/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include using namespace cv; using namespace cv::gpu; #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() { throw_nogpu(); } cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const std::string&) { throw_nogpu(); } cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { throw_nogpu(); } bool cv::gpu::CascadeClassifier_GPU::empty() const { throw_nogpu(); return true; } bool cv::gpu::CascadeClassifier_GPU::load(const std::string&) { throw_nogpu(); return true; } Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const { throw_nogpu(); return Size();} void cv::gpu::CascadeClassifier_GPU::release() { throw_nogpu(); } int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat&, GpuMat&, double, int, Size) {throw_nogpu(); return -1;} int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat&, GpuMat&, Size, Size, double, int) {throw_nogpu(); return -1;} #else struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl { public: CascadeClassifierImpl(){} virtual ~CascadeClassifierImpl(){} virtual unsigned int process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors, bool findLargestObject, bool visualizeInPlace, cv::Size ncvMinSize, cv::Size maxObjectSize) = 0; virtual cv::Size getClassifierCvSize() const = 0; virtual bool read(const std::string& classifierAsXml) = 0; }; struct cv::gpu::CascadeClassifier_GPU::HaarCascade : cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl { public: HaarCascade() : lastAllocatedFrameSize(-1, -1) { ncvSetDebugOutputHandler(NCVDebugOutputHandler); } bool read(const std::string& filename) { ncvSafeCall( load(filename) ); return true; } NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors, bool findLargestObject, bool visualizeInPlace, cv::Size ncvMinSize, /*out*/unsigned int& numDetections) { calculateMemReqsAndAllocate(src.size()); NCVMemPtr src_beg; src_beg.ptr = (void*)src.ptr(); src_beg.memtype = NCVMemoryTypeDevice; NCVMemSegment src_seg; src_seg.begin = src_beg; src_seg.size = src.step * src.rows; NCVMatrixReuse d_src(src_seg, static_cast(devProp.textureAlignment), src.cols, src.rows, static_cast(src.step), true); ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE); CV_Assert(objects.rows == 1); NCVMemPtr objects_beg; objects_beg.ptr = (void*)objects.ptr(); objects_beg.memtype = NCVMemoryTypeDevice; NCVMemSegment objects_seg; objects_seg.begin = objects_beg; objects_seg.size = objects.step * objects.rows; NCVVectorReuse d_rects(objects_seg, objects.cols); ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE); NcvSize32u roi; roi.width = d_src.width(); roi.height = d_src.height(); NcvSize32u winMinSize(ncvMinSize.width, ncvMinSize.height); Ncv32u flags = 0; flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0; flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace : 0; ncvStat = ncvDetectObjectsMultiScale_device( d_src, roi, d_rects, numDetections, haar, *h_haarStages, *d_haarStages, *d_haarNodes, *d_haarFeatures, winMinSize, minNeighbors, scaleStep, 1, flags, *gpuAllocator, *cpuAllocator, devProp, 0); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); return NCV_SUCCESS; } unsigned int process(const GpuMat& image, GpuMat& objectsBuf, float scaleFactor, int minNeighbors, bool findLargestObject, bool visualizeInPlace, cv::Size minSize, cv::Size /*maxObjectSize*/) { CV_Assert( scaleFactor > 1 && image.depth() == CV_8U); const int defaultObjSearchNum = 100; if (objectsBuf.empty()) { objectsBuf.create(1, defaultObjSearchNum, DataType::type); } cv::Size ncvMinSize = this->getClassifierCvSize(); if (ncvMinSize.width < minSize.width && ncvMinSize.height < minSize.height) { ncvMinSize.width = minSize.width; ncvMinSize.height = minSize.height; } unsigned int numDetections; ncvSafeCall(this->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections)); return numDetections; } cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); } private: static void NCVDebugOutputHandler(const std::string &msg) { CV_Error(CV_GpuApiCallError, msg.c_str()); } NCVStatus load(const std::string& classifierFile) { int