/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Jin Ma, jin@multicorewareinc.com // Xiaopeng Fu, fuxiaopeng2222@163.com // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "perf_precomp.hpp" using namespace perf; using namespace std; using namespace cv::ocl; using namespace cv; using std::tr1::tuple; using std::tr1::get; ////////////////////////////////// K-NEAREST NEIGHBOR //////////////////////////////////// static void genData(Mat& trainData, Size size, Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0) { trainData.create(size, CV_32FC1); randu(trainData, 1.0, 100.0); if (nClasses != 0) { trainLabel.create(size.height, 1, CV_8UC1); randu(trainLabel, 0, nClasses - 1); trainLabel.convertTo(trainLabel, CV_32FC1); } } typedef tuple KNNParamType; typedef TestBaseWithParam KNNFixture; PERF_TEST_P(KNNFixture, KNN, testing::Values(1000, 2000, 4000)) { KNNParamType params = GetParam(); const int rows = get<0>(params); int columns = 100; int k = rows/250; Mat trainData, trainLabels; Size size(columns, rows); genData(trainData, size, trainLabels, 3); Mat testData; genData(testData, size); Mat best_label; if (RUN_PLAIN_IMPL) { TEST_CYCLE() { CvKNearest knn_cpu; knn_cpu.train(trainData, trainLabels); knn_cpu.find_nearest(testData, k, &best_label); } } else if (RUN_OCL_IMPL) { cv::ocl::oclMat best_label_ocl; cv::ocl::oclMat testdata; testdata.upload(testData); OCL_TEST_CYCLE() { cv::ocl::KNearestNeighbour knn_ocl; knn_ocl.train(trainData, trainLabels); knn_ocl.find_nearest(testdata, k, best_label_ocl); } best_label_ocl.download(best_label); } else OCL_PERF_ELSE SANITY_CHECK(best_label); } typedef TestBaseWithParam > SVMFixture; // code is based on: samples\cpp\tutorial_code\ml\non_linear_svms\non_linear_svms.cpp PERF_TEST_P(SVMFixture, DISABLED_SVM, testing::Values(50, 100)) { const int NTRAINING_SAMPLES = get<0>(GetParam()); // Number of training samples per class #define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part const int WIDTH = 512, HEIGHT = 512; Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1); Mat labels (2*NTRAINING_SAMPLES, 1, CV_32FC1); RNG rng(100); // Random value generation class // Set up the linearly separable part of the training data int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES); // Generate random points for the class 1 Mat trainClass = trainData.rowRange(0, nLinearSamples); // The x coordinate of the points is in [0, 0.4) Mat c = trainClass.colRange(0, 1); rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH)); // The y coordinate of the points is in [0, 1) c = trainClass.colRange(1,2); rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); // Generate random points for the class 2 trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES); // The x coordinate of the points is in [0.6, 1] c = trainClass.colRange(0 , 1); rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH)); // The y coordinate of the points is in [0, 1) c = trainClass.colRange(1,2); rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); //------------------ Set up the non-linearly separable part of the training data --------------- // Generate random points for the classes 1 and 2 trainClass = trainData.rowRange( nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples); // The x coordinate of the points is in [0.4, 0.6) c = trainClass.colRange(0,1); rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH)); // The y coordinate of the points is in [0, 1) c = trainClass.colRange(1,2); rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); //------------------------- Set up the labels for the classes --------------------------------- labels.rowRange( 0, NTRAINING_SAMPLES).setTo(1); // Class 1 labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2 //------------------------ Set up the support vector machines parameters -------------------- CvSVMParams params; params.svm_type = SVM::C_SVC; params.C = 0.1; params.kernel_type = SVM::LINEAR; params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6); Mat dst = Mat::zeros(HEIGHT, WIDTH, CV_8UC1); Mat samples(WIDTH*HEIGHT, 2, CV_32FC1); int k = 0; for (int i = 0; i < HEIGHT; ++i) { for (int j = 0; j < WIDTH; ++j) { samples.at(k, 0) = (float)i; samples.at(k, 0) = (float)j; k++; } } Mat results(WIDTH*HEIGHT, 1, CV_32FC1); CvMat samples_ = samples; CvMat results_ = results; if (RUN_PLAIN_IMPL) { CvSVM svm; svm.train(trainData, labels, Mat(), Mat(), params); TEST_CYCLE() { svm.predict(&samples_, &results_); } } else if (RUN_OCL_IMPL) { CvSVM_OCL svm; svm.train(trainData, labels, Mat(), Mat(), params); OCL_TEST_CYCLE() { svm.predict(&samples_, &results_); } } else OCL_PERF_ELSE SANITY_CHECK_NOTHING(); }