/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // (3-clause BSD License) // // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * Neither the names of the copyright holders nor the names of the contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall copyright holders or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "npy_blob.hpp" #include namespace opencv_test { namespace { template static std::string _tf(TString filename) { return (getOpenCVExtraDir() + "/dnn/") + filename; } static std::vector getOutputsNames(const Net& net) { std::vector names; std::vector outLayers = net.getUnconnectedOutLayers(); std::vector layersNames = net.getLayerNames(); names.resize(outLayers.size()); for (size_t i = 0; i < outLayers.size(); ++i) names[i] = layersNames[outLayers[i] - 1]; return names; } TEST(Test_Darknet, read_tiny_yolo_voc) { Net net = readNetFromDarknet(_tf("tiny-yolo-voc.cfg")); ASSERT_FALSE(net.empty()); } TEST(Test_Darknet, read_yolo_voc) { Net net = readNetFromDarknet(_tf("yolo-voc.cfg")); ASSERT_FALSE(net.empty()); } TEST(Test_Darknet, read_yolo_voc_stream) { Mat ref; Mat sample = imread(_tf("dog416.png")); Mat inp = blobFromImage(sample, 1.0/255, Size(416, 416), Scalar(), true, false); const std::string cfgFile = findDataFile("dnn/yolo-voc.cfg", false); const std::string weightsFile = findDataFile("dnn/yolo-voc.weights", false); // Import by paths. { Net net = readNetFromDarknet(cfgFile, weightsFile); net.setInput(inp); net.setPreferableBackend(DNN_BACKEND_OPENCV); ref = net.forward(); } // Import from bytes array. { std::string cfg, weights; readFileInMemory(cfgFile, cfg); readFileInMemory(weightsFile, weights); Net net = readNetFromDarknet(&cfg[0], cfg.size(), &weights[0], weights.size()); net.setInput(inp); net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat out = net.forward(); normAssert(ref, out); } } class Test_Darknet_layers : public DNNTestLayer { public: void testDarknetLayer(const std::string& name, bool hasWeights = false) { std::string cfg = findDataFile("dnn/darknet/" + name + ".cfg", false); std::string model = ""; if (hasWeights) model = findDataFile("dnn/darknet/" + name + ".weights", false); Mat inp = blobFromNPY(findDataFile("dnn/darknet/" + name + "_in.npy", false)); Mat ref = blobFromNPY(findDataFile("dnn/darknet/" + name + "_out.npy", false)); checkBackend(&inp, &ref); Net net = readNet(cfg, model); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(inp); Mat out = net.forward(); normAssert(out, ref, "", default_l1, default_lInf); } }; class Test_Darknet_nets : public DNNTestLayer { public: // Test object detection network from Darknet framework. void testDarknetModel(const std::string& cfg, const std::string& weights, const std::vector >& refClassIds, const std::vector >& refConfidences, const std::vector >& refBoxes, double scoreDiff, double iouDiff, float confThreshold = 0.24, float nmsThreshold = 0.4) { checkBackend(); Mat img1 = imread(_tf("dog416.png")); Mat img2 = imread(_tf("street.png")); std::vector samples(2); samples[0] = img1; samples[1] = img2; // determine test type, whether batch or single img int batch_size = refClassIds.size(); CV_Assert(batch_size == 1 || batch_size == 2); samples.resize(batch_size); Mat inp = blobFromImages(samples, 1.0/255, Size(416, 416), Scalar(), true, false); Net net = readNet(findDataFile("dnn/" + cfg, false), findDataFile("dnn/" + weights, false)); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(inp); std::vector outs; net.forward(outs, getOutputsNames(net)); for (int