/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/imgproc/detail/distortion_model.hpp" #include "undistort.hpp" cv::Mat cv::getDefaultNewCameraMatrix( InputArray _cameraMatrix, Size imgsize, bool centerPrincipalPoint ) { Mat cameraMatrix = _cameraMatrix.getMat(); if( !centerPrincipalPoint && cameraMatrix.type() == CV_64F ) return cameraMatrix; Mat newCameraMatrix; cameraMatrix.convertTo(newCameraMatrix, CV_64F); if( centerPrincipalPoint ) { newCameraMatrix.ptr()[2] = (imgsize.width-1)*0.5; newCameraMatrix.ptr()[5] = (imgsize.height-1)*0.5; } return newCameraMatrix; } void cv::initUndistortRectifyMap( InputArray _cameraMatrix, InputArray _distCoeffs, InputArray _matR, InputArray _newCameraMatrix, Size size, int m1type, OutputArray _map1, OutputArray _map2 ) { Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat(); Mat matR = _matR.getMat(), newCameraMatrix = _newCameraMatrix.getMat(); if( m1type <= 0 ) m1type = CV_16SC2; CV_Assert( m1type == CV_16SC2 || m1type == CV_32FC1 || m1type == CV_32FC2 ); _map1.create( size, m1type ); Mat map1 = _map1.getMat(), map2; if( m1type != CV_32FC2 ) { _map2.create( size, m1type == CV_16SC2 ? CV_16UC1 : CV_32FC1 ); map2 = _map2.getMat(); } else _map2.release(); Mat_ R = Mat_::eye(3, 3); Mat_ A = Mat_(cameraMatrix), Ar; if( !newCameraMatrix.empty() ) Ar = Mat_(newCameraMatrix); else Ar = getDefaultNewCameraMatrix( A, size, true ); if( !matR.empty() ) R = Mat_(matR); if( !distCoeffs.empty() ) distCoeffs = Mat_(distCoeffs); else { distCoeffs.create(14, 1, CV_64F); distCoeffs = 0.; } CV_Assert( A.size() == Size(3,3) && A.size() == R.size() ); CV_Assert( Ar.size() == Size(3,3) || Ar.size() == Size(4, 3)); Mat_ iR = (Ar.colRange(0,3)*R).inv(DECOMP_LU); const double* ir = &iR(0,0); double u0 = A(0, 2), v0 = A(1, 2); double fx = A(0, 0), fy = A(1, 1); CV_Assert( distCoeffs.size() == Size(1, 4) || distCoeffs.size() == Size(4, 1) || distCoeffs.size() == Size(1, 5) || distCoeffs.size() == Size(5, 1) || distCoeffs.size() == Size(1, 8) || distCoeffs.size() == Size(8, 1) || distCoeffs.size() == Size(1, 12) || distCoeffs.size() == Size(12, 1) || distCoeffs.size() == Size(1, 14) || distCoeffs.size() == Size(14, 1)); if( distCoeffs.rows != 1 && !distCoeffs.isContinuous() ) distCoeffs = distCoeffs.t(); const double* const distPtr = distCoeffs.ptr(); double k1 = distPtr[0]; double k2 = distPtr[1]; double p1 = distPtr[2]; double p2 = distPtr[3]; double k3 = distCoeffs.cols + distCoeffs.rows - 1 >= 5 ? distPtr[4] : 0.; double k4 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[5] : 0.; double k5 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[6] : 0.; double k6 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[7] : 0.; double