj1); v_res6 += v_resj0; v_res7 += v_resj1; } v_res0 += v_128_4; v_res1 += v_128_4; v_res2 += v_128_4; v_res3 += v_128_4; v_res4 += v_128_4; v_res5 += v_128_4; v_res6 += v_128_4; v_res7 += v_128_4; v_store(dst + i , v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1)), v_reinterpret_as_u16(v_rshr_pack<16>(v_res2, v_res3)))); v_store(dst + i + 2*VECSZ, v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res4, v_res5)), v_reinterpret_as_u16(v_rshr_pack<16>(v_res6, v_res7)))); } #endif for (; i < len; i++) { ufixedpoint32 val = m[0] * src[0][i]; for (int j = 1; j < n; j++) { val = val + m[j] * src[j][i]; } dst[i] = val; } } template void vlineSmoothONa_yzy_a(const FT* const * src, const FT* m, int n, ET* dst, int len) { int pre_shift = n / 2; for (int i = 0; i < len; i++) { typename FT::WT val = m[pre_shift] * src[pre_shift][i]; for (int j = 0; j < pre_shift; j++) val = val + m[j] * src[j][i] + m[j] * src[(n - 1 - j)][i]; dst[i] = val; } } template <> void vlineSmoothONa_yzy_a(const ufixedpoint16* const * src, const ufixedpoint16* m, int n, uint8_t* dst, int len) { int i = 0; #if CV_SIMD int pre_shift = n / 2; static const v_int16 v_128 = v_reinterpret_as_s16(vx_setall_u16((uint16_t)1 << 15)); v_int32 v_128_4 = vx_setall_s32(128 << 16); const int VECSZ = v_uint16::nlanes; if (len >= VECSZ) { ufixedpoint16 msum = m[0] + m[pre_shift] + m[n - 1]; for (int j = 1; j < pre_shift; j++) msum = msum + m[j] + m[n - 1 - j]; ufixedpoint32 val[] = { msum * ufixedpoint16((uint8_t)128) }; v_128_4 = vx_setall_s32(*((int32_t*)val)); } for (; i <= len - 4*VECSZ; i += 4*VECSZ) { v_int16 v_src00, v_src10, v_src20, v_src30, v_src01, v_src11, v_src21, v_src31; v_int32 v_res0, v_res1, v_res2, v_res3, v_res4, v_res5, v_res6, v_res7; v_int16 v_tmp0, v_tmp1, v_tmp2, v_tmp3, v_tmp4, v_tmp5, v_tmp6, v_tmp7; v_int16 v_mul = v_reinterpret_as_s16(vx_setall_u16(*((uint16_t*)(m + pre_shift)))); const int16_t* srcp = (const int16_t*)src[pre_shift] + i; v_src00 = vx_load(srcp); v_src10 = vx_load(srcp + VECSZ); v_src20 = vx_load(srcp + 2*VECSZ); v_src30 = vx_load(srcp + 3*VECSZ); v_mul_expand(v_add_wrap(v_src00, v_128), v_mul, v_res0, v_res1); v_mul_expand(v_add_wrap(v_src10, v_128), v_mul, v_res2, v_res3); v_mul_expand(v_add_wrap(v_src20, v_128), v_mul, v_res4, v_res5); v_mul_expand(v_add_wrap(v_src30, v_128), v_mul, v_res6, v_res7); int j = 0; for (; j < pre_shift; j++) { v_mul = v_reinterpret_as_s16(vx_setall_u16(*((uint16_t*)(m + j)))); const int16_t* srcj0 = (const int16_t*)src[j] + i; const int16_t* srcj1 = (const int16_t*)src[n - 1 - j] + i; v_src00 = vx_load(srcj0); v_src10 = vx_load(srcj0 + VECSZ); v_src20 = vx_load(srcj0 + 2*VECSZ); v_src30 = vx_load(srcj0 + 3*VECSZ); v_src01 = vx_load(srcj1); v_src11 = vx_load(srcj1 + VECSZ); v_src21 = vx_load(srcj1 + 2*VECSZ); v_src31 = vx_load(srcj1 + 3*VECSZ); v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src01, v_128), v_tmp0, v_tmp1); v_res0 += v_dotprod(v_tmp0, v_mul); v_res1 += v_dotprod(v_tmp1, v_mul); v_zip(v_add_wrap(v_src10, v_128), v_add_wrap(v_src11, v_128), v_tmp2, v_tmp3); v_res2 += v_dotprod(v_tmp2, v_mul); v_res3 += v_dotprod(v_tmp3, v_mul); v_zip(v_add_wrap(v_src20, v_128), v_add_wrap(v_src21, v_128), v_tmp4, v_tmp5); v_res4 += v_dotprod(v_tmp4, v_mul); v_res5 += v_dotprod(v_tmp5, v_mul); v_zip(v_add_wrap(v_src30, v_128), v_add_wrap(v_src31, v_128), v_tmp6, v_tmp7); v_res6 += v_dotprod(v_tmp6, v_mul); v_res7 += v_dotprod(v_tmp7, v_mul); } v_res0 += v_128_4; v_res1 += v_128_4; v_res2 += v_128_4; v_res3 += v_128_4; v_res4 += v_128_4; v_res5 += v_128_4; v_res6 += v_128_4; v_res7 += v_128_4; v_store(dst + i , v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1)), v_reinterpret_as_u16(v_rshr_pack<16>(v_res2, v_res3)))); v_store(dst + i + 2*VECSZ, v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res4, v_res5)), v_reinterpret_as_u16(v_rshr_pack<16>(v_res6, v_res7)))); } #endif for (; i < len; i++) { ufixedpoint32 val = m[0] * src[0][i]; for (int j = 1; j < n; j++) { val = val + m[j] * src[j][i]; } dst[i] = val; } } template class fixedSmoothInvoker : public ParallelLoopBody { public: fixedSmoothInvoker(const ET* _src, size_t _src_stride, ET* _dst, size_t _dst_stride, int _width, int _height, int _cn, const FT* _kx, int _kxlen, const FT* _ky, int _kylen, int _borderType) : ParallelLoopBody(), src(_src), dst(_dst), src_stride(_src_stride), dst_stride(_dst_stride), width(_width), height(_height), cn(_cn), kx(_kx), ky(_ky), kxlen(_kxlen), kylen(_kylen), borderType(_borderType) { if (kxlen == 1) { if (kx[0] == FT::one()) hlineSmoothFunc = hlineSmooth1N1; else hlineSmoothFunc = hlineSmooth1N; } else if (kxlen == 3) { if (kx[0] == (FT::one()>>2)&&kx[1] == (FT::one()>>1)&&kx[2] == (FT::one()>>2)) hlineSmoothFunc = hlineSmooth3N121; else if ((kx[0] - kx[2]).isZero()) hlineSmoothFunc = hlineSmooth3Naba; else hlineSmoothFunc = hlineSmooth3N; } else if (kxlen == 5) { if (kx[2] == (FT::one()*(uint8_t)3>>3) && kx[1] == (FT::one()>>2) && kx[3] == (FT::one()>>2) && kx[0] == (FT::one()>>4) && kx[4] == (FT::one()>>4)) hlineSmoothFunc = hlineSmooth5N14641; else if (kx[0] == kx[4] && kx[1] == kx[3]) hlineSmoothFunc = hlineSmooth5Nabcba; else hlineSmoothFunc = hlineSmooth5N; } else if (kxlen % 2 == 1) { hlineSmoothFunc = hlineSmoothONa_yzy_a; for (int i = 0; i < kxlen / 2; i++) if (!(kx[i] == kx[kxlen - 1 - i])) { hlineSmoothFunc = hlineSmooth; break; } } else hlineSmoothFunc = hlineSmooth; if (kylen == 1) { if (ky[0] == FT::one()) vlineSmoothFunc = vlineSmooth1N1; else vlineSmoothFunc = vlineSmooth1N; } else if (kylen == 3) { if (ky[0] == (FT::one() >> 2) && ky[1] == (FT::one() >> 1) && ky[2] == (FT::one() >> 2)) vlineSmoothFunc = vlineSmooth3N121; else vlineSmoothFunc = vlineSmooth3N; } else if (kylen == 5) { if (ky[2] == (FT::one() * (uint8_t)3 >> 3) && ky[1] == (FT::one() >> 2) && ky[3] == (FT::one() >> 2) && ky[0] == (FT::one() >> 4) && ky[4] == (FT::one() >> 4)) vlineSmoothFunc = vlineSmooth5N14641; else vlineSmoothFunc = vlineSmooth5N; } else if (kylen % 2 == 1) { vlineSmoothFunc = vlineSmoothONa_yzy_a; for (int i = 0; i < kylen / 2; i++) if (!(ky[i] == ky[kylen - 1 - i])) { vlineSmoothFunc = vlineSmooth; break; } } else vlineSmoothFunc = vlineSmooth; } virtual void operator() (const Range& range) const CV_OVERRIDE { AutoBuffer _buf(width*cn*kylen); FT* buf = _buf.data(); AutoBuffer _ptrs(kylen*2); FT** ptrs = _ptrs.data(); if (kylen == 1) { ptrs[0] = buf; for (int i = range.start; i < range.end; i++) { hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[0], width, borderType); vlineSmoothFunc(ptrs, ky, kylen, dst + i * dst_stride, width*cn); } } else if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped { int pre_shift = kylen / 2; int post_shift = kylen - pre_shift - 1; // First line evaluation int idst = range.start; int ifrom = max(0, idst - pre_shift); int ito = idst + post_shift + 1; int i = ifrom; int bufline = 