devId = cv::gpu::getDevice(); ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR); // Load the classifier from file (assuming its size is about 1 mb) using a simple allocator gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, static_cast(devProp.textureAlignment)); cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, static_cast(devProp.textureAlignment)); ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR); ncvAssertPrintReturn(cpuCascadeAllocator->isInitialized(), "Error creating cascade CPU allocator", NCV_CUDA_ERROR); Ncv32u haarNumStages, haarNumNodes, haarNumFeatures; ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR); h_haarStages = new NCVVectorAlloc(*cpuCascadeAllocator, haarNumStages); h_haarNodes = new NCVVectorAlloc(*cpuCascadeAllocator, haarNumNodes); h_haarFeatures = new NCVVectorAlloc(*cpuCascadeAllocator, haarNumFeatures); ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR); ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR); ncvAssertPrintReturn(h_haarFeatures->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR); ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", NCV_FILE_ERROR); d_haarStages = new NCVVectorAlloc(*gpuCascadeAllocator, haarNumStages); d_haarNodes = new NCVVectorAlloc(*gpuCascadeAllocator, haarNumNodes); d_haarFeatures = new NCVVectorAlloc(*gpuCascadeAllocator, haarNumFeatures); ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR); ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR); ncvAssertPrintReturn(d_haarFeatures->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR); ncvStat = h_haarStages->copySolid(*d_haarStages, 0); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR); ncvStat = h_haarNodes->copySolid(*d_haarNodes, 0); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR); ncvStat = h_haarFeatures->copySolid(*d_haarFeatures, 0); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR); return NCV_SUCCESS; } NCVStatus calculateMemReqsAndAllocate(const Size& frameSize) { if (lastAllocatedFrameSize == frameSize) { return NCV_SUCCESS; } // Calculate memory requirements and create real allocators NCVMemStackAllocator gpuCounter(static_cast(devProp.textureAlignment)); NCVMemStackAllocator cpuCounter(static_cast(devProp.textureAlignment)); ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR); ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", NCV_CUDA_ERROR); NCVMatrixAlloc d_src(gpuCounter, frameSize.width, frameSize.height); NCVMatrixAlloc h_src(cpuCounter, frameSize.width, frameSize.height); ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVVectorAlloc d_rects(gpuCounter, 100); ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NcvSize32u roi; roi.width = d_src.width(); roi.height = d_src.height(); Ncv32u numDetections; ncvStat = ncvDetectObjectsMultiScale_device(d_src, roi, d_rects, numDetections, haar, *h_haarStages, *d_haarStages, *d_haarNodes, *d_haarFeatures, haar.ClassifierSize, 4, 1.2f, 1, 0, gpuCounter, cpuCounter, devProp, 0); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), static_cast(devProp.textureAlignment)); cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), static_cast(devProp.textureAlignment)); ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR); ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR); lastAllocatedFrameSize = frameSize; return NCV_SUCCESS; } cudaDeviceProp devProp; NCVStatus ncvStat; Ptr gpuCascadeAllocator; Ptr cpuCascadeAllocator; Ptr > h_haarStages; Ptr > h_haarNodes; Ptr > h_haarFeatures; HaarClassifierCascadeDescriptor haar; Ptr > d_haarStages; Ptr > d_haarNodes; Ptr > d_haarFeatures; Size lastAllocatedFrameSize; Ptr gpuAllocator; Ptr cpuAllocator; virtual ~HaarCascade(){} }; cv::Size operator -(const cv::Size& a, const cv::Size& b) { return cv::Size(a.width - b.width, a.height - b.height); } cv::Size operator +(const cv::Size& a, const int& i) { return cv::Size(a.width + i, a.height + i); } cv::Size operator *(const cv::Size& a, const float& f) { return cv::Size(cvRound(a.width * f), cvRound(a.height * f)); } cv::Size operator /(const