s1 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[8] : 0.; double s2 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[9] : 0.; double s3 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[10] : 0.; double s4 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[11] : 0.; double tauX = distCoeffs.cols + distCoeffs.rows - 1 >= 14 ? distPtr[12] : 0.; double tauY = distCoeffs.cols + distCoeffs.rows - 1 >= 14 ? distPtr[13] : 0.; // Matrix for trapezoidal distortion of tilted image sensor cv::Matx33d matTilt = cv::Matx33d::eye(); cv::detail::computeTiltProjectionMatrix(tauX, tauY, &matTilt); #if CV_TRY_AVX2 bool USE_AVX2 = cv::checkHardwareSupport(CV_CPU_AVX2); #endif for( int i = 0; i < size.height; i++ ) { float* m1f = map1.ptr(i); float* m2f = map2.empty() ? 0 : map2.ptr(i); short* m1 = (short*)m1f; ushort* m2 = (ushort*)m2f; double _x = i*ir[1] + ir[2], _y = i*ir[4] + ir[5], _w = i*ir[7] + ir[8]; int j = 0; if (m1type == CV_16SC2) CV_Assert(m1 != NULL && m2 != NULL); else if (m1type == CV_32FC1) CV_Assert(m1f != NULL && m2f != NULL); else CV_Assert(m1 != NULL); #if CV_TRY_AVX2 if( USE_AVX2 ) j = cv::initUndistortRectifyMapLine_AVX(m1f, m2f, m1, m2, matTilt.val, ir, _x, _y, _w, size.width, m1type, k1, k2, k3, k4, k5, k6, p1, p2, s1, s2, s3, s4, u0, v0, fx, fy); #endif for( ; j < size.width; j++, _x += ir[0], _y += ir[3], _w += ir[6] ) { double w = 1./_w, x = _x*w, y = _y*w; double x2 = x*x, y2 = y*y; double r2 = x2 + y2, _2xy = 2*x*y; double kr = (1 + ((k3*r2 + k2)*r2 + k1)*r2)/(1 + ((k6*r2 + k5)*r2 + k4)*r2); double xd = (x*kr + p1*_2xy + p2*(r2 + 2*x2) + s1*r2+s2*r2*r2); double yd = (y*kr + p1*(r2 + 2*y2) + p2*_2xy + s3*r2+s4*r2*r2); cv::Vec3d vecTilt = matTilt*cv::Vec3d(xd, yd, 1); double invProj = vecTilt(2) ? 1./vecTilt(2) : 1; double u = fx*invProj*vecTilt(0) + u0; double v = fy*invProj*vecTilt(1) + v0; if( m1type == CV_16SC2 ) { int iu = saturate_cast(u*INTER_TAB_SIZE); int iv = saturate_cast(v*INTER_TAB_SIZE); m1[j*2] = (short)(iu >> INTER_BITS); m1[j*2+1] = (short)(iv >> INTER_BITS); m2[j] = (ushort)((iv & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE + (iu & (INTER_TAB_SIZE-1))); } else if( m1type == CV_32FC1 ) { m1f[j] = (float)u; m2f[j] = (float)v; } else { m1f[j*2] = (float)u; m1f[j*2+1] = (float)v; } } } } void cv::undistort( InputArray _src, OutputArray _dst, InputArray _cameraMatrix, InputArray _distCoeffs, InputArray _newCameraMatrix ) { CV_INSTRUMENT_REGION() Mat src = _src.getMat(), cameraMatrix = _cameraMatrix.getMat(); Mat distCoeffs = _distCoeffs.getMat(), newCameraMatrix = _newCameraMatrix.getMat(); _dst.create( src.size(), src.type() ); Mat dst = _dst.getMat(); CV_Assert( dst.data != src.data ); int stripe_size0 = std::min(std::max(1, (1 << 12) / std::max(src.cols, 1)), src.rows); Mat map1(stripe_size0, src.cols, CV_16SC2), map2(stripe_size0, src.cols, CV_16UC1); Mat_ A, Ar, I = Mat_::eye(3,3); cameraMatrix.convertTo(A, CV_64F); if( !distCoeffs.empty() ) distCoeffs = Mat_(distCoeffs); else { distCoeffs.create(5, 1, CV_64F); distCoeffs = 0.; } if( !newCameraMatrix.empty() ) newCameraMatrix.convertTo(Ar, CV_64F); else A.copyTo(Ar); double v0 = Ar(1, 2); for( int y = 0; y < src.rows; y += stripe_size0 ) { int stripe_size = std::min( stripe_size0, src.rows - y ); Ar(1, 2) = v0 - y; Mat map1_part = map1.rowRange(0, stripe_size), map2_part = map2.rowRange(0, stripe_size), dst_part = dst.rowRange(y, y + stripe_size); initUndistortRectifyMap( A, distCoeffs, I, Ar, Size(src.cols, stripe_size), map1_part.type(), map1_part, map2_part ); remap( src, dst_part, map1_part, map2_part, INTER_LINEAR, BORDER_CONSTANT ); } } CV_IMPL void cvUndistort2( const CvArr* srcarr, CvArr* dstarr, const CvMat* Aarr, const CvMat* dist_coeffs, const CvMat* newAarr ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), dst0 = dst; cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs = cv::cvarrToMat(dist_coeffs), newA; if( newAarr ) newA = cv::cvarrToMat(newAarr); CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); cv::undistort( src, dst, A, distCoeffs, newA ); } CV_IMPL void cvInitUndistortMap( const CvMat* Aarr, const CvMat* dist_coeffs, CvArr* mapxarr, CvArr* mapyarr ) { cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs = cv::cvarrToMat(dist_coeffs); cv::Mat mapx = cv::cvarrToMat(mapxarr), mapy, mapx0 = mapx, mapy0; if( mapyarr ) mapy0 = mapy = cv::cvarrToMat(mapyarr); cv::initUndistortRectifyMap( A, distCoeffs, cv::Mat(), A, mapx.size(), mapx.type(), mapx, mapy ); CV_Assert( mapx0.data == mapx.data && mapy0.data == mapy.data ); } void cvInitUndistortRectifyMap( const CvMat* Aarr, const CvMat* dist_coeffs, const CvMat *Rarr, const CvMat* ArArr, CvArr* mapxarr, CvArr* mapyarr ) { cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs, R, Ar; cv::Mat mapx = cv::cvarrToMat(mapxarr), mapy, mapx0 = mapx, mapy0; if( mapyarr ) mapy0 = mapy = cv::cvarrToMat(mapyarr); if( dist_coeffs ) distCoeffs = cv::cvarrToMat(dist_coeffs); if( Rarr ) R = cv::cvarrToMat(Rarr); if( ArArr ) Ar = cv::cvarrToMat(ArArr); cv::initUndistortRectifyMap( A, distCoeffs, R, Ar, mapx.size(), mapx.type(), mapx, mapy ); CV_Assert( mapx0.data == mapx.data && mapy0.data == mapy.data ); } static void cvUndistortPointsInternal( const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix, const CvMat* _distCoeffs, const CvMat* matR, const CvMat* matP, cv::TermCriteria criteria) { double A[3][3], RR[3][3], k[14]={0,0,0,0,0,0,0,0,0,0,0,0,0,0}; CvMat