0; for (; i < min(ito, height); i++, bufline++) { ptrs[bufline+kylen] = ptrs[bufline] = buf + bufline * width*cn; hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); } for (; i < ito; i++, bufline++) { int src_idx = borderInterpolate(i, height, borderType); if (src_idx < ifrom) { ptrs[bufline + kylen] = ptrs[bufline] = buf + bufline * width*cn; hlineSmoothFunc(src + src_idx * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); } else { ptrs[bufline + kylen] = ptrs[bufline] = ptrs[src_idx - ifrom]; } } for (int j = idst - pre_shift; j < 0; j++) { int src_idx = borderInterpolate(j, height, borderType); if (src_idx >= ito) { ptrs[2*kylen + j] = ptrs[kylen + j] = buf + (kylen + j) * width*cn; hlineSmoothFunc(src + src_idx * src_stride, cn, kx, kxlen, ptrs[kylen + j], width, borderType); } else { ptrs[2*kylen + j] = ptrs[kylen + j] = ptrs[src_idx]; } } vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn); idst++; // border mode dependent part evaluation // i points to last src row to evaluate in convolution bufline %= kylen; ito = min(height, range.end + post_shift); for (; i < min(kylen, ito); i++, idst++) { ptrs[bufline + kylen] = ptrs[bufline] = buf + bufline * width*cn; hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); bufline = (bufline + 1) % kylen; vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn); } // Points inside the border for (; i < ito; i++, idst++) { hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); bufline = (bufline + 1) % kylen; vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn); } // Points that could fall below border for (; i < range.end + post_shift; i++, idst++) { int src_idx = borderInterpolate(i, height, borderType); if ((i - src_idx) > kylen) hlineSmoothFunc(src + src_idx * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); else ptrs[bufline + kylen] = ptrs[bufline] = ptrs[(bufline + kylen - (i - src_idx)) % kylen]; bufline = (bufline + 1) % kylen; vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn); } } else { int pre_shift = kylen / 2; int post_shift = kylen - pre_shift - 1; // First line evaluation int idst = range.start; int ifrom = idst - pre_shift; int ito = min(idst + post_shift + 1, height); int i = max(0, ifrom); int bufline = 0; for (; i < ito; i++, bufline++) { ptrs[bufline + kylen] = ptrs[bufline] = buf + bufline * width*cn; hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); } if (bufline == 1) vlineSmooth1N(ptrs, ky - min(ifrom, 0), bufline, dst + idst*dst_stride, width*cn); else if (bufline == 3) vlineSmooth3N(ptrs, ky - min(ifrom, 0), bufline, dst + idst*dst_stride, width*cn); else if (bufline == 5) vlineSmooth5N(ptrs, ky - min(ifrom, 0), bufline, dst + idst*dst_stride, width*cn); else vlineSmooth(ptrs, ky - min(ifrom, 0), bufline, dst + idst*dst_stride, width*cn); idst++; // border mode dependent part evaluation // i points to last src row to evaluate in convolution bufline %= kylen; ito = min(height, range.end + post_shift); for (; i < min(kylen, ito); i++, idst++) { ptrs[bufline + kylen] = ptrs[bufline] = buf + bufline * width*cn; hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); bufline++; if (bufline == 3) vlineSmooth3N(ptrs, ky + kylen - bufline, i + 1, dst + idst*dst_stride, width*cn); else if (bufline == 5) vlineSmooth5N(ptrs, ky + kylen - bufline, i + 1, dst + idst*dst_stride, width*cn); else vlineSmooth(ptrs, ky + kylen - bufline, i + 1, dst + idst*dst_stride, width*cn); bufline %= kylen; } // Points inside the border if (i - max(0, ifrom) >= kylen) { for (; i < ito; i++, idst++) { hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); bufline = (bufline + 1) % kylen; vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn); } // Points that could fall below border // i points to first src row to evaluate in convolution bufline = (bufline + 1) % kylen; for (i = idst - pre_shift; i < range.end - pre_shift; i++, idst++, bufline++) if (height - i == 3) vlineSmooth3N(ptrs + bufline, ky, height - i, dst + idst*dst_stride, width*cn); else if (height - i == 5) vlineSmooth5N(ptrs + bufline, ky, height - i, dst + idst*dst_stride, width*cn); else vlineSmooth(ptrs + bufline, ky, height - i, dst + idst*dst_stride, width*cn); } else { // i points to first src row to evaluate in convolution for (i = idst - pre_shift; i < min(range.end - pre_shift, 0); i++, idst++) if (height == 3) vlineSmooth3N(ptrs, ky - i, height, dst + idst*dst_stride, width*cn); else if (height == 5) vlineSmooth5N(ptrs, ky - i, height, dst + idst*dst_stride, width*cn); else vlineSmooth(ptrs, ky - i, height, dst + idst*dst_stride, width*cn); for (; i < range.end - pre_shift; i++, idst++) if (height - i == 3) vlineSmooth3N(ptrs + i - max(0, ifrom), ky, height - i, dst + idst*dst_stride, width*cn); else if (height - i == 5) vlineSmooth5N(ptrs + i - max(0, ifrom), ky, height - i, dst + idst*dst_stride, width*cn); else vlineSmooth(ptrs + i - max(0, ifrom), ky, height - i, dst + idst*dst_stride, width*cn); } } } private: const ET* src; ET* dst; size_t src_stride, dst_stride; int width, height, cn; const FT *kx, *ky; int kxlen, kylen; int borderType; void(*hlineSmoothFunc)(const ET* src, int cn, const FT* m, int n, FT* dst, int len, int borderType); void(*vlineSmoothFunc)(const FT* const * src, const FT* m, int n, ET* dst, int len); fixedSmoothInvoker(const fixedSmoothInvoker&); fixedSmoothInvoker& operator=(const fixedSmoothInvoker&); }; static void getGaussianKernel(int n, double sigma, int ktype, Mat& res) { res = getGaussianKernel(n, sigma, ktype); } template static void getGaussianKernel(int n, double sigma, int, std::vector& res) { res = getFixedpointGaussianKernel(n, sigma); } template static void createGaussianKernels( T & kx, T & ky, int type, Size &ksize, double sigma1, double sigma2 ) { int depth = CV_MAT_DEPTH(type); if( sigma2 <= 0 ) sigma2 = sigma1; // automatic detection of kernel size from sigma if( ksize.width <= 0 && sigma1 > 0 ) ksize.width = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1; if( ksize.height <= 0 && sigma2 > 0 ) ksize.height = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1; CV_Assert( ksize.width > 0 && ksize.width % 2 == 1 && ksize.height > 0 && ksize.height % 2 == 1 ); sigma1 = std::max( sigma1, 0. ); sigma2 = std::max( sigma2, 0. ); getGaussianKernel( ksize.width, sigma1, std::max(depth, CV_32F), kx ); if( ksize.height == ksize.width && std::abs(sigma1 - sigma2) < DBL_EPSILON ) ky = kx; else getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F), ky ); } } cv::Ptr cv::createGaussianFilter( int type, Size ksize, double sigma1, double sigma2, int borderType ) { Mat kx, ky; createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); return createSeparableLinearFilter( type, type, kx, ky, Point(-1,-1), 0, borderType ); } namespace cv { #ifdef HAVE_OPENCL static bool ocl_GaussianBlur_8UC1(InputArray _src, OutputArray _dst, Size ksize, int ddepth, InputArray _kernelX, InputArray _kernelY, int borderType) { const ocl::Device & dev = ocl::Device::getDefault(); int type = _src.type(), sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); if ( !