// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // Copyright (C) 2018-2019, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "test_precomp.hpp" #include "npy_blob.hpp" #include namespace opencv_test { namespace { template static std::string _tf(TString filename) { String rootFolder = "dnn/onnx/"; return findDataFile(rootFolder + filename, false); } class Test_ONNX_layers : public DNNTestLayer { public: enum Extension { npy, pb }; void testONNXModels(const String& basename, const Extension ext = npy, const double l1 = 0, const float lInf = 0, const bool useSoftmax = false) { String onnxmodel = _tf("models/" + basename + ".onnx"); Mat inp, ref; if (ext == npy) { inp = blobFromNPY(_tf("data/input_" + basename + ".npy")); ref = blobFromNPY(_tf("data/output_" + basename + ".npy")); } else if (ext == pb) { inp = readTensorFromONNX(_tf("data/input_" + basename + ".pb")); ref = readTensorFromONNX(_tf("data/output_" + basename + ".pb")); } else CV_Error(Error::StsUnsupportedFormat, "Unsupported extension"); checkBackend(&inp, &ref); Net net = readNetFromONNX(onnxmodel); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(inp); Mat out = net.forward(""); if (useSoftmax) { LayerParams lp; Net netSoftmax; netSoftmax.addLayerToPrev("softmaxLayer", "SoftMax", lp); netSoftmax.setPreferableBackend(DNN_BACKEND_OPENCV); netSoftmax.setInput(out); out = netSoftmax.forward(); netSoftmax.setInput(ref); ref = netSoftmax.forward(); } normAssert(ref, out, "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf); } }; TEST_P(Test_ONNX_layers, MaxPooling) { testONNXModels("maxpooling"); testONNXModels("two_maxpooling"); } TEST_P(Test_ONNX_layers, Convolution) { testONNXModels("convolution"); } TEST_P(Test_ONNX_layers, Two_convolution) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) throw SkipTestException("Test is disabled for MyriadX"); // 2018R5+ is failed #endif // Reference output values are in range [-0.855, 0.611] testONNXModels("two_convolution"); } TEST_P(Test_ONNX_layers, Deconvolution) { testONNXModels("deconvolution"); testONNXModels("two_deconvolution"); testONNXModels("deconvolution_group"); testONNXModels("deconvolution_output_shape"); } TEST_P(Test_ONNX_layers, Dropout) { testONNXModels("dropout"); } TEST_P(Test_ONNX_layers, Linear) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) throw SkipTestException(""); testONNXModels("linear"); } TEST_P(Test_ONNX_layers, ReLU) { testONNXModels("ReLU"); } TEST_P(Test_ONNX_layers, MaxPooling_Sigmoid) { testONNXModels("maxpooling_sigmoid"); } TEST_P(Test_ONNX_layers, Concatenation) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD)) throw SkipTestException(""); testONNXModels("concatenation"); } TEST_P(Test_ONNX_layers, AveragePooling) { testONNXModels("average_pooling"); } TEST_P(Test_ONNX_layers, BatchNormalization) { testONNXModels("batch_norm"); } TEST_P(Test_ONNX_layers, Transpose) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD)) throw SkipTestException(""); testONNXModels("transpose"); } TEST_P(Test_ONNX_layers, Multiplication) { if ((backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) || (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)) throw SkipTestException(""); testONNXModels("mul"); } TEST_P(Test_ONNX_layers, Constant) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) throw SkipTestException("Test is disabled for OpenVINO <= 2018R5 + MyriadX target"); #endif testONNXModels("constant"); } TEST_P(Test_ONNX_layers, Padding) { testONNXModels("padding"); } TEST_P(Test_ONNX_layers, Resize) { testONNXModels("resize_nearest"); } TEST_P(Test_ONNX_layers, MultyInputs) { const String model = _tf("models/multy_inputs.onnx"); Net net = readNetFromONNX(model); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat inp1 = blobFromNPY(_tf("data/input_multy_inputs_0.npy")); Mat inp2 = blobFromNPY(_tf("data/input_multy_inputs_1.npy")); Mat ref = blobFromNPY(_tf("data/output_multy_inputs.npy")); checkBackend(&inp1, &ref); net.setInput(inp1, "0"); net.setInput(inp2, "1"); Mat out = net.forward(); normAssert(ref, out, "", default_l1, default_lInf); } TEST_P(Test_ONNX_layers, DynamicReshape) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) throw SkipTestException(""); testONNXModels("dynamic_reshape"); } TEST_P(Test_ONNX_layers, Reshape) { testONNXModels("unsqueeze"); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_ONNX_layers, dnnBackendsAndTargets()); class Test_ONNX_nets : public Test_ONNX_layers {}; TEST_P(Test_ONNX_nets, Alexnet) { const String model = _tf("models/alexnet.onnx"); Net net = readNetFromONNX(model); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat inp = imread(_tf("../grace_hopper_227.png")); Mat ref = blobFromNPY(_tf("../caffe_alexnet_prob.npy")); checkBackend(&inp, &ref); net.setInput(blobFromImage(inp, 1.0f, Size(227, 227), Scalar(), false)); ASSERT_FALSE(net.empty()); Mat out = net.forward(); normAssert(out, ref, "", default_l1, default_lInf); } TEST_P(Test_ONNX_nets, Squeezenet) { testONNXModels("squeezenet", pb); } TEST_P(Test_ONNX_nets, Googlenet) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException(""); const String model = _tf("models/googlenet.onnx"); Net net = readNetFromONNX(model); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); std::vector images; images.push_back( imread(_tf("../googlenet_0.png")) ); images.push_back( imread(_tf("../googlenet_1.png")) ); Mat inp = blobFromImages(images, 1.0f, Size(), Scalar(), false); Mat ref = blobFromNPY(_tf("../googlenet_prob.npy")); checkBackend(&inp, &ref); net.setInput(inp); ASSERT_FALSE(net.empty()); Mat out = net.forward(); normAssert(ref, out, "", default_l1, default_lInf); } TEST_P(Test_ONNX_nets, CaffeNet) { testONNXModels("caffenet", pb); } TEST_P(Test_ONNX_nets, RCNN_ILSVRC13) { // Reference output values are in range [-4.992, -1.161] testONNXModels("rcnn_ilsvrc13", pb, 0.0045); } #ifdef OPENCV_32BIT_CONFIGURATION TEST_P(Test_ONNX_nets, DISABLED_VGG16) // memory usage >2Gb #else TEST_P(Test_ONNX_nets, VGG16) #endif { // output range: [-69; 72], after Softmax [0; 0.96] testONNXModels("vgg16", pb, default_l1, default_lInf, true); } #ifdef OPENCV_32BIT_CONFIGURATION TEST_P(Test_ONNX_nets, DISABLED_VGG16_bn) // memory usage >2Gb #else TEST_P(Test_ONNX_nets, VGG16_bn) #endif { // output range: [-16; 27], after Softmax [0; 0.67] const double lInf = (target == DNN_TARGET_MYRIAD) ? 0.038 : default_lInf; testONNXModels("vgg16-bn", pb, default_l1, lInf, true); } TEST_P(Test_ONNX_nets, ZFNet) { testONNXModels("zfnet512", pb); } TEST_P(Test_ONNX_nets, ResNet18v1) { // output range: [-16; 22], after Softmax [0, 0.51] testONNXModels("resnet18v1", pb, default_l1, default_lInf, true); } TEST_P(Test_ONNX_nets, ResNet50v1) { // output range: [-67; 75], after Softmax [0, 0.98] testONNXModels("resnet50v1", pb, default_l1, default_lInf, true); } TEST_P(Test_ONNX_nets, ResNet101_DUC_HDC) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException("Test is disabled for DLIE targets"); #endif #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) throw SkipTestException("Test is disabled for Myriad targets"); #endif if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL) throw SkipTestException("Test is disabled for OpenCL targets"); testONNXModels("resnet101_duc_hdc", pb); } TEST_P(Test_ONNX_nets, TinyYolov2) { if (cvtest::skipUnstableTests) throw SkipTestException("Skip unstable test"); #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16) ) throw SkipTestException("Test is disabled for DLIE OpenCL targets"); if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) throw SkipTestException("Test is disabled for MyriadX"); #endif // output range: [-11; 8] double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.017 : default_l1; double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.14 : default_lInf; testONNXModels("tiny_yolo2", pb, l1, lInf); } TEST_P(Test_ONNX_nets, CNN_MNIST) { // output range: [-1952; 6574], after Softmax [0; 1] testONNXModels("cnn_mnist", pb, default_l1, default_lInf, true); } TEST_P(Test_ONNX_nets, MobileNet_v2) { // output range: [-166; 317], after Softmax [0; 1] testONNXModels("mobilenetv2", pb, default_l1, default_lInf, true); } TEST_P(Test_ONNX_nets, LResNet100E_IR) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD)) throw SkipTestException(""); double l1 = default_l1; double lInf = default_lInf; // output range: [-3; 3] if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) { l1 = 0.009; lInf = 0.035; } else if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_CPU) { l1 = 4.5e-5; lInf = 1.9e-4; } testONNXModels("LResNet100E_IR", pb, l1, lInf); } TEST_P(Test_ONNX_nets, Emotion_ferplus) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) throw SkipTestException("Test is disabled for MyriadX"); #endif double l1 = default_l1; double lInf = default_lInf; // Output values are in range [-2.011, 2.111] if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) l1 = 0.007; else if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) { l1 = 0.021; lInf = 0.034; } else if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_CPU || target == DNN_TARGET_OPENCL)) { l1 = 2.4e-4; lInf = 6e-4; } testONNXModels("emotion_ferplus", pb, l1, lInf); } TEST_P(Test_ONNX_nets, Inception_v2) { testONNXModels("inception_v2", pb, default_l1, default_lInf, true); } TEST_P(Test_ONNX_nets, DenseNet121) { // output range: [-87; 138], after Softmax [0; 1] testONNXModels("densenet121", pb, default_l1, default_lInf, true); } TEST_P(Test_ONNX_nets, Inception_v1) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) throw SkipTestException("Test is disabled for Myriad targets"); #endif testONNXModels("inception_v1", pb); } TEST_P(Test_ONNX_nets, Shufflenet) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD)) throw SkipTestException(""); testONNXModels("shufflenet", pb); } INSTANTIATE_TEST_CASE_P(/**/, Test_ONNX_nets, dnnBackendsAndTargets()); }} // namespace