b = 0; b < batch_size; ++b) { std::vector classIds; std::vector confidences; std::vector boxes; for (int i = 0; i < outs.size(); ++i) { Mat out; if (batch_size > 1){ // get the sample slice from 3D matrix (batch, box, classes+5) Range ranges[3] = {Range(b, b+1), Range::all(), Range::all()}; out = outs[i](ranges).reshape(1, outs[i].size[1]); }else{ out = outs[i]; } for (int j = 0; j < out.rows; ++j) { Mat scores = out.row(j).colRange(5, out.cols); double confidence; Point maxLoc; minMaxLoc(scores, 0, &confidence, 0, &maxLoc); if (confidence > confThreshold) { float* detection = out.ptr(j); double centerX = detection[0]; double centerY = detection[1]; double width = detection[2]; double height = detection[3]; boxes.push_back(Rect2d(centerX - 0.5 * width, centerY - 0.5 * height, width, height)); confidences.push_back(confidence); classIds.push_back(maxLoc.x); } } } // here we need NMS of boxes std::vector indices; NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); std::vector nms_classIds; std::vector nms_confidences; std::vector nms_boxes; for (size_t i = 0; i < indices.size(); ++i) { int idx = indices[i]; Rect2d box = boxes[idx]; float conf = confidences[idx]; int class_id = classIds[idx]; nms_boxes.push_back(box); nms_confidences.push_back(conf); nms_classIds.push_back(class_id); } normAssertDetections(refClassIds[b], refConfidences[b], refBoxes[b], nms_classIds, nms_confidences, nms_boxes, format("batch size %d, sample %d\n", batch_size, b).c_str(), confThreshold, scoreDiff, iouDiff); } } void testDarknetModel(const std::string& cfg, const std::string& weights, const std::vector& refClassIds, const std::vector& refConfidences, const std::vector& refBoxes, double scoreDiff, double iouDiff, float confThreshold = 0.24, float nmsThreshold = 0.4) { testDarknetModel(cfg, weights, std::vector >(1, refClassIds), std::vector >(1, refConfidences), std::vector >(1, refBoxes), scoreDiff, iouDiff, confThreshold, nmsThreshold); } void testDarknetModel(const std::string& cfg, const std::string& weights, const cv::Mat& ref, double scoreDiff, double iouDiff, float confThreshold = 0.24, float nmsThreshold = 0.4) { CV_Assert(ref.cols == 7); std::vector > refClassIds; std::vector > refScores; std::vector > refBoxes; for (int i = 0; i < ref.rows; ++i) { int batchId = static_cast(ref.at(i, 0)); int classId = static_cast(ref.at(i, 1)); float score = ref.at(i, 2); float left = ref.at(i, 3); float top = ref.at(i, 4); float right = ref.at(i, 5); float bottom = ref.at(i, 6); Rect2d box(left, top, right - left, bottom - top); if (batchId >= refClassIds.size()) { refClassIds.resize(batchId + 1); refScores.resize(batchId + 1); refBoxes.resize(batchId + 1); } refClassIds[batchId].push_back(classId); refScores[batchId].push_back(score); refBoxes[batchId].push_back(box); } testDarknetModel(cfg, weights, refClassIds, refScores, refBoxes, scoreDiff, iouDiff, confThreshold, nmsThreshold); } }; TEST_P(Test_Darknet_nets, YoloVoc) { // batchId, classId, confidence, left, top, right, bottom Mat ref = (Mat_(6, 7) << 0, 6, 0.750469f, 0.577374f, 0.127391f, 0.902949f, 0.300809f, // a car 0, 1, 0.780879f, 0.270762f, 0.264102f, 0.732475f, 0.745412f, // a bicycle 0, 11, 0.901615f, 0.1386f, 0.338509f, 0.421337f, 0.938789f, // a dog 1, 14, 0.623813f, 0.183179f, 0.381921f, 0.247726f, 0.625847f, // a person 1, 6, 0.667770f, 0.446555f, 0.453578f, 0.499986f, 0.519167f, // a car 1, 6, 0.844947f, 0.637058f, 0.460398f, 0.828508f, 0.66427f); // a car double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-2 : 