(dev.isIntel() && (type == CV_8UC1) && (_src.offset() == 0) && (_src.step() % 4 == 0) && ((ksize.width == 5 && (_src.cols() % 4 == 0)) || (ksize.width == 3 && (_src.cols() % 16 == 0) && (_src.rows() % 2 == 0)))) ) return false; Mat kernelX = _kernelX.getMat().reshape(1, 1); if (kernelX.cols % 2 != 1) return false; Mat kernelY = _kernelY.getMat().reshape(1, 1); if (kernelY.cols % 2 != 1) return false; if (ddepth < 0) ddepth = sdepth; Size size = _src.size(); size_t globalsize[2] = { 0, 0 }; size_t localsize[2] = { 0, 0 }; if (ksize.width == 3) { globalsize[0] = size.width / 16; globalsize[1] = size.height / 2; } else if (ksize.width == 5) { globalsize[0] = size.width / 4; globalsize[1] = size.height / 1; } const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", 0, "BORDER_REFLECT_101" }; char build_opts[1024]; sprintf(build_opts, "-D %s %s%s", borderMap[borderType & ~BORDER_ISOLATED], ocl::kernelToStr(kernelX, CV_32F, "KERNEL_MATRIX_X").c_str(), ocl::kernelToStr(kernelY, CV_32F, "KERNEL_MATRIX_Y").c_str()); ocl::Kernel kernel; if (ksize.width == 3) kernel.create("gaussianBlur3x3_8UC1_cols16_rows2", cv::ocl::imgproc::gaussianBlur3x3_oclsrc, build_opts); else if (ksize.width == 5) kernel.create("gaussianBlur5x5_8UC1_cols4", cv::ocl::imgproc::gaussianBlur5x5_oclsrc, build_opts); if (kernel.empty()) return false; UMat src = _src.getUMat(); _dst.create(size, CV_MAKETYPE(ddepth, cn)); if (!(_dst.offset() == 0 && _dst.step() % 4 == 0)) return false; UMat dst = _dst.getUMat(); int idxArg = kernel.set(0, ocl::KernelArg::PtrReadOnly(src)); idxArg = kernel.set(idxArg, (int)src.step); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst)); idxArg = kernel.set(idxArg, (int)dst.step); idxArg = kernel.set(idxArg, (int)dst.rows); idxArg = kernel.set(idxArg, (int)dst.cols); return kernel.run(2, globalsize, (localsize[0] == 0) ? NULL : localsize, false); } #endif #ifdef HAVE_OPENVX namespace ovx { template <> inline bool skipSmallImages(int w, int h) { return w*h < 320 * 240; } } static bool openvx_gaussianBlur(InputArray _src, OutputArray _dst, Size ksize, double sigma1, double sigma2, int borderType) { if (sigma2 <= 0) sigma2 = sigma1; // automatic detection of kernel size from sigma if (ksize.width <= 0 && sigma1 > 0) ksize.width = cvRound(sigma1*6 + 1) | 1; if (ksize.height <= 0 && sigma2 > 0) ksize.height = cvRound(sigma2*6 + 1) | 1; if (_src.type() != CV_8UC1 || _src.cols() < 3 || _src.rows() < 3 || ksize.width != 3 || ksize.height != 3) return false; sigma1 = std::max(sigma1, 0.); sigma2 = std::max(sigma2, 0.); if (!(sigma1 == 0.0 || (sigma1 - 0.8) < DBL_EPSILON) || !(sigma2 == 0.0 || (sigma2 - 0.8) < DBL_EPSILON) || ovx::skipSmallImages(_src.cols(), _src.rows())) return false; Mat src = _src.getMat(); Mat dst = _dst.getMat(); if ((borderType & BORDER_ISOLATED) == 0 && src.isSubmatrix()) return false; //Process isolated borders only vx_enum border; switch (borderType & ~BORDER_ISOLATED) { case BORDER_CONSTANT: border = VX_BORDER_CONSTANT; break; case BORDER_REPLICATE: border = VX_BORDER_REPLICATE; break; default: return false; } try { ivx::Context ctx = ovx::getOpenVXContext(); Mat a; if (dst.data != src.data) a = src; else src.copyTo(a); ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(a.cols, a.rows, 