import argparse import numpy as np import tensorflow as tf from tensorflow.core.framework.node_def_pb2 import NodeDef from tensorflow.tools.graph_transforms import TransformGraph from google.protobuf import text_format from tf_text_graph_common import tensorMsg, addConstNode parser = argparse.ArgumentParser(description='Run this script to get a text graph of ' 'SSD model from TensorFlow Object Detection API. ' 'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.') parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.') parser.add_argument('--output', required=True, help='Path to output text graph.') parser.add_argument('--num_classes', default=90, type=int, help='Number of trained classes.') parser.add_argument('--scales', default=[0.25, 0.5, 1.0, 2.0], type=float, nargs='+', help='Hyper-parameter of grid_anchor_generator from a config file.') parser.add_argument('--aspect_ratios', default=[0.5, 1.0, 2.0], type=float, nargs='+', help='Hyper-parameter of grid_anchor_generator from a config file.') parser.add_argument('--features_stride', default=16, type=float, nargs='+', help='Hyper-parameter from a config file.') args = parser.parse_args() scopesToKeep = ('FirstStageFeatureExtractor', 'Conv', 'FirstStageBoxPredictor/BoxEncodingPredictor', 'FirstStageBoxPredictor/ClassPredictor', 'CropAndResize', 'MaxPool2D', 'SecondStageFeatureExtractor', 'SecondStageBoxPredictor', 'image_tensor') scopesToIgnore = ('FirstStageFeatureExtractor/Assert', 'FirstStageFeatureExtractor/Shape', 'FirstStageFeatureExtractor/strided_slice', 'FirstStageFeatureExtractor/GreaterEqual', 'FirstStageFeatureExtractor/LogicalAnd') unusedAttrs = ['T', 'Tshape', 'N', 'Tidx', 'Tdim', 'use_cudnn_on_gpu', 'Index', 'Tperm', 'is_training', 'Tpaddings'] # Read the graph. with tf.gfile.FastGFile(args.input, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) # Removes Identity nodes def removeIdentity(): identities = {} for node in graph_def.node: if node.op == 'Identity': identities[node.name] = node.input[0] graph_def.node.remove(node) for node in graph_def.node: for i in range(len(node.input)): if node.input[i] in identities: node.input[i] = identities[node.input[i]] removeIdentity() removedNodes = [] for i in reversed(range(len(graph_def.node))): op = graph_def.node[i].op name = graph_def.node[i].name if op == 'Const' or name.startswith(scopesToIgnore) or not name.startswith(scopesToKeep): if op != 'Const': removedNodes.append(name) del graph_def.node[i] else: for attr in unusedAttrs: if attr in graph_def.node[i].attr: del graph_def.node[i].attr[attr] # Remove references to removed nodes except Const nodes. for node in graph_def.node: for i in reversed(range(len(node.input))): if node.input[i] in removedNodes: del node.input[i] # Connect input node to the first layer assert(graph_def.node[0].op == 'Placeholder') graph_def.node[1].input.insert(0, graph_def.node[0].name) # Temporarily remove top nodes. topNodes = [] while True: node = graph_def.node.pop() topNodes.append(node) if node.op == 'CropAndResize': break def addSlice(inp, out, begins, sizes): beginsNode = NodeDef() beginsNode.name = out + '/begins' beginsNode.op = 'Const' text_format.Merge(tensorMsg(begins), beginsNode.attr["value"]) graph_def.node.extend([beginsNode]) sizesNode = NodeDef() sizesNode.name = out + '/sizes' sizesNode.op = 'Const' text_format.Merge(tensorMsg(sizes), sizesNode.attr["value"]) graph_def.node.extend([sizesNode]) sliced = NodeDef() sliced.name = out sliced.op = 'Slice' sliced.input.append(inp) sliced.input.append(beginsNode.name) sliced.input.append(sizesNode.name) graph_def.node.extend([sliced]) def addReshape(inp, out, shape): shapeNode = NodeDef() shapeNode.name = out + '/shape' shapeNode.op = 'Const' text_format.Merge(tensorMsg(shape), shapeNode.attr["value"]) graph_def.node.extend([shapeNode]) reshape = NodeDef() reshape.name = out reshape.op = 'Reshape' reshape.input.append(inp) reshape.input.append(shapeNode.name) graph_def.node.extend([reshape]) def addSoftMax(inp, out): softmax = NodeDef() softmax.name = out softmax.op = 'Softmax' text_format.Merge('i: -1', softmax.attr['axis']) softmax.input.append(inp) graph_def.node.extend([softmax]) def addFlatten(inp, out): flatten = NodeDef() flatten.name = out flatten.op = 'Flatten' flatten.input.append(inp) graph_def.node.extend([flatten]) addReshape('FirstStageBoxPredictor/ClassPredictor/BiasAdd', 'FirstStageBoxPredictor/ClassPredictor/reshape_1', [0, -1, 2]) addSoftMax('FirstStageBoxPredictor/ClassPredictor/reshape_1', 'FirstStageBoxPredictor/ClassPredictor/softmax') # Compare with Reshape_4 addFlatten('FirstStageBoxPredictor/ClassPredictor/softmax', 'FirstStageBoxPredictor/ClassPredictor/softmax/flatten') # Compare with FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd addFlatten('FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd', 'FirstStageBoxPredictor/BoxEncodingPredictor/flatten') proposals = NodeDef() proposals.name = 'proposals' # Compare with ClipToWindow/Gather/Gather (NOTE: normalized) proposals.op = 'PriorBox' proposals.input.append('FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd') proposals.input.append(graph_def.node[0].name) # image_tensor text_format.Merge('b: false', proposals.attr["flip"]) text_format.Merge('b: true', proposals.attr["clip"]) text_format.Merge('f: %f' % args.features_stride, proposals.attr["step"]) text_format.Merge('f: 0.0', proposals.attr["offset"]) text_format.Merge(tensorMsg([0.1, 0.1, 0.2, 0.2]), proposals.attr["variance"]) widths = [] heights = [] for a in args.aspect_ratios: for s in args.scales: ar = np.sqrt(a) heights.append((args.features_stride**2) * s / ar) widths.append((args.features_stride**2) * s * ar) text_format.Merge(tensorMsg(widths), proposals.attr["width"]) text_format.Merge(tensorMsg(heights), proposals.attr["height"]) graph_def.node.extend([proposals]) # Compare with Reshape_5 detectionOut = NodeDef() detectionOut.name = 'detection_out' detectionOut.op = 'DetectionOutput' detectionOut.input.append('FirstStageBoxPredictor/BoxEncodingPredictor/flatten') detectionOut.input.append('FirstStageBoxPredictor/ClassPredictor/softmax/flatten') detectionOut.input.append('proposals') text_format.Merge('i: 2', detectionOut.attr['num_classes']) text_format.Merge('b: true', detectionOut.attr['share_location']) text_format.Merge('i: 0', detectionOut.attr['background_label_id']) text_format.Merge('f: 0.7', detectionOut.attr['nms_threshold']) text_format.Merge('i: 6000', detectionOut.attr['top_k']) text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type']) text_format.Merge('i: 100', detectionOut.attr['keep_top_k']) text_format.Merge('b: false', detectionOut.attr['clip']) graph_def.node.extend([detectionOut]) addConstNode('clip_by_value/lower', [0.0], graph_def) addConstNode('clip_by_value/upper', [1.0], graph_def) clipByValueNode = NodeDef() clipByValueNode.name = 'detection_out/clip_by_value' clipByValueNode.op = 'ClipByValue' clipByValueNode.input.append('detection_out') clipByValueNode.input.append('clip_by_value/lower') clipByValueNode.input.append('clip_by_value/upper') graph_def.node.extend([clipByValueNode]) # Save as text. for node in reversed(topNodes): graph_def.node.extend([node]) addSoftMax('SecondStageBoxPredictor/Reshape_1', 'SecondStageBoxPredictor/Reshape_1/softmax') addSlice('SecondStageBoxPredictor/Reshape_1/softmax', 'SecondStageBoxPredictor/Reshape_1/slice', [0, 0, 1], [-1, -1, -1]) addReshape('SecondStageBoxPredictor/Reshape_1/slice', 'SecondStageBoxPredictor/Reshape_1/Reshape', [1, -1]) # Replace Flatten subgraph onto a single node. for i in reversed(range(len(graph_def.node))): if graph_def.node[i].op == 'CropAndResize': graph_def.node[i].input.insert(1, 'detection_out/clip_by_value') if graph_def.node[i].name == 'SecondStageBoxPredictor/Reshape': addConstNode('SecondStageBoxPredictor/Reshape/shape2', [1, -1, 4], graph_def) graph_def.node[i].input.pop() graph_def.node[i].input.append('SecondStageBoxPredictor/Reshape/shape2') if graph_def.node[i].name in ['SecondStageBoxPredictor/Flatten/flatten/Shape', 'SecondStageBoxPredictor/Flatten/flatten/strided_slice', 'SecondStageBoxPredictor/Flatten/flatten/Reshape/shape']: del graph_def.node[i] for node in graph_def.node: if node.name == 'SecondStageBoxPredictor/Flatten/flatten/Reshape': node.op = 'Flatten' node.input.pop() if node.name in ['FirstStageBoxPredictor/BoxEncodingPredictor/Conv2D', 'SecondStageBoxPredictor/BoxEncodingPredictor/MatMul']: text_format.Merge('b: true', node.attr["loc_pred_transposed"]) ################################################################################ ### Postprocessing ################################################################################ addSlice('detection_out/clip_by_value', 'detection_out/slice', [0, 0, 0, 3], [-1, -1, -1, 4]) variance = NodeDef() variance.name = 'proposals/variance' variance.op = 'Const' text_format.Merge(tensorMsg([0.1, 0.1, 0.2, 0.2]), variance.attr["value"]) graph_def.node.extend([variance]) varianceEncoder = NodeDef() varianceEncoder.name = 'variance_encoded' varianceEncoder.op = 'Mul' varianceEncoder.input.append('SecondStageBoxPredictor/Reshape') varianceEncoder.input.append(variance.name) text_format.Merge('i: 2', varianceEncoder.attr["axis"]) graph_def.node.extend([varianceEncoder]) addReshape('detection_out/slice', 'detection_out/slice/reshape', [1, 1, -1]) addFlatten('variance_encoded', 'variance_encoded/flatten') detectionOut = NodeDef() detectionOut.name = 'detection_out_final' detectionOut.op = 'DetectionOutput' detectionOut.input.append('variance_encoded/flatten') detectionOut.input.append('SecondStageBoxPredictor/Reshape_1/Reshape') detectionOut.input.append('detection_out/slice/reshape') text_format.Merge('i: %d' % args.num_classes, detectionOut.attr['num_classes']) text_format.Merge('b: false', detectionOut.attr['share_location']) text_format.Merge('i: %d' % (args.num_classes + 1), detectionOut.attr['background_label_id']) text_format.Merge('f: 0.6', detectionOut.attr['nms_threshold']) text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type']) text_format.Merge('i: 100', detectionOut.attr['keep_top_k']) text_format.Merge('b: true', detectionOut.attr['clip']) text_format.Merge('b: true', detectionOut.attr['variance_encoded_in_target']) graph_def.node.extend([detectionOut]) tf.train.write_graph(graph_def, "", args.output, as_text=True)