/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" /****************************************************************************************\ * K-Nearest Neighbors Classifier * \****************************************************************************************/ // k Nearest Neighbors CvKNearest::CvKNearest() { samples = 0; clear(); } CvKNearest::~CvKNearest() { clear(); } CvKNearest::CvKNearest( const CvMat* _train_data, const CvMat* _responses, const CvMat* _sample_idx, bool _is_regression, int _max_k ) { samples = 0; train( _train_data, _responses, _sample_idx, _is_regression, _max_k, false ); } void CvKNearest::clear() { while( samples ) { CvVectors* next_samples = samples->next; cvFree( &samples->data.fl ); cvFree( &samples ); samples = next_samples; } var_count = 0; total = 0; max_k = 0; } int CvKNearest::get_max_k() const { return max_k; } int CvKNearest::get_var_count() const { return var_count; } bool CvKNearest::is_regression() const { return regression; } int CvKNearest::get_sample_count() const { return total; } bool CvKNearest::train( const CvMat* _train_data, const CvMat* _responses, const CvMat* _sample_idx, bool _is_regression, int _max_k, bool _update_base ) { bool ok = false; CvMat* responses = 0; CV_FUNCNAME( "CvKNearest::train" ); __BEGIN__; CvVectors* _samples; float** _data; int _count, _dims, _dims_all, _rsize; if( !_update_base ) clear(); // Prepare training data and related parameters. // Treat categorical responses as ordered - to prevent class label compression and // to enable entering new classes in the updates CV_CALL( cvPrepareTrainData( "CvKNearest::train", _train_data, CV_ROW_SAMPLE, _responses, CV_VAR_ORDERED, 0, _sample_idx, true, (const float***)&_data, &_count, &_dims, &_dims_all, &responses, 0, 0 )); if( _update_base && _dims != var_count ) CV_ERROR( CV_StsBadArg, "The newly added data have different dimensionality" ); if( !_update_base ) { if( _max_k < 1 ) CV_ERROR( CV_StsOutOfRange, "max_k must be a positive number" ); regression = _is_regression; var_count = _dims; max_k = _max_k; } _rsize = _count*sizeof(float); CV_CALL( _samples = (CvVectors*)cvAlloc( sizeof(*_samples) + _rsize )); _samples->next = samples; _samples->type = CV_32F; _samples->data.fl = _data; _samples->count = _count; total += _count; samples = _samples; memcpy( _samples + 1, responses->data.fl, _rsize ); ok = true; __END__; return ok; } void CvKNearest::find_neighbors_direct( const CvMat* _samples, int k, int start, int end, float* neighbor_responses, const float** neighbors, float* dist ) const { int i, j, count = end - start, k1 = 0, k2 = 0, d = var_count; CvVectors* s = samples; for( ; s != 0; s = s->next ) { int n = s->count; for( j = 0; j < n; j++ ) { for( i = 0; i < count; i++ ) { double sum = 0; Cv32suf si; const float* v = s->data.fl[j]; const float* u = (float*)(_samples->data.ptr + _samples->step*(start + i)); Cv32suf* dd = (Cv32suf*)(dist + i*k); float* nr; const float** nn; int t, ii, ii1; for( t = 0; t <= d - 4; t += 4 ) { double t0 = u[t] - v[t], t1 = u[t+1] - v[t+1]; double t2 = u[t+2] - v[t+2], t3 = u[t+3] - v[t+3]; sum += t0*t0 + t1*t1 + t2*t2 + t3*t3; } for( ; t < d; t++ ) { double t0 = u[t] - v[t]; sum += t0*t0; } si.f = (float)sum; for( ii = k1-1; ii >= 0; ii-- ) if( si.i > dd[ii].i ) break; if( ii >= k-1 ) continue; nr = neighbor_responses + i*k; nn = neighbors ? neighbors + (start + i)*k : 0; for( ii1 = k2 - 1; ii1 > ii; ii1-- ) { dd[ii1+1].i = dd[ii1].i; nr[ii1+1] = nr[ii1]; if( nn ) nn[ii1+1] = nn[ii1]; } dd[ii+1].i = si.i; nr[ii+1] = ((float*)(s + 1))[j]; if( nn ) nn[ii+1] = v; } k1 = MIN( k1+1, k ); k2 = MIN( k1, k-1 ); } } } float CvKNearest::write_results( int k, int k1, int start, int end, const float* neighbor_responses, const float* dist, CvMat* _results, CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const { float result = 0.f; int i, j, j1, count = end - start; double inv_scale = 1./k1; int rstep = _results && !CV_IS_MAT_CONT(_results->type) ? _results->step/sizeof(result) : 1; for( i = 0; i < count; i++ ) { const Cv32suf* nr = (const Cv32suf*)(neighbor_responses + i*k); float* dst; float r; if( _results || start+i == 0 ) { if( regression ) { double s = 0; for( j = 0; j < k1; j++ ) s += nr[j].f; r = (float)(s*inv_scale); } else { int prev_start = 0, best_count = 0, cur_count; Cv32suf best_val; for( j = 0; j < k1; j++ ) sort_buf[j].i = nr[j].i; for( j = k1-1; j > 0; j-- ) { bool swap_fl = false; for( j1 = 0; j1 < j; j1++ ) if( sort_buf[j1].i > sort_buf[j1+1].i ) { int t; CV_SWAP( sort_buf[j1].i, sort_buf[j1+1].i, t ); swap_fl = true; } if( !swap_fl ) break; } best_val.i = 0; for( j = 1; j <= k1; j++ ) if( j == k1 || sort_buf[j].i != sort_buf[j-1].i ) { cur_count = j - prev_start; if( best_count < cur_count ) { best_count = cur_count; best_val.i = sort_buf[j-1].i; } prev_start = j; } r = best_val.f; } if( start+i == 0 ) result = r; if( _results ) _results->data.fl[(start + i)*rstep] = r; } if( _neighbor_responses ) { dst = (float*)(_neighbor_responses->data.ptr + (start + i)*_neighbor_responses->step); for( j = 0; j < k1; j++ ) dst[j] = nr[j].f; for( ; j < k; j++ ) dst[j] = 0.f; } if( _dist ) { dst = (float*)(_dist->data.ptr + (start + i)*_dist->step); for( j = 0; j < k1; j++ ) dst[j] = dist[j + i*k]; for( ; j < k; j++ ) dst[j] = 0.f; } } return result; } float CvKNearest::find_nearest( const CvMat* _samples, int k, CvMat* _results, const float** _neighbors, CvMat* _neighbor_responses, CvMat* _dist ) const { float result = 0.f; bool local_alloc = false; float* buf = 0; const int max_blk_count = 128, max_buf_sz = 1 << 12; CV_FUNCNAME( "CvKNearest::find_nearest" ); __BEGIN__; int i, count, count_scale, blk_count0, blk_count = 0, buf_sz, k1; if( !samples ) CV_ERROR( CV_StsError, "The search tree must be constructed first using train method" ); if( !CV_IS_MAT(_samples) || CV_MAT_TYPE(_samples->type) != CV_32FC1 || _samples->cols != var_count ) CV_ERROR( CV_StsBadArg, "Input samples must be floating-point matrix (x)" ); if( _results && (!CV_IS_MAT(_results) || (_results->cols != 1 && _results->rows != 1) || _results->cols + _results->rows - 1 != _samples->rows) ) CV_ERROR( CV_StsBadArg, "The results must be 1d vector containing as much elements as the number of samples" ); if( _results && CV_MAT_TYPE(_results->type) != CV_32FC1 && (CV_MAT_TYPE(_results->type) != CV_32SC1 || regression)) CV_ERROR( CV_StsUnsupportedFormat, "The results must be floating-point or integer (in case of classification) vector" ); if( k < 1 || k > max_k ) CV_ERROR( CV_StsOutOfRange, "k must be within 1..max_k range" ); if( _neighbor_responses ) { if( !CV_IS_MAT(_neighbor_responses) || CV_MAT_TYPE(_neighbor_responses->type) != CV_32FC1 || _neighbor_responses->rows != _samples->rows || _neighbor_responses->cols != k ) CV_ERROR( CV_StsBadArg, "The neighbor responses (if present) must be floating-point matrix of x size" ); } if( _dist ) { if( !CV_IS_MAT(_dist) || CV_MAT_TYPE(_dist->type) != CV_32FC1 || _dist->rows != _samples->rows || _dist->cols != k ) CV_ERROR( CV_StsBadArg, "The distances from the neighbors (if present) must be floating-point matrix of x size" ); } count = _samples->rows; count_scale = k*2*sizeof(float); blk_count0 = MIN( count, max_blk_count ); buf_sz = MIN( blk_count0 * count_scale, max_buf_sz ); blk_count0 = MAX( buf_sz/count_scale, 1 ); blk_count0 += blk_count0 % 2; blk_count0 = MIN( blk_count0, count ); buf_sz = blk_count0 * count_scale + k*sizeof(float); k1 = get_sample_count(); k1 = MIN( k1, k ); if( buf_sz <= CV_MAX_LOCAL_SIZE ) { buf = (float*)cvStackAlloc( buf_sz ); local_alloc = true; } else CV_CALL( buf = (float*)cvAlloc( buf_sz )); for( i = 0; i < count; i += blk_count ) { blk_count = MIN( count - i, blk_count0 ); float* neighbor_responses = buf; float* dist = buf + blk_count*k; Cv32suf* sort_buf = (Cv32suf*)(dist + blk_count*k); find_neighbors_direct( _samples, k, i, i + blk_count, neighbor_responses, _neighbors, dist ); float r = write_results( k, k1, i, i + blk_count, neighbor_responses, dist, _results, _neighbor_responses, _dist, sort_buf ); if( i == 0 ) result = r; } __END__; if( !local_alloc ) cvFree( &buf ); return result; } using namespace cv; CvKNearest::CvKNearest( const Mat& _train_data, const Mat& _responses, const Mat& _sample_idx, bool _is_regression, int _max_k ) { samples = 0; train(_train_data, _responses, _sample_idx, _is_regression, _max_k, false ); } bool CvKNearest::train( const Mat& _train_data, const Mat& _responses, const Mat& _sample_idx, bool _is_regression, int _max_k, bool _update_base ) { CvMat tdata = _train_data, responses = _responses, sidx = _sample_idx; return train(&tdata, &responses, sidx.data.ptr ? &sidx : 0, _is_regression, _max_k, _update_base ); } float CvKNearest::find_nearest( const Mat& _samples, int k, Mat* _results, const float** _neighbors, Mat* _neighbor_responses, Mat* _dist ) const { CvMat s = _samples, results, *presults = 0, nresponses, *pnresponses = 0, dist, *pdist = 0; if( _results ) { if(!(_results->data && (_results->type() == CV_32F || (_results->type() == CV_32S && regression)) && (_results->cols == 1 || _results->rows == 1) || _results->cols + _results->rows - 1 == _samples.rows) ) _results->create(_samples.rows, 1, CV_32F); presults = &(results = *_results); } if( _neighbor_responses ) { if(!(_neighbor_responses->data && _neighbor_responses->type() == CV_32F && _neighbor_responses->cols == k && _neighbor_responses->rows == _samples.rows) ) _neighbor_responses->create(_samples.rows, k, CV_32F); pnresponses = &(nresponses = *_neighbor_responses); } if( _dist ) { if(!(_dist->data && _dist->type() == CV_32F && _dist->cols == k && _dist->rows == _samples.rows) ) _dist->create(_samples.rows, k, CV_32F); pdist = &(dist = *_dist); } return find_nearest(&s, k, presults, _neighbors, pnresponses, pdist ); } float CvKNearest::find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results, CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const { return find_nearest(samples, k, &results, 0, &neighborResponses, &dists); } /* End of file */