1, (vx_int32)(a.step)), a.data), ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(dst.cols, dst.rows, 1, (vx_int32)(dst.step)), dst.data); //ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments //since OpenVX standard says nothing about thread-safety for now ivx::border_t prevBorder = ctx.immediateBorder(); ctx.setImmediateBorder(border, (vx_uint8)(0)); ivx::IVX_CHECK_STATUS(vxuGaussian3x3(ctx, ia, ib)); ctx.setImmediateBorder(prevBorder); } catch (const ivx::RuntimeError & e) { VX_DbgThrow(e.what()); } catch (const ivx::WrapperError & e) { VX_DbgThrow(e.what()); } return true; } #endif #ifdef HAVE_IPP // IW 2017u2 has bug which doesn't allow use of partial inMem with tiling #if IPP_DISABLE_GAUSSIANBLUR_PARALLEL #define IPP_GAUSSIANBLUR_PARALLEL 0 #else #define IPP_GAUSSIANBLUR_PARALLEL 1 #endif #ifdef HAVE_IPP_IW class ipp_gaussianBlurParallel: public ParallelLoopBody { public: ipp_gaussianBlurParallel(::ipp::IwiImage &src, ::ipp::IwiImage &dst, int kernelSize, float sigma, ::ipp::IwiBorderType &border, bool *pOk): m_src(src), m_dst(dst), m_kernelSize(kernelSize), m_sigma(sigma), m_border(border), m_pOk(pOk) { *m_pOk = true; } ~ipp_gaussianBlurParallel() { } virtual void operator() (const Range& range) const CV_OVERRIDE { CV_INSTRUMENT_REGION_IPP(); if(!*m_pOk) return; try { ::ipp::IwiTile tile = ::ipp::IwiRoi(0, range.start, m_dst.m_size.width, range.end - range.start); CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterGaussian, m_src, m_dst, m_kernelSize, m_sigma, ::ipp::IwDefault(), m_border, tile); } catch(const ::ipp::IwException &) { *m_pOk = false; return; } } private: ::ipp::IwiImage &m_src; ::ipp::IwiImage &m_dst; int m_kernelSize; float m_sigma; ::ipp::IwiBorderType &m_border; volatile bool *m_pOk; const ipp_gaussianBlurParallel& operator= (const ipp_gaussianBlurParallel&); }; #endif static bool ipp_GaussianBlur(InputArray _src, OutputArray _dst, Size ksize, double sigma1, double sigma2, int borderType ) { #ifdef HAVE_IPP_IW CV_INSTRUMENT_REGION_IPP(); #if IPP_VERSION_X100 < 201800 && ((defined _MSC_VER && defined _M_IX86) || (defined __GNUC__ && defined __i386__)) CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(sigma1); CV_UNUSED(sigma2); CV_UNUSED(borderType); return false; // bug on ia32 #else if(sigma1 != sigma2) return false; if(sigma1 < FLT_EPSILON) return false; if(ksize.width != ksize.height) return false; // Acquire data and begin processing try { Mat src = _src.getMat(); Mat dst = _dst.getMat(); ::ipp::IwiImage iwSrc = ippiGetImage(src); ::ipp::IwiImage iwDst = ippiGetImage(dst); ::ipp::IwiBorderSize borderSize = ::ipp::iwiSizeToBorderSize(ippiGetSize(ksize)); ::ipp::IwiBorderType ippBorder(ippiGetBorder(iwSrc, borderType, borderSize)); if(!ippBorder) return false; const int threads = ippiSuggestThreadsNum(iwDst, 2); if(IPP_GAUSSIANBLUR_PARALLEL && threads > 1) { bool ok; ipp_gaussianBlurParallel invoker(iwSrc, iwDst, ksize.width, (float) sigma1, ippBorder, &ok); if(!ok) return false; const Range range(0, (int) iwDst.m_size.height); parallel_for_(range, invoker, threads*4); if(!ok) return false; } else { CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterGaussian, iwSrc, iwDst, ksize.width, sigma1, ::ipp::IwDefault(), ippBorder); } } catch (const ::ipp::IwException &) { return false; } return true; #endif #else CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(sigma1); CV_UNUSED(sigma2); CV_UNUSED(borderType); return false; #endif } #endif } void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize, double sigma1, double sigma2, int borderType ) { CV_INSTRUMENT_REGION(); int type = _src.type(); Size size = _src.size(); _dst.create( size, type ); if( (borderType & ~BORDER_ISOLATED) != BORDER_CONSTANT && ((borderType & BORDER_ISOLATED) != 0 || !