/* slasd7.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int slasd7_(integer *icompq, integer *nl, integer *nr, integer *sqre, integer *k, real *d__, real *z__, real *zw, real *vf, real *vfw, real *vl, real *vlw, real *alpha, real *beta, real *dsigma, integer *idx, integer *idxp, integer *idxq, integer *perm, integer * givptr, integer *givcol, integer *ldgcol, real *givnum, integer * ldgnum, real *c__, real *s, integer *info) { /* System generated locals */ integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1; real r__1, r__2; /* Local variables */ integer i__, j, m, n, k2; real z1; integer jp; real eps, tau, tol; integer nlp1, nlp2, idxi, idxj; extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, integer *, real *, real *); integer idxjp, jprev; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); extern doublereal slapy2_(real *, real *), slamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *), slamrg_( integer *, integer *, real *, integer *, integer *, integer *); real hlftol; /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLASD7 merges the two sets of singular values together into a single */ /* sorted set. Then it tries to deflate the size of the problem. There */ /* are two ways in which deflation can occur: when two or more singular */ /* values are close together or if there is a tiny entry in the Z */ /* vector. For each such occurrence the order of the related */ /* secular equation problem is reduced by one. */ /* SLASD7 is called from SLASD6. */ /* Arguments */ /* ========= */ /* ICOMPQ (input) INTEGER */ /* Specifies whether singular vectors are to be computed */ /* in compact form, as follows: */ /* = 0: Compute singular values only. */ /* = 1: Compute singular vectors of upper */ /* bidiagonal matrix in compact form. */ /* NL (input) INTEGER */ /* The row dimension of the upper block. NL >= 1. */ /* NR (input) INTEGER */ /* The row dimension of the lower block. NR >= 1. */ /* SQRE (input) INTEGER */ /* = 0: the lower block is an NR-by-NR square matrix. */ /* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */ /* The bidiagonal matrix has */ /* N = NL + NR + 1 rows and */ /* M = N + SQRE >= N columns. */ /* K (output) INTEGER */ /* Contains the dimension of the non-deflated matrix, this is */ /* the order of the related secular equation. 1 <= K <=N. */ /* D (input/output) REAL array, dimension ( N ) */ /* On entry D contains the singular values of the two submatrices */ /* to be combined. On exit D contains the trailing (N-K) updated */ /* singular values (those which were deflated) sorted into */ /* increasing order. */ /* Z (output) REAL array, dimension ( M ) */ /* On exit Z contains the updating row vector in the secular */ /* equation. */ /* ZW (workspace) REAL array, dimension ( M ) */ /* Workspace for Z. */ /* VF (input/output) REAL array, dimension ( M ) */ /* On entry, VF(1:NL+1) contains the first components of all */ /* right singular vectors of the upper block; and VF(NL+2:M) */ /* contains the first components of all right singular vectors */ /* of the lower block. On exit, VF contains the first components */ /* of all right singular vectors of the bidiagonal matrix. */ /* VFW (workspace) REAL array, dimension ( M ) */ /* Workspace for VF. */ /* VL (input/output) REAL array, dimension ( M ) */ /* On entry, VL(1:NL+1) contains the last components of all */ /* right singular vectors of the upper block; and VL(NL+2:M) */ /* contains the last components of all right singular vectors */ /* of the lower block. On exit, VL contains the last components */ /* of all right singular vectors of the bidiagonal matrix. */ /* VLW (workspace) REAL array, dimension ( M ) */ /* Workspace for VL. */ /* ALPHA (input) REAL */ /* Contains the diagonal element associated with the added row. */ /* BETA (input) REAL */ /* Contains the off-diagonal element associated with the added */ /* row. */ /* DSIGMA (output) REAL array, dimension ( N ) */ /* Contains a copy of the diagonal elements (K-1 singular values */ /* and one