matA=cvMat(3, 3, CV_64F, A), _Dk; CvMat _RR=cvMat(3, 3, CV_64F, RR); cv::Matx33d invMatTilt = cv::Matx33d::eye(); cv::Matx33d matTilt = cv::Matx33d::eye(); CV_Assert( CV_IS_MAT(_src) && CV_IS_MAT(_dst) && (_src->rows == 1 || _src->cols == 1) && (_dst->rows == 1 || _dst->cols == 1) && _src->cols + _src->rows - 1 == _dst->rows + _dst->cols - 1 && (CV_MAT_TYPE(_src->type) == CV_32FC2 || CV_MAT_TYPE(_src->type) == CV_64FC2) && (CV_MAT_TYPE(_dst->type) == CV_32FC2 || CV_MAT_TYPE(_dst->type) == CV_64FC2)); CV_Assert( CV_IS_MAT(_cameraMatrix) && _cameraMatrix->rows == 3 && _cameraMatrix->cols == 3 ); cvConvert( _cameraMatrix, &matA ); if( _distCoeffs ) { CV_Assert( CV_IS_MAT(_distCoeffs) && (_distCoeffs->rows == 1 || _distCoeffs->cols == 1) && (_distCoeffs->rows*_distCoeffs->cols == 4 || _distCoeffs->rows*_distCoeffs->cols == 5 || _distCoeffs->rows*_distCoeffs->cols == 8 || _distCoeffs->rows*_distCoeffs->cols == 12 || _distCoeffs->rows*_distCoeffs->cols == 14)); _Dk = cvMat( _distCoeffs->rows, _distCoeffs->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(_distCoeffs->type)), k); cvConvert( _distCoeffs, &_Dk ); if (k[12] != 0 || k[13] != 0) { cv::detail::computeTiltProjectionMatrix(k[12], k[13], NULL, NULL, NULL, &invMatTilt); cv::detail::computeTiltProjectionMatrix(k[12], k[13], &matTilt, NULL, NULL); } } if( matR ) { CV_Assert( CV_IS_MAT(matR) && matR->rows == 3 && matR->cols == 3 ); cvConvert( matR, &_RR ); } else cvSetIdentity(&_RR); if( matP ) { double PP[3][3]; CvMat _P3x3, _PP=cvMat(3, 3, CV_64F, PP); CV_Assert( CV_IS_MAT(matP) && matP->rows == 3 && (matP->cols == 3 || matP->cols == 4)); cvConvert( cvGetCols(matP, &_P3x3, 0, 3), &_PP ); cvMatMul( &_PP, &_RR, &_RR ); } const CvPoint2D32f* srcf = (const CvPoint2D32f*)_src->data.ptr; const CvPoint2D64f* srcd = (const CvPoint2D64f*)_src->data.ptr; CvPoint2D32f* dstf = (CvPoint2D32f*)_dst->data.ptr; CvPoint2D64f* dstd = (CvPoint2D64f*)_dst->data.ptr; int stype = CV_MAT_TYPE(_src->type); int dtype = CV_MAT_TYPE(_dst->type); int sstep = _src->rows == 1 ? 1 : _src->step/CV_ELEM_SIZE(stype); int dstep = _dst->rows == 1 ? 1 : _dst->step/CV_ELEM_SIZE(dtype); double fx = A[0][0]; double fy = A[1][1]; double ifx = 1./fx; double ify = 1./fy; double cx = A[0][2]; double cy = A[1][2]; int n = _src->rows + _src->cols - 1; for( int i = 0; i < n; i++ ) { double x, y, x0 = 0, y0 = 0, u, v; if( stype == CV_32FC2 ) { x = srcf[i*sstep].x; y = srcf[i*sstep].y; } else { x = srcd[i*sstep].x; y = srcd[i*sstep].y; } u = x; v = y; x = (x - cx)*ifx; y = (y - cy)*ify; if( _distCoeffs ) { // compensate tilt distortion cv::Vec3d vecUntilt = invMatTilt * cv::Vec3d(x, y, 1); double invProj = vecUntilt(2) ? 