cv::Size& a, const float& f) { return cv::Size(cvRound(a.width / f), cvRound(a.height / f)); } bool operator <=(const cv::Size& a, const cv::Size& b) { return a.width <= b.width && a.height <= b.width; } struct PyrLavel { PyrLavel(int _order, float _scale, cv::Size frame, cv::Size window, cv::Size minObjectSize) { do { order = _order; scale = pow(_scale, order); sFrame = frame / scale; workArea = sFrame - window + 1; sWindow = window * scale; _order++; } while (sWindow <= minObjectSize); } bool isFeasible(cv::Size maxObj) { return workArea.width > 0 && workArea.height > 0 && sWindow <= maxObj; } PyrLavel next(float factor, cv::Size frame, cv::Size window, cv::Size minObjectSize) { return PyrLavel(order + 1, factor, frame, window, minObjectSize); } int order; float scale; cv::Size sFrame; cv::Size workArea; cv::Size sWindow; }; namespace cv { namespace gpu { namespace device { namespace lbp { void classifyPyramid(int frameW, int frameH, int windowW, int windowH, float initalScale, float factor, int total, const PtrStepSzb& mstages, const int nstages, const PtrStepSzi& mnodes, const PtrStepSzf& mleaves, const PtrStepSzi& msubsets, const PtrStepSzb& mfeatures, const int subsetSize, PtrStepSz objects, unsigned int* classified, PtrStepSzi integral); void connectedConmonents(PtrStepSz candidates, int ncandidates, PtrStepSz objects,int groupThreshold, float grouping_eps, unsigned int* nclasses); } }}} struct cv::gpu::CascadeClassifier_GPU::LbpCascade : cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl { public: struct Stage { int first; int ntrees; float threshold; }; LbpCascade(){} virtual ~LbpCascade(){} virtual unsigned int process(const GpuMat& image, GpuMat& objects, float scaleFactor, int groupThreshold, bool /*findLargestObject*/, bool /*visualizeInPlace*/, cv::Size minObjectSize, cv::Size maxObjectSize) { CV_Assert(scaleFactor > 1 && image.depth() == CV_8U); // const int defaultObjSearchNum = 100; const float grouping_eps = 0.2f; if( !objects.empty() && objects.depth() == CV_32S) objects.reshape(4, 1); else objects.create(1 , image.cols >> 4, CV_32SC4); // used for debug // candidates.setTo(cv::Scalar::all(0)); // objects.setTo(cv::Scalar::all(0)); if (maxObjectSize == cv::Size()) maxObjectSize = image.size(); allocateBuffers(image.size()); unsigned int classified = 0; GpuMat dclassified(1, 1, CV_32S); cudaSafeCall( cudaMemcpy(dclassified.ptr(), &classified, sizeof(int), cudaMemcpyHostToDevice) ); PyrLavel level(0, 1.0f, image.size(), NxM, minObjectSize); while (level.isFeasible(maxObjectSize)) { int acc = level.sFrame.width + 1; float iniScale = level.scale; cv::Size area = level.workArea; int step = 1 + (level.scale <= 2.f); int total = 0, prev = 0; while (acc <= integralFactor * (image.cols + 1) && level.isFeasible(maxObjectSize)) { // create sutable matrix headers GpuMat src = resuzeBuffer(cv::Rect(0, 0, level.sFrame.width, level.sFrame.height)); GpuMat sint = integral(cv::Rect(prev, 0, level.sFrame.width + 1, level.sFrame.height + 1)); GpuMat buff = integralBuffer; // generate integral for scale gpu::resize(image, src, level.sFrame, 0, 0, CV_INTER_LINEAR); gpu::integralBuffered(src, sint, buff); // calculate job int totalWidth = level.workArea.width / step; total += totalWidth * (level.workArea.height / step); // go to next pyramide level level = level.next(scaleFactor, image.size(), NxM, minObjectSize); area = level.workArea; step = (1 + (level.scale <= 2.f)); prev = acc; acc += level.sFrame.width + 1; } device::lbp::classifyPyramid(image.cols, image.rows, NxM.width - 1, NxM.height - 1, iniScale, scaleFactor, total, stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat, leaves_mat, subsets_mat, features_mat, subsetSize, candidates, dclassified.ptr(), integral); } if (groupThreshold <= 0 || objects.empty()) return 0; cudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) ); device::lbp::connectedConmonents(candidates, classified, objects, groupThreshold, grouping_eps, dclassified.ptr()); cudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) ); cudaSafeCall( cudaDeviceSynchronize() ); return