8e-5; double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.018 : 3e-4; double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.397 : 0.4; std::string config_file = "yolo-voc.cfg"; std::string weights_file = "yolo-voc.weights"; // batch size 1 testDarknetModel(config_file, weights_file, ref.rowRange(0, 3), scoreDiff, iouDiff); // batch size 2 testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff, 0.24, nmsThreshold); } TEST_P(Test_Darknet_nets, TinyYoloVoc) { // batchId, classId, confidence, left, top, right, bottom Mat ref = (Mat_(4, 7) << 0, 6, 0.761967f, 0.579042f, 0.159161f, 0.894482f, 0.31994f, // a car 0, 11, 0.780595f, 0.129696f, 0.386467f, 0.445275f, 0.920994f, // a dog 1, 6, 0.651450f, 0.460526f, 0.458019f, 0.522527f, 0.5341f, // a car 1, 6, 0.928758f, 0.651024f, 0.463539f, 0.823784f, 0.654998f); // a car double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 8e-3 : 8e-5; double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.018 : 3e-4; std::string config_file = "tiny-yolo-voc.cfg"; std::string weights_file = "tiny-yolo-voc.weights"; // batch size 1 testDarknetModel(config_file, weights_file, ref.rowRange(0, 2), scoreDiff, iouDiff); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE == 2018040000 if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_MYRIAD) #endif // batch size 2 testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff); } TEST_P(Test_Darknet_nets, YOLOv3) { // batchId, classId, confidence, left, top, right, bottom Mat ref = (Mat_(9, 7) << 0, 7, 0.952983f, 0.614622f, 0.150257f, 0.901369f, 0.289251f, // a truck 0, 1, 0.987908f, 0.150913f, 0.221933f, 0.742255f, 0.74626f, // a bicycle 0, 16, 0.998836f, 0.160024f, 0.389964f, 0.417885f, 0.943716f, // a dog (COCO) 1, 9, 0.384801f, 0.659824f, 0.372389f, 0.673926f, 0.429412f, // a traffic light 1, 9, 0.733283f, 0.376029f, 0.315694f, 0.401776f, 0.395165f, // a traffic light 1, 9, 0.785352f, 0.665503f, 0.373543f, 0.688893f, 0.439245f, // a traffic light 1, 0, 0.980052f, 0.195856f, 0.378454f, 0.258626f, 0.629258f, // a person 1, 2, 0.989633f, 0.450719f, 0.463353f, 0.496305f, 0.522258f, // a car 1, 2, 0.997412f, 0.647584f, 0.459939f, 0.821038f, 0.663947f); // a car double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0047 : 8e-5; double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.018 : 3e-4; std::string config_file = "yolov3.cfg"; std::string weights_file = "yolov3.weights"; // batch size 1 testDarknetModel(config_file, weights_file, ref.rowRange(0, 3), scoreDiff, iouDiff); if ((backend != DNN_BACKEND_INFERENCE_ENGINE || target != DNN_TARGET_MYRIAD) && (backend != DNN_BACKEND_INFERENCE_ENGINE || target != DNN_TARGET_OPENCL)) { // batch size 2 testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff); } } INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_nets, dnnBackendsAndTargets()); TEST_P(Test_Darknet_layers, shortcut) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE < 2018040000 if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_CPU) throw SkipTestException("Test is enabled starts from OpenVINO 2018R4"); #endif testDarknetLayer("shortcut"); } TEST_P(Test_Darknet_layers, upsample) { testDarknetLayer("upsample"); } TEST_P(Test_Darknet_layers, avgpool_softmax) { testDarknetLayer("avgpool_softmax"); } TEST_P(Test_Darknet_layers, region) { testDarknetLayer("region"); } TEST_P(Test_Darknet_layers, reorg) { testDarknetLayer("reorg"); } INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_layers, dnnBackendsAndTargets()); }} // namespace