zero) in the secular equation. */ /* IDX (workspace) INTEGER array, dimension ( N ) */ /* This will contain the permutation used to sort the contents of */ /* D into ascending order. */ /* IDXP (workspace) INTEGER array, dimension ( N ) */ /* This will contain the permutation used to place deflated */ /* values of D at the end of the array. On output IDXP(2:K) */ /* points to the nondeflated D-values and IDXP(K+1:N) */ /* points to the deflated singular values. */ /* IDXQ (input) INTEGER array, dimension ( N ) */ /* This contains the permutation which separately sorts the two */ /* sub-problems in D into ascending order. Note that entries in */ /* the first half of this permutation must first be moved one */ /* position backward; and entries in the second half */ /* must first have NL+1 added to their values. */ /* PERM (output) INTEGER array, dimension ( N ) */ /* The permutations (from deflation and sorting) to be applied */ /* to each singular block. Not referenced if ICOMPQ = 0. */ /* GIVPTR (output) INTEGER */ /* The number of Givens rotations which took place in this */ /* subproblem. Not referenced if ICOMPQ = 0. */ /* GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 ) */ /* Each pair of numbers indicates a pair of columns to take place */ /* in a Givens rotation. Not referenced if ICOMPQ = 0. */ /* LDGCOL (input) INTEGER */ /* The leading dimension of GIVCOL, must be at least N. */ /* GIVNUM (output) REAL array, dimension ( LDGNUM, 2 ) */ /* Each number indicates the C or S value to be used in the */ /* corresponding Givens rotation. Not referenced if ICOMPQ = 0. */ /* LDGNUM (input) INTEGER */ /* The leading dimension of GIVNUM, must be at least N. */ /* C (output) REAL */ /* C contains garbage if SQRE =0 and the C-value of a Givens */ /* rotation related to the right null space if SQRE = 1. */ /* S (output) REAL */ /* S contains garbage if SQRE =0 and the S-value of a Givens */ /* rotation related to the right null space if SQRE = 1. */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Ming Gu and Huan Ren, Computer Science Division, University of */ /* California at Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; --z__; --zw; --vf; --vfw; --vl; --vlw; --dsigma; --idx; --idxp; --idxq; --perm; givcol_dim1 = *ldgcol; givcol_offset = 1 + givcol_dim1; givcol -= givcol_offset; givnum_dim1 = *ldgnum; givnum_offset = 1 + givnum_dim1; givnum -= givnum_offset; /* Function Body */ *info = 0; n = *nl + *nr + 1; m = n + *sqre; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*nl < 1) { *info = -2; } else if (*nr < 1) { *info = -3; } else if (*sqre < 0 || *sqre > 1) { *info = -4; } else if (*ldgcol < n) { *info = -22; } else if (*ldgnum < n) { *info = -24; } if (*info != 0) { i__1 = -(*info); xerbla_("SLASD7", &i__1); return 0; } nlp1 = *nl + 1; nlp2 = *nl + 2; if (*icompq == 1) { *givptr = 0; } /* Generate the first part of the vector Z and move the singular */ /* values in the first part of D one position backward. */ z1 = *alpha * vl[nlp1]; vl[nlp1] = 0.f; tau = vf[nlp1]; for (i__ = *nl; i__ >= 1; --i__) { z__[i__ + 1] = *alpha * vl[i__]; vl[i__] = 0.f; vf[i__ + 1] = vf[i__]; d__[i__ + 1] = d__[i__]; idxq[i__ + 1] = idxq[i__] + 1; /* L10: */ } vf[1] = tau; /* Generate the second part of the vector Z. */ i__1 = m; for (i__ = nlp2; i__ <= i__1; ++i__) { z__[i__] = *beta * vf[i__]; vf[i__] = 0.f; /* L20: */ } /* Sort the singular values into increasing order */ i__1 = n; for (i__ = nlp2; i__ <= i__1; ++i__) { idxq[i__] += nlp1; /* L30: */ } /* DSIGMA, IDXC, IDXC, and ZW are used as storage space. */ i__1 = n; for (i__ = 2; i__ <= i__1; ++i__) { dsigma[i__] = d__[idxq[i__]]; zw[i__] = z__[idxq[i__]]; vfw[i__] = vf[idxq[i__]]; vlw[i__] = vl[idxq[i__]]; /* L40: */ } slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]); i__1 = n; for (i__ = 2; i__ <= i__1; ++i__) { idxi = idx[i__] + 1; d__[i__] = dsigma[idxi]; z__[i__] = zw[idxi]; vf[i__] = vfw[idxi]; vl[i__] = vlw[idxi]; /* L50: */ } /* Calculate the allowable deflation tolerence */ eps = slamch_("Epsilon"); /* Computing MAX */ r__1 = dabs(*alpha), r__2 = dabs(*beta); tol = dmax(r__1,r__2); /* Computing MAX */ r__2 = (r__1 = d__[n], dabs(r__1)); tol = eps * 64.f * dmax(r__2,tol); /* There are 2 kinds of deflation -- first a value in the z-vector */ /* is small, second two (or more) singular values are very close */ /* together (their difference is small). */ /* If the value in the z-vector is small, we simply permute the */ /* array so that the corresponding singular value is moved to the */ /* end. */ /* If two values in the D-vector are close, we perform a two-sided */ /* rotation designed to make one of the corresponding z-vector */ /* entries zero, and then permute the array so that the deflated */ /* singular value is moved to the end. */ /* If there are multiple singular values then the problem deflates. */ /* Here the number of equal singular values are found. As each equal */ /* singular value is found, an elementary reflector is computed to */ /* rotate the corresponding singular subspace so that the */ /* corresponding components of Z are zero in this new basis. */ *k = 1; k2 = n + 1; i__1 = n; for (j = 2; j <= i__1; ++j) { if ((r__1 = z__[j], dabs(r__1)) <= tol) { /* Deflate due to small z component. */ --k2; idxp[k2] = j; if (j == n) { goto L100; } } else { jprev = j; goto L70; } /* L60: */ } L70: j = jprev; L80: ++j; if (j > n) { goto L90; } if ((r__1 = z__[j], dabs(r__1)) <= tol) { /* Deflate due to small z component. */ --k2; idxp[k2] = j; } else { /* Check if singular values are close enough to allow deflation. */ if ((r__1 = d__[j] - d__[jprev], dabs(r__1)) <= tol) { /* Deflation is possible. */ *s = z__[jprev]; *c__ = z__[j]; /* Find sqrt(a**2+b**2) without overflow or */ /* destructive underflow. */ tau = slapy2_(c__, s); z__[j] = tau; z__[jprev] = 0.f; *c__ /= tau; *s = -(*s) / tau; /* Record the appropriate Givens rotation */ if (*icompq == 1) { ++(*givptr); idxjp = idxq[idx[jprev] + 1]; idxj = idxq[idx[j] + 1]; if (idxjp <= nlp1) { --idxjp; } if (idxj <= nlp1) { --idxj; } givcol[*givptr + (givcol_dim1 << 1)] = idxjp; givcol[*givptr + givcol_dim1] = idxj; givnum[*givptr + (givnum_dim1 << 1)] = *c__; givnum[*givptr + givnum_dim1] = *s; } srot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s); srot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s); --k2; idxp[k2] = jprev; jprev = j; } else { ++(*k); zw[*k] = z__[jprev]; dsigma[*k] = d__[jprev]; idxp[*k] = jprev; jprev = j; } } goto L80; L90: /* Record the last singular value. */ ++(*k); zw[*k] = z__[jprev]; dsigma[*k] = d__[jprev]; idxp[*k] = jprev; L100: /* Sort the singular values into DSIGMA. The singular values which */ /* were not deflated go into the first K slots of DSIGMA, except */ /* that DSIGMA(1) is treated separately. */ i__1 = n; for (j = 2; j <= i__1; ++j) { jp = idxp[j]; dsigma[j] = d__[jp]; vfw[j] = vf[jp]; vlw[j] = vl[jp]; /* L110: */ } if (*icompq == 1) { i__1 = n; for (j = 2; j <= i__1; ++j) { jp = idxp[j]; perm[j] = idxq[idx[jp] + 1]; if (perm[j] <= nlp1) { --perm[j]; } /* L120: */ } } /* The deflated singular values go back into the last N - K slots of */ /* D. */ i__1 = n - *k; scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1); /* Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and */ /* VL(M). */ dsigma[1] = 0.f; hlftol = tol / 2.f; if (dabs(dsigma[2]) <= hlftol) { dsigma[2] = hlftol; } if (m > n) { z__[1] = slapy2_(&z1, &z__[m]); if (z__[1] <= tol) { *c__ = 1.f; *s = 0.f; z__[1] = tol; } else { *c__ = z1 / z__[1]; *s = -z__[m] / z__[1]; } srot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s); srot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s); } else { if (dabs(z1) <= tol) { z__[1] = tol; } else { z__[1] = z1; } } /* Restore Z, VF, and VL. */ i__1 = *k - 1; scopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1); i__1 = n - 1; scopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1); i__1 = n - 1; scopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1); return 0; /* End of SLASD7 */ } /* slasd7_ */