1./vecUntilt(2) : 1; x0 = x = invProj * vecUntilt(0); y0 = y = invProj * vecUntilt(1); double error = std::numeric_limits::max(); // compensate distortion iteratively for( int j = 0; ; j++ ) { if ((criteria.type & cv::TermCriteria::COUNT) && j >= criteria.maxCount) break; if ((criteria.type & cv::TermCriteria::EPS) && error < criteria.epsilon) break; double r2 = x*x + y*y; double icdist = (1 + ((k[7]*r2 + k[6])*r2 + k[5])*r2)/(1 + ((k[4]*r2 + k[1])*r2 + k[0])*r2); double deltaX = 2*k[2]*x*y + k[3]*(r2 + 2*x*x)+ k[8]*r2+k[9]*r2*r2; double deltaY = k[2]*(r2 + 2*y*y) + 2*k[3]*x*y+ k[10]*r2+k[11]*r2*r2; x = (x0 - deltaX)*icdist; y = (y0 - deltaY)*icdist; if(criteria.type & cv::TermCriteria::EPS) { double r4, r6, a1, a2, a3, cdist, icdist2; double xd, yd, xd0, yd0; cv::Vec3d vecTilt; r2 = x*x + y*y; r4 = r2*r2; r6 = r4*r2; a1 = 2*x*y; a2 = r2 + 2*x*x; a3 = r2 + 2*y*y; cdist = 1 + k[0]*r2 + k[1]*r4 + k[4]*r6; icdist2 = 1./(1 + k[5]*r2 + k[6]*r4 + k[7]*r6); xd0 = x*cdist*icdist2 + k[2]*a1 + k[3]*a2 + k[8]*r2+k[9]*r4; yd0 = y*cdist*icdist2 + k[2]*a3 + k[3]*a1 + k[10]*r2+k[11]*r4; vecTilt = matTilt*cv::Vec3d(xd0, yd0, 1); invProj = vecTilt(2) ? 1./vecTilt(2) : 1; xd = invProj * vecTilt(0); yd = invProj * vecTilt(1); double x_proj = xd*fx + cx; double y_proj = yd*fy + cy; error = sqrt( pow(x_proj - u, 2) + pow(y_proj - v, 2) ); } } } double xx = RR[0][0]*x + RR[0][1]*y + RR[0][2]; double yy = RR[1][0]*x + RR[1][1]*y + RR[1][2]; double ww = 1./(RR[2][0]*x + RR[2][1]*y + RR[2][2]); x = xx*ww; y = yy*ww; if( dtype == CV_32FC2 ) { dstf[i*dstep].x = (float)x; dstf[i*dstep].y = (float)y; } else { dstd[i*dstep].x = x; dstd[i*dstep].y = y; } } } void cvUndistortPoints( const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix, const CvMat* _distCoeffs, const CvMat* matR, const CvMat* matP ) { cvUndistortPointsInternal(_src, _dst, _cameraMatrix, _distCoeffs, matR, matP, cv::TermCriteria(cv::TermCriteria::COUNT, 5, 0.01)); } void cv::undistortPoints( InputArray _src, OutputArray _dst, InputArray _cameraMatrix, InputArray _distCoeffs, InputArray _Rmat, InputArray _Pmat ) { undistortPoints(_src, _dst, _cameraMatrix, _distCoeffs, TermCriteria(TermCriteria::MAX_ITER, 5, 0.01), _Rmat, _Pmat); } void cv::undistortPoints( InputArray _src, OutputArray _dst, InputArray _cameraMatrix, InputArray _distCoeffs, TermCriteria criteria, InputArray _Rmat, InputArray _Pmat ) { Mat src = _src.getMat(), cameraMatrix = _cameraMatrix.getMat(); Mat distCoeffs = _distCoeffs.getMat(), R = _Rmat.getMat(), P = _Pmat.getMat(); CV_Assert( src.isContinuous() && (src.depth() == CV_32F || src.depth() == CV_64F) && ((src.rows == 1 && src.channels() == 2) || src.cols*src.channels() == 