classified; } virtual cv::Size getClassifierCvSize() const { return NxM; } bool read(const std::string& classifierAsXml) { FileStorage fs(classifierAsXml, FileStorage::READ); return fs.isOpened() ? read(fs.getFirstTopLevelNode()) : false; } private: void allocateBuffers(cv::Size frame) { if (frame == cv::Size()) return; if (resuzeBuffer.empty() || frame.width > resuzeBuffer.cols || frame.height > resuzeBuffer.rows) { resuzeBuffer.create(frame, CV_8UC1); integral.create(frame.height + 1, integralFactor * (frame.width + 1), CV_32SC1); NcvSize32u roiSize; roiSize.width = frame.width; roiSize.height = frame.height; cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) ); Ncv32u bufSize; ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) ); integralBuffer.create(1, bufSize, CV_8UC1); candidates.create(1 , frame.width >> 1, CV_32SC4); } } bool read(const FileNode &root) { const char *GPU_CC_STAGE_TYPE = "stageType"; const char *GPU_CC_FEATURE_TYPE = "featureType"; const char *GPU_CC_BOOST = "BOOST"; const char *GPU_CC_LBP = "LBP"; const char *GPU_CC_MAX_CAT_COUNT = "maxCatCount"; const char *GPU_CC_HEIGHT = "height"; const char *GPU_CC_WIDTH = "width"; const char *GPU_CC_STAGE_PARAMS = "stageParams"; const char *GPU_CC_MAX_DEPTH = "maxDepth"; const char *GPU_CC_FEATURE_PARAMS = "featureParams"; const char *GPU_CC_STAGES = "stages"; const char *GPU_CC_STAGE_THRESHOLD = "stageThreshold"; const float GPU_THRESHOLD_EPS = 1e-5f; const char *GPU_CC_WEAK_CLASSIFIERS = "weakClassifiers"; const char *GPU_CC_INTERNAL_NODES = "internalNodes"; const char *GPU_CC_LEAF_VALUES = "leafValues"; const char *GPU_CC_FEATURES = "features"; const char *GPU_CC_RECT = "rect"; std::string stageTypeStr = (std::string)root[GPU_CC_STAGE_TYPE]; CV_Assert(stageTypeStr == GPU_CC_BOOST); std::string featureTypeStr = (std::string)root[GPU_CC_FEATURE_TYPE]; CV_Assert(featureTypeStr == GPU_CC_LBP); NxM.width = (int)root[GPU_CC_WIDTH]; NxM.height = (int)root[GPU_CC_HEIGHT]; CV_Assert( NxM.height > 0 && NxM.width > 0 ); isStumps = ((int)(root[GPU_CC_STAGE_PARAMS][GPU_CC_MAX_DEPTH]) == 1) ? true : false; CV_Assert(isStumps); FileNode fn = root[GPU_CC_FEATURE_PARAMS]; if (fn.empty()) return false; ncategories = fn[GPU_CC_MAX_CAT_COUNT]; subsetSize = (ncategories + 31) / 32; nodeStep = 3 + ( ncategories > 0 ? subsetSize : 1 ); fn = root[GPU_CC_STAGES]; if (fn.empty()) return false; std::vector stages; stages.reserve(fn.size()); std::vector cl_trees; std::vector cl_nodes; std::vector cl_leaves; std::vector subsets; FileNodeIterator it = fn.begin(), it_end = fn.end(); for (size_t si = 0; it != it_end; si++, ++it ) { FileNode fns = *it; Stage st; st.threshold = (float)fns[GPU_CC_STAGE_THRESHOLD] - GPU_THRESHOLD_EPS; fns = fns[GPU_CC_WEAK_CLASSIFIERS]; if (fns.empty()) return false; st.ntrees = (int)fns.size(); st.first = (int)cl_trees.size(); stages.push_back(st);// (int, int, float) cl_trees.reserve(stages[si].first + stages[si].ntrees); // weak trees FileNodeIterator it1 = fns.begin(), it1_end = fns.end(); for ( ; it1 != it1_end; ++it1 ) { FileNode fnw = *it1; FileNode internalNodes = fnw[GPU_CC_INTERNAL_NODES]; FileNode leafValues = fnw[GPU_CC_LEAF_VALUES]; if ( internalNodes.empty() || leafValues.empty() ) return false; int nodeCount = (int)internalNodes.size()/nodeStep; cl_trees.push_back(nodeCount); cl_nodes.reserve((cl_nodes.size() + nodeCount) * 3); cl_leaves.reserve(cl_leaves.size() + leafValues.size()); if( subsetSize > 0 ) subsets.reserve(subsets.size() + nodeCount * subsetSize); // nodes FileNodeIterator iIt = internalNodes.begin(), iEnd = internalNodes.end(); for( ; iIt != iEnd; ) { cl_nodes.push_back((int)*(iIt++)); cl_nodes.push_back((int)*(iIt++)); cl_nodes.push_back((int)*(iIt++)); if( subsetSize > 0 ) for( int j = 0; j < subsetSize; j++, ++iIt ) subsets.push_back((int)*iIt); } // leaves iIt = leafValues.begin(), iEnd = leafValues.end(); for( ; iIt != iEnd; ++iIt ) cl_leaves.push_back((float)*iIt); } } fn = root[GPU_CC_FEATURES]; if( fn.empty() ) return false; std::vector features; features.reserve(fn.size() * 4); FileNodeIterator