#!/usr/bin/env python ''' K-means clusterization test ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 from numpy import random import sys PY3 = sys.version_info[0] == 3 if PY3: xrange = range from tests_common import NewOpenCVTests def make_gaussians(cluster_n, img_size): points = [] ref_distrs = [] sizes = [] for i in xrange(cluster_n): mean = (0.1 + 0.8*random.rand(2)) * img_size a = (random.rand(2, 2)-0.5)*img_size*0.1 cov = np.dot(a.T, a) + img_size*0.05*np.eye(2) n = 100 + random.randint(900) pts = random.multivariate_normal(mean, cov, n) points.append( pts ) ref_distrs.append( (mean, cov) ) sizes.append(n) points = np.float32( np.vstack(points) ) return points, ref_distrs, sizes def getMainLabelConfidence(labels, nLabels): n = len(labels) labelsDict = dict.fromkeys(range(nLabels), 0) labelsConfDict = dict.fromkeys(range(nLabels)) for i in range(n): labelsDict[labels[i][0]] += 1 for i in range(nLabels): labelsConfDict[i] = float(labelsDict[i]) / n return max(labelsConfDict.values()) class kmeans_test(NewOpenCVTests): def test_kmeans(self): np.random.seed(10) cluster_n = 5 img_size = 512 points, _, clusterSizes = make_gaussians(cluster_n, img_size) term_crit = (cv2.TERM_CRITERIA_EPS, 30, 0.1) ret, labels, centers = cv2.kmeans(points, cluster_n, None, term_crit, 10, 0) self.assertEqual(len(centers), cluster_n) offset = 0 for i in range(cluster_n): confidence = getMainLabelConfidence(labels[offset : (offset + clusterSizes[i])], cluster_n) offset += clusterSizes[i] self.assertGreater(confidence, 0.9)