// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "test_precomp.hpp" namespace opencv_test { namespace { const string FEATURES2D_DIR = "features2d"; const string IMAGE_FILENAME = "tsukuba.png"; const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors"; }} // namespace #include "test_descriptors_regression.impl.hpp" namespace opencv_test { namespace { /****************************************************************************************\ * Tests registrations * \****************************************************************************************/ TEST( Features2d_DescriptorExtractor_SIFT, regression ) { CV_DescriptorExtractorTest > test( "descriptor-sift", 1.0f, SIFT::create() ); test.safe_run(); } TEST( Features2d_DescriptorExtractor_ORB, regression ) { // TODO adjust the parameters below CV_DescriptorExtractorTest test( "descriptor-orb", #if CV_NEON (CV_DescriptorExtractorTest::DistanceType)25.f, #else (CV_DescriptorExtractorTest::DistanceType)12.f, #endif ORB::create() ); test.safe_run(); } TEST( Features2d_DescriptorExtractor, batch_ORB ) { string path = string(cvtest::TS::ptr()->get_data_path() + "detectors_descriptors_evaluation/images_datasets/graf"); vector imgs, descriptors; vector > keypoints; int i, n = 6; Ptr orb = ORB::create(); for( i = 0; i < n; i++ ) { string imgname = format("%s/img%d.png", path.c_str(), i+1); Mat img = imread(imgname, IMREAD_GRAYSCALE); imgs.push_back(img); } orb->detect(imgs, keypoints); orb->compute(imgs, keypoints, descriptors); ASSERT_EQ((int)keypoints.size(), n); ASSERT_EQ((int)descriptors.size(), n); for( i = 0; i < n; i++ ) { EXPECT_GT((int)keypoints[i].size(), 100); EXPECT_GT(descriptors[i].rows, 100); } } TEST( Features2d_DescriptorExtractor, batch_SIFT ) { string path = string(cvtest::TS::ptr()->get_data_path() + "detectors_descriptors_evaluation/images_datasets/graf"); vector imgs, descriptors; vector > keypoints; int i, n = 6; Ptr sift = SIFT::create(); for( i = 0; i < n; i++ ) { string imgname = format("%s/img%d.png", path.c_str(), i+1); Mat img = imread(imgname, IMREAD_GRAYSCALE); imgs.push_back(img); } sift->detect(imgs, keypoints); sift->compute(imgs, keypoints, descriptors); ASSERT_EQ((int)keypoints.size(), n); ASSERT_EQ((int)descriptors.size(), n); for( i = 0; i < n; i++ ) { EXPECT_GT((int)keypoints[i].size(), 100); EXPECT_GT(descriptors[i].rows, 100); } } class DescriptorImage : public TestWithParam { protected: virtual void SetUp() { pattern = GetParam(); } std::string pattern; }; TEST_P(DescriptorImage, no_crash) { vector fnames; glob(cvtest::TS::ptr()->get_data_path() + pattern, fnames, false); std::sort(fnames.begin(), fnames.end()); Ptr orb = ORB::create(); size_t n = fnames.size(); vector keypoints; Mat descriptors; orb->setMaxFeatures(5000); for(size_t i = 0; i < n; i++ ) { printf("%d. image: %s:\n", (int)i, fnames[i].c_str()); if( strstr(fnames[i].c_str(), "MP.png") != 0 ) { printf("\tskip\n"); continue; } bool checkCount = strstr(fnames[i].c_str(), "templ.png") == 0; Mat img = imread(fnames[i], -1); printf("\t%dx%d\n", img.cols, img.rows); #define TEST_DETECTOR(name, descriptor) \ keypoints.clear(); descriptors.release(); \ printf("\t" name "\n"); fflush(stdout); \ descriptor->detectAndCompute(img, noArray(), keypoints, descriptors); \ printf("\t\t\t(%d keypoints, descriptor size = %d)\n", (int)keypoints.size(), descriptors.cols); fflush(stdout); \ if (checkCount) \ { \ EXPECT_GT((int)keypoints.size(), 0); \ } \ ASSERT_EQ(descriptors.rows, (int)keypoints.size()); TEST_DETECTOR("ORB", orb); } } INSTANTIATE_TEST_CASE_P(Features2d, DescriptorImage, testing::Values( "shared/lena.png", "shared/box*.png", "shared/fruits*.png", "shared/airplane.png", "shared/graffiti.png", "shared/1_itseez-0001*.png", "shared/pic*.png", "shared/templ.png" ) ); }} // namespace