_src.getMat().isSubmatrix()) ) { if( size.height == 1 ) ksize.height = 1; if( size.width == 1 ) ksize.width = 1; } if( ksize.width == 1 && ksize.height == 1 ) { _src.copyTo(_dst); return; } bool useOpenCL = (ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 && ((ksize.width == 3 && ksize.height == 3) || (ksize.width == 5 && ksize.height == 5)) && _src.rows() > ksize.height && _src.cols() > ksize.width); CV_UNUSED(useOpenCL); int sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); Mat kx, ky; createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); CV_OCL_RUN(useOpenCL, ocl_GaussianBlur_8UC1(_src, _dst, ksize, CV_MAT_DEPTH(type), kx, ky, borderType)); CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2 && (size_t)_src.rows() > kx.total() && (size_t)_src.cols() > kx.total(), ocl_sepFilter2D(_src, _dst, sdepth, kx, ky, Point(-1, -1), 0, borderType)) Mat src = _src.getMat(); Mat dst = _dst.getMat(); Point ofs; Size wsz(src.cols, src.rows); if(!(borderType & BORDER_ISOLATED)) src.locateROI( wsz, ofs ); CALL_HAL(gaussianBlur, cv_hal_gaussianBlur, src.ptr(), src.step, dst.ptr(), dst.step, src.cols, src.rows, sdepth, cn, ofs.x, ofs.y, wsz.width - src.cols - ofs.x, wsz.height - src.rows - ofs.y, ksize.width, ksize.height, sigma1, sigma2, borderType&~BORDER_ISOLATED); CV_OVX_RUN(true, openvx_gaussianBlur(src, dst, ksize, sigma1, sigma2, borderType)) CV_IPP_RUN_FAST(ipp_GaussianBlur(src, dst, ksize, sigma1, sigma2, borderType)); if(sdepth == CV_8U && ((borderType & BORDER_ISOLATED) || !_src.getMat().isSubmatrix())) { std::vector fkx, fky; createGaussianKernels(fkx, fky, type, ksize, sigma1, sigma2); if (src.data == dst.data) src = src.clone(); fixedSmoothInvoker invoker(src.ptr(), src.step1(), dst.ptr(), dst.step1(), dst.cols, dst.rows, dst.channels(), &fkx[0], (int)fkx.size(), &fky[0], (int)fky.size(), borderType & ~BORDER_ISOLATED); parallel_for_(Range(0, dst.rows), invoker, std::max(1, std::min(getNumThreads(), getNumberOfCPUs()))); return; } sepFilter2D(src, dst, sdepth, kx, ky, Point(-1, -1), 0, borderType); } ////////////////////////////////////////////////////////////////////////////////////////// CV_IMPL void cvSmooth( const void* srcarr, void* dstarr, int smooth_type, int param1, int param2, double param3, double param4 ) { cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0; CV_Assert( dst.size() == src.size() && (smooth_type == CV_BLUR_NO_SCALE || dst.type() == src.type()) ); if( param2 <= 0 ) param2 = param1; if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE ) cv::boxFilter( src, dst, dst.depth(), cv::Size(param1, param2), cv::Point(-1,-1), smooth_type == CV_BLUR, cv::BORDER_REPLICATE ); else if( smooth_type == CV_GAUSSIAN ) cv::GaussianBlur( src, dst, cv::Size(param1, param2), param3, param4, cv::BORDER_REPLICATE ); else if( smooth_type == CV_MEDIAN ) cv::medianBlur( src, dst, param1 ); else cv::bilateralFilter( src, dst, param1, param3, param4, cv::BORDER_REPLICATE ); if( dst.data != dst0.data ) CV_Error( CV_StsUnmatchedFormats, "The destination image does not have the proper type" ); } /* End of file. */