/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { const string FEATURES2D_DIR = "features2d"; const string IMAGE_FILENAME = "tsukuba.png"; const string DETECTOR_DIR = FEATURES2D_DIR + "/feature_detectors"; /****************************************************************************************\ * Regression tests for feature detectors comparing keypoints. * \****************************************************************************************/ class CV_FeatureDetectorTest : public cvtest::BaseTest { public: CV_FeatureDetectorTest( const string& _name, const Ptr& _fdetector ) : name(_name), fdetector(_fdetector) {} protected: bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 ); void compareKeypointSets( const vector& validKeypoints, const vector& calcKeypoints ); void emptyDataTest(); void regressionTest(); // TODO test of detect() with mask virtual void run( int ); string name; Ptr fdetector; }; void CV_FeatureDetectorTest::emptyDataTest() { // One image. Mat image; vector keypoints; try { fdetector->detect( image, keypoints ); } catch(...) { ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } if( !keypoints.empty() ) { ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } // Several images. vector images; vector > keypointCollection; try { fdetector->detect( images, keypointCollection ); } catch(...) { ts->printf( cvtest::TS::LOG, "detect() on empty image vector must not generate exception (2).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 ) { const float maxPtDif = 1.f; const float maxSizeDif = 1.f; const float maxAngleDif = 2.f; const float maxResponseDif = 0.1f; float dist = (float)cv::norm( p1.pt - p2.pt ); return (dist < maxPtDif && fabs(p1.size - p2.size) < maxSizeDif && abs(p1.angle - p2.angle) < maxAngleDif && abs(p1.response - p2.response) < maxResponseDif && p1.octave == p2.octave && p1.class_id == p2.class_id ); } void CV_FeatureDetectorTest::compareKeypointSets( const vector& validKeypoints, const vector& calcKeypoints ) { const float maxCountRatioDif = 0.01f; // Compare counts of validation and calculated keypoints. float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size(); if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif ) { ts->printf( cvtest::TS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d).\n", validKeypoints.size(), calcKeypoints.size() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } int progress = 0, progressCount = (int)(validKeypoints.size() * calcKeypoints.size()); int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size()); for( size_t v = 0; v < validKeypoints.size(); v++ ) { int nearestIdx = -1; float minDist = std::numeric_limits::max(); for( size_t c = 0; c < calcKeypoints.size(); c++ ) { progress = update_progress( progress, (int)(v*calcKeypoints.size() + c), progressCount, 0 ); float curDist = (float)cv::norm( calcKeypoints[c].pt - validKeypoints[v].pt ); if( curDist < minDist ) { minDist = curDist; nearestIdx = (int)c; } } assert( minDist >= 0 ); if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) ) badPointCount++; } ts->printf( cvtest::TS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n", badPointCount, validKeypoints.size(), calcKeypoints.size() ); if( badPointCount > 0.9 * commonPointCount ) { ts->printf( cvtest::TS::LOG, " - Bad accuracy!\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } ts->printf( cvtest::TS::LOG, " - OK\n" ); } void CV_FeatureDetectorTest::regressionTest() { assert( !fdetector.empty() ); string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz"; // Read the test image. Mat image = imread( imgFilename ); if( image.empty() ) { ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } FileStorage fs( resFilename, FileStorage::READ ); // Compute keypoints. vector calcKeypoints; fdetector->detect( image, calcKeypoints ); if( fs.isOpened() ) // Compare computed and valid keypoints. { // TODO compare saved feature detector params with current ones // Read validation keypoints set. vector validKeypoints; read( fs["keypoints"], validKeypoints ); if( validKeypoints.empty() ) { ts->printf( cvtest::TS::LOG, "Keypoints can not be read.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } compareKeypointSets( validKeypoints, calcKeypoints ); } else // Write detector parameters and computed keypoints as validation data. { fs.open( resFilename, FileStorage::WRITE ); if( !fs.isOpened() ) { ts->printf( cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } else { fs << "detector_params" << "{"; fdetector->write( fs ); fs << "}"; write( fs, "keypoints", calcKeypoints ); } } } void CV_FeatureDetectorTest::run( int /*start_from*/ ) { if( !fdetector ) { ts->printf( cvtest::TS::LOG, "Feature detector is empty.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } emptyDataTest(); regressionTest(); ts->set_failed_test_info( cvtest::TS::OK ); } /****************************************************************************************\ * Tests registrations * \****************************************************************************************/ TEST( Features2d_Detector_SIFT, regression ) { CV_FeatureDetectorTest test( "detector-sift", SIFT::create() ); test.safe_run(); } TEST( Features2d_Detector_BRISK, regression ) { CV_FeatureDetectorTest test( "detector-brisk", BRISK::create() ); test.safe_run(); } TEST( Features2d_Detector_FAST, regression ) { CV_FeatureDetectorTest test( "detector-fast", FastFeatureDetector::create() ); test.safe_run(); } TEST( Features2d_Detector_AGAST, regression ) { CV_FeatureDetectorTest test( "detector-agast", