/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Sen Liu, swjtuls1987@126.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef WAVE_SIZE #define WAVE_SIZE 1 #endif inline int calc_lut(__local int* smem, int val, int tid) { smem[tid] = val; barrier(CLK_LOCAL_MEM_FENCE); if (tid == 0) for (int i = 1; i < 256; ++i) smem[i] += smem[i - 1]; barrier(CLK_LOCAL_MEM_FENCE); return smem[tid]; } #ifdef CPU inline void reduce(volatile __local int* smem, int val, int tid) { smem[tid] = val; barrier(CLK_LOCAL_MEM_FENCE); if (tid < 128) smem[tid] = val += smem[tid + 128]; barrier(CLK_LOCAL_MEM_FENCE); if (tid < 64) smem[tid] = val += smem[tid + 64]; barrier(CLK_LOCAL_MEM_FENCE); if (tid < 32) smem[tid] += smem[tid + 32]; barrier(CLK_LOCAL_MEM_FENCE); if (tid < 16) smem[tid] += smem[tid + 16]; barrier(CLK_LOCAL_MEM_FENCE); if (tid < 8) smem[tid] += smem[tid + 8]; barrier(CLK_LOCAL_MEM_FENCE); if (tid < 4) smem[tid] += smem[tid + 4]; barrier(CLK_LOCAL_MEM_FENCE); if (tid < 2) smem[tid] += smem[tid + 2]; barrier(CLK_LOCAL_MEM_FENCE); if (tid < 1) smem[256] = smem[tid] + smem[tid + 1]; barrier(CLK_LOCAL_MEM_FENCE); } #else inline void reduce(__local volatile int* smem, int val, int tid) { smem[tid] = val; barrier(CLK_LOCAL_MEM_FENCE); if (tid < 128) smem[tid] = val += smem[tid + 128]; barrier(CLK_LOCAL_MEM_FENCE); if (tid < 64) smem[tid] = val += smem[tid + 64]; barrier(CLK_LOCAL_MEM_FENCE); if (tid < 32) { smem[tid] += smem[tid + 32]; #if WAVE_SIZE < 32 } barrier(CLK_LOCAL_MEM_FENCE); if (tid < 16) { #endif smem[tid] += smem[tid + 16]; #if WAVE_SIZE < 16 } barrier(CLK_LOCAL_MEM_FENCE); if (tid < 8) { #endif smem[tid] += smem[tid + 8]; smem[tid] += smem[tid + 4]; smem[tid] += smem[tid + 2]; smem[tid] += smem[tid + 1]; } } #endif __kernel void calcLut(__global __const uchar * src, const int srcStep, const int src_offset, __global uchar * lut, const int dstStep, const int dst_offset, const int2 tileSize, const int tilesX, const int clipLimit, const float lutScale) { __local int smem[512]; int tx = get_group_id(0); int ty = get_group_id(1); int tid = get_local_id(1) * get_local_size(0) + get_local_id(0); smem[tid] = 0; barrier(CLK_LOCAL_MEM_FENCE); for (int i = get_local_id(1); i < tileSize.y; i += get_local_size(1)) { __global const uchar* srcPtr = src + mad24(ty * tileSize.y + i, srcStep, tx * tileSize.x + src_offset); for (int j = get_local_id(0); j < tileSize.x; j += get_local_size(0)) { const int data = srcPtr[j]; atomic_inc(&smem[data]); } } barrier(CLK_LOCAL_MEM_FENCE); int tHistVal = smem[tid]; barrier(CLK_LOCAL_MEM_FENCE); if (clipLimit > 0) { // clip histogram bar int clipped = 0; if (tHistVal > clipLimit) { clipped = tHistVal - clipLimit; tHistVal = clipLimit; } // find number of overall clipped samples reduce(smem, clipped, tid); barrier(CLK_LOCAL_MEM_FENCE); #ifdef CPU clipped = smem[256]; #else clipped = smem[0]; #endif // broadcast evaluated value __local int totalClipped; if (tid == 0) totalClipped = clipped; barrier(CLK_LOCAL_MEM_FENCE); // redistribute clipped samples evenly int redistBatch = totalClipped / 256; tHistVal += redistBatch; int residual = totalClipped - redistBatch * 256; if (tid < residual) ++tHistVal; } const int lutVal = calc_lut(smem, tHistVal, tid); uint ires = (uint)convert_int_rte(lutScale * lutVal); lut[(ty * tilesX + tx) * dstStep + tid + dst_offset] = convert_uchar(clamp(ires, (uint)0, (uint)255)); } __kernel void transform(__global __const uchar * src, const int srcStep, const int src_offset, __global uchar * dst, const int dstStep, const int dst_offset, __global uchar * lut, const int lutStep, int lut_offset, const int cols, const int rows, const int2 tileSize, const int tilesX, const int tilesY) { const int x = get_global_id(0); const int y = get_global_id(1); if (x >= cols || y >= rows) return; const float tyf = (convert_float(y) / tileSize.y) - 0.5f; int ty1 = convert_int_rtn(tyf); int ty2 = ty1 + 1; const float ya = tyf - ty1; ty1 = max(ty1, 0); ty2 = min(ty2, tilesY - 1); const float txf = (convert_float(x) / tileSize.x) - 0.5f; int tx1 = convert_int_rtn(txf); int tx2 = tx1 + 1; const float xa = txf - tx1; tx1 = max(tx1, 0); tx2 = min(tx2, tilesX - 1); const int srcVal = src[mad24(y, srcStep, x + src_offset)]; float res = 0; res += lut[mad24(ty1 * tilesX + tx1, lutStep, srcVal + lut_offset)] * ((1.0f - xa) * (1.0f - ya)); res += lut[mad24(ty1 * tilesX + tx2, lutStep, srcVal + lut_offset)] * ((xa) * (1.0f - ya)); res += lut[mad24(ty2 * tilesX + tx1, lutStep, srcVal + lut_offset)] * ((1.0f - xa) * (ya)); res += lut[mad24(ty2 * tilesX + tx2, lutStep, srcVal + lut_offset)] * ((xa) * (ya)); uint ires = (uint)convert_int_rte(res); dst[mad24(y, dstStep, x + dst_offset)] = convert_uchar(clamp(ires, (uint)0, (uint)255)); }