2)); _dst.create(src.size(), src.type(), -1, true); Mat dst = _dst.getMat(); CvMat _csrc = src, _cdst = dst, _ccameraMatrix = cameraMatrix; CvMat matR, matP, _cdistCoeffs, *pR=0, *pP=0, *pD=0; if( !R.empty() ) pR = &(matR = R); if( !P.empty() ) pP = &(matP = P); if( !distCoeffs.empty() ) pD = &(_cdistCoeffs = distCoeffs); cvUndistortPointsInternal(&_csrc, &_cdst, &_ccameraMatrix, pD, pR, pP, criteria); } namespace cv { static Point2f mapPointSpherical(const Point2f& p, float alpha, Vec4d* J, int projType) { double x = p.x, y = p.y; double beta = 1 + 2*alpha; double v = x*x + y*y + 1, iv = 1/v; double u = std::sqrt(beta*v + alpha*alpha); double k = (u - alpha)*iv; double kv = (v*beta/u - (u - alpha)*2)*iv*iv; double kx = kv*x, ky = kv*y; if( projType == PROJ_SPHERICAL_ORTHO ) { if(J) *J = Vec4d(kx*x + k, kx*y, ky*x, ky*y + k); return Point2f((float)(x*k), (float)(y*k)); } if( projType == PROJ_SPHERICAL_EQRECT ) { // equirectangular double iR = 1/(alpha + 1); double x1 = std::max(std::min(x*k*iR, 1.), -1.); double y1 = std::max(std::min(y*k*iR, 1.), -1.); if(J) { double fx1 = iR/std::sqrt(1 - x1*x1); double fy1 = iR/std::sqrt(1 - y1*y1); *J = Vec4d(fx1*(kx*x + k), fx1*ky*x, fy1*kx*y, fy1*(ky*y + k)); } return Point2f((float)asin(x1), (float)asin(y1)); } CV_Error(CV_StsBadArg, "Unknown projection type"); return Point2f(); } static Point2f invMapPointSpherical(Point2f _p, float alpha, int projType) { double eps = 1e-12; Vec2d p(_p.x, _p.y), q(_p.x, _p.y), err; Vec4d J; int i, maxiter = 5; for( i = 0; i < maxiter; i++ ) { Point2f p1 = mapPointSpherical(Point2f((float)q[0], (float)q[1]), alpha, &J, projType); err = Vec2d(p1.x, p1.y) - p; if( err[0]*err[0] + err[1]*err[1] < eps ) break; Vec4d JtJ(J[0]*J[0] + J[2]*J[2], J[0]*J[1] + J[2]*J[3], J[0]*J[1] + J[2]*J[3], J[1]*J[1] + J[3]*J[3]); double d = JtJ[0]*JtJ[3] - JtJ[1]*JtJ[2]; d = d ? 1./d : 0; Vec4d iJtJ(JtJ[3]*d, -JtJ[1]*d, -JtJ[2]*d, JtJ[0]*d); Vec2d JtErr(J[0]*err[0] + J[2]*err[1], J[1]*err[0] + J[3]*err[1]); q -= Vec2d(iJtJ[0]*JtErr[0] + iJtJ[1]*JtErr[1], iJtJ[2]*JtErr[0] + iJtJ[3]*JtErr[1]); //Matx22d J(kx*x + k, kx*y, ky*x, ky*y + k); //q -= Vec2d((J.t()*J).inv()*(J.t()*err)); } return i < maxiter ? Point2f((float)q[0], (float)q[1]) : Point2f(-FLT_MAX, -FLT_MAX); } } float cv::initWideAngleProjMap( InputArray _cameraMatrix0, InputArray _distCoeffs0, Size imageSize, int destImageWidth, int m1type, OutputArray _map1, OutputArray _map2, int projType, double _alpha ) { Mat cameraMatrix0 = _cameraMatrix0.getMat(), distCoeffs0 = _distCoeffs0.getMat(); double k[14] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0}, M[9]={0,0,0,0,0,0,0,0,0}; Mat distCoeffs(distCoeffs0.rows, distCoeffs0.cols, CV_MAKETYPE(CV_64F,distCoeffs0.channels()), k); Mat