f_it = fn.begin(), f_end = fn.end(); for (; f_it != f_end; ++f_it) { FileNode rect = (*f_it)[GPU_CC_RECT]; FileNodeIterator r_it = rect.begin(); features.push_back(saturate_cast((int)*(r_it++))); features.push_back(saturate_cast((int)*(r_it++))); features.push_back(saturate_cast((int)*(r_it++))); features.push_back(saturate_cast((int)*(r_it++))); } // copy data structures on gpu stage_mat.upload(cv::Mat(1, (int) (stages.size() * sizeof(Stage)), CV_8UC1, (uchar*)&(stages[0]) )); trees_mat.upload(cv::Mat(cl_trees).reshape(1,1)); nodes_mat.upload(cv::Mat(cl_nodes).reshape(1,1)); leaves_mat.upload(cv::Mat(cl_leaves).reshape(1,1)); subsets_mat.upload(cv::Mat(subsets).reshape(1,1)); features_mat.upload(cv::Mat(features).reshape(4,1)); return true; } enum stage { BOOST = 0 }; enum feature { LBP = 1, HAAR = 2 }; static const stage stageType = BOOST; static const feature featureType = LBP; cv::Size NxM; bool isStumps; int ncategories; int subsetSize; int nodeStep; // gpu representation of classifier GpuMat stage_mat; GpuMat trees_mat; GpuMat nodes_mat; GpuMat leaves_mat; GpuMat subsets_mat; GpuMat features_mat; GpuMat integral; GpuMat integralBuffer; GpuMat resuzeBuffer; GpuMat candidates; static const int integralFactor = 4; }; cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() : findLargestObject(false), visualizeInPlace(false), impl(0) {} cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const std::string& filename) : findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); } cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { release(); } void cv::gpu::CascadeClassifier_GPU::release() { if (impl) { delete impl; impl = 0; } } bool cv::gpu::CascadeClassifier_GPU::empty() const { return impl == 0; } Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const { return this->empty() ? Size() : impl->getClassifierCvSize(); } int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor, int minNeighbors, Size minSize) { CV_Assert( !this->empty()); return impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, minSize, cv::Size()); } int cv::gpu::CascadeClassifier_GPU::detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize, double scaleFactor, int minNeighbors) { CV_Assert( !this->empty()); return impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, minSize, maxObjectSize); } bool cv::gpu::CascadeClassifier_GPU::load(const std::string& filename) { release(); std::string fext = filename.substr(filename.find_last_of(".") + 1); std::transform(fext.begin(), fext.end(), fext.begin(), ::tolower); if (fext == "nvbin") { impl = new HaarCascade(); return impl->read(filename); } FileStorage fs(filename, FileStorage::READ); if (!fs.isOpened()) { impl = new HaarCascade(); return impl->read(filename); } const char *GPU_CC_LBP = "LBP"; std::string featureTypeStr = (std::string)fs.getFirstTopLevelNode()["featureType"]; if (featureTypeStr == GPU_CC_LBP) impl = new LbpCascade(); else impl = new HaarCascade(); impl->read(filename); return !this->empty(); } #endif ////////////////////////////////////////////////////////////////////////////////////////////////////// #if defined (HAVE_CUDA) struct RectConvert { Rect operator()(const NcvRect32u& nr) const { return Rect(nr.x, nr.y, nr.width, nr.height); } NcvRect32u operator()(const Rect& nr) const { NcvRect32u rect; rect.x = nr.x; rect.y = nr.y; rect.width = nr.width; rect.height = nr.height; return rect; } }; void groupRectangles(std::vector &hypotheses, int groupThreshold, double eps, std::vector *weights) { std::vector rects(hypotheses.size()); std::transform(hypotheses.begin(), hypotheses.end(), rects.begin(), RectConvert()); if (weights) { std::vector weights_int; weights_int.assign(weights->begin(), weights->end()); cv::groupRectangles(rects, weights_int, groupThreshold, eps); } else { cv::groupRectangles(rects, groupThreshold, eps); } std::transform(rects.begin(), rects.end(), hypotheses.begin(), RectConvert()); hypotheses.resize(rects.size()); } NCVStatus loadFromXML(const std::string &filename, HaarClassifierCascadeDescriptor &haar, std::vector &haarStages, std::vector &haarClassifierNodes, std::vector &haarFeatures) { NCVStatus ncvStat; haar.NumStages = 0; haar.NumClassifierRootNodes = 0; haar.NumClassifierTotalNodes = 0; haar.NumFeatures = 0; haar.ClassifierSize.width = 0; haar.ClassifierSize.height = 0; haar.bHasStumpsOnly = true; haar.bNeedsTiltedII = false; Ncv32u curMaxTreeDepth; std::vector xmlFileCont; std::vector h_TmpClassifierNotRootNodes; haarStages.resize(0); haarClassifierNodes.resize(0); haarFeatures.resize(0); Ptr oldCascade = (CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0); if (oldCascade.empty()) { return NCV_HAAR_XML_LOADING_EXCEPTION; } haar.ClassifierSize.width = oldCascade->orig_window_size.width; haar.ClassifierSize.height = oldCascade->orig_window_size.height; int stagesCound = oldCascade->count; for(int s = 0; s < stagesCound; ++s) // by stages { HaarStage64 curStage; curStage.setStartClassifierRootNodeOffset(static_cast(haarClassifierNodes.size())); curStage.setStageThreshold(oldCascade->stage_classifier[s].threshold); int treesCount = oldCascade->stage_classifier[s].count; for(int t = 0; t < treesCount; ++t) // by trees { Ncv32u nodeId = 0; CvHaarClassifier* tree = &oldCascade->stage_classifier[s].classifier[t]; int nodesCount = tree->count; for(int n = 0; n < nodesCount; ++n) //by features { CvHaarFeature* feature = &tree->haar_feature[n]; HaarClassifierNode128 curNode; curNode.setThreshold(tree->threshold[n]); NcvBool bIsLeftNodeLeaf = false; NcvBool bIsRightNodeLeaf = false; HaarClassifierNodeDescriptor32 nodeLeft; if ( tree->left[n] <= 0 ) { Ncv32f leftVal = tree->alpha[-tree->left[n]]; ncvStat = nodeLeft.create(leftVal); ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat); bIsLeftNodeLeaf = true; } else { Ncv32u leftNodeOffset = tree->left[n]; nodeLeft.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1)); haar.bHasStumpsOnly = false; } curNode.setLeftNodeDesc(nodeLeft); HaarClassifierNodeDescriptor32 nodeRight; if ( tree->right[n] <= 0 ) { Ncv32f rightVal = tree->alpha[-tree->right[n]]; ncvStat = nodeRight.create(rightVal); ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat); bIsRightNodeLeaf = true; } else { Ncv32u rightNodeOffset = tree->right[n]; nodeRight.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1)); haar.bHasStumpsOnly = false; } curNode.setRightNodeDesc(nodeRight); Ncv32u tiltedVal = feature->tilted; haar.bNeedsTiltedII = (tiltedVal != 0); Ncv32u featureId = 0; for(int l = 0; l < CV_HAAR_FEATURE_MAX; ++l) //by rects { Ncv32u rectX = feature->rect[l].r.x; Ncv32u rectY = feature->rect[l].r.y; Ncv32u rectWidth = feature->rect[l].r.width; Ncv32u rectHeight = feature->rect[l].r.height; Ncv32f rectWeight = feature->rect[l].weight; if (rectWeight == 0/* && rectX == 0 &&rectY == 0 && rectWidth == 0 && rectHeight == 0*/) break; HaarFeature64 curFeature; ncvStat = curFeature.setRect(rectX, rectY, rectWidth, rectHeight, haar.ClassifierSize.width, haar.ClassifierSize.height); curFeature.setWeight(rectWeight); ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat); haarFeatures.push_back(curFeature); featureId++; } HaarFeatureDescriptor32 tmpFeatureDesc; ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, bIsLeftNodeLeaf, bIsRightNodeLeaf, featureId, static_cast(haarFeatures.size()) - featureId); ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat); curNode.setFeatureDesc(tmpFeatureDesc); if (!nodeId) { //root node haarClassifierNodes.push_back(curNode); curMaxTreeDepth = 1; } else { //other node h_TmpClassifierNotRootNodes.push_back(curNode); curMaxTreeDepth++; } nodeId++; } } curStage.setNumClassifierRootNodes(treesCount); haarStages.push_back(curStage); } //fill in cascade stats haar.NumStages = static_cast(haarStages.size()); haar.NumClassifierRootNodes = static_cast(haarClassifierNodes.size()); haar.NumClassifierTotalNodes = static_cast(haar.NumClassifierRootNodes + h_TmpClassifierNotRootNodes.size()); haar.NumFeatures = static_cast(haarFeatures.size()); //merge root and leaf nodes in one classifiers array Ncv32u offsetRoot = static_cast(haarClassifierNodes.size()); for (Ncv32u i=0; i