cameraMatrix(3,3,CV_64F,M); Point2f scenter((float)cameraMatrix.at(0,2), (float)cameraMatrix.at(1,2)); Point2f dcenter((destImageWidth-1)*0.5f, 0.f); float xmin = FLT_MAX, xmax = -FLT_MAX, ymin = FLT_MAX, ymax = -FLT_MAX; int N = 9; std::vector uvec(1), vvec(1); Mat I = Mat::eye(3,3,CV_64F); float alpha = (float)_alpha; int ndcoeffs = distCoeffs0.cols*distCoeffs0.rows*distCoeffs0.channels(); CV_Assert((distCoeffs0.cols == 1 || distCoeffs0.rows == 1) && (ndcoeffs == 4 || ndcoeffs == 5 || ndcoeffs == 8 || ndcoeffs == 12 || ndcoeffs == 14)); CV_Assert(cameraMatrix0.size() == Size(3,3)); distCoeffs0.convertTo(distCoeffs,CV_64F); cameraMatrix0.convertTo(cameraMatrix,CV_64F); alpha = std::min(alpha, 0.999f); for( int i = 0; i < N; i++ ) for( int j = 0; j < N; j++ ) { Point2f p((float)j*imageSize.width/(N-1), (float)i*imageSize.height/(N-1)); uvec[0] = p; undistortPoints(uvec, vvec, cameraMatrix, distCoeffs, I, I); Point2f q = mapPointSpherical(vvec[0], alpha, 0, projType); if( xmin > q.x ) xmin = q.x; if( xmax < q.x ) xmax = q.x; if( ymin > q.y ) ymin = q.y; if( ymax < q.y ) ymax = q.y; } float scale = (float)std::min(dcenter.x/fabs(xmax), dcenter.x/fabs(xmin)); Size dsize(destImageWidth, cvCeil(std::max(scale*fabs(ymin)*2, scale*fabs(ymax)*2))); dcenter.y = (dsize.height - 1)*0.5f; Mat mapxy(dsize, CV_32FC2); double k1 = k[0], k2 = k[1], k3 = k[2], p1 = k[3], p2 = k[4], k4 = k[5], k5 = k[6], k6 = k[7], s1 = k[8], s2 = k[9], s3 = k[10], s4 = k[11]; double fx = cameraMatrix.at(0,0), fy = cameraMatrix.at(1,1), cx = scenter.x, cy = scenter.y; cv::Matx33d matTilt; cv::detail::computeTiltProjectionMatrix(k[12], k[13], &matTilt); for( int y = 0; y < dsize.height; y++ ) { Point2f* mxy = mapxy.ptr(y); for( int x = 0; x < dsize.width; x++ ) { Point2f p = (Point2f((float)x, (float)y) - dcenter)*(1.f/scale); Point2f q = invMapPointSpherical(p, alpha, projType); if( q.x <= -FLT_MAX && q.y <= -FLT_MAX ) { mxy[x] = Point2f(-1.f, -1.f); continue; } double x2 = q.x*q.x, y2 = q.y*q.y; double r2 = x2 + y2, _2xy = 2*q.x*q.y; double kr = 1 + ((k3*r2 + k2)*r2 + k1)*r2/(1 + ((k6*r2 + k5)*r2 + k4)*r2); double xd = (q.x*kr + p1*_2xy + p2*(r2 + 2*x2) + s1*r2+ s2*r2*r2); double yd = (q.y*kr + p1*(r2 + 2*y2) + p2*_2xy + s3*r2+ s4*r2*r2); cv::Vec3d vecTilt = matTilt*cv::Vec3d(xd, yd, 1); double invProj = vecTilt(2) ? 1./vecTilt(2) : 1; double u = fx*invProj*vecTilt(0) + cx; double v = fy*invProj*vecTilt(1) + cy; mxy[x] = Point2f((float)u, (float)v); } } if(m1type == CV_32FC2) { _map1.create(mapxy.size(), mapxy.type()); Mat map1 = _map1.getMat(); mapxy.copyTo(map1); _map2.release(); } else convertMaps(mapxy, Mat(), _map1, _map2, m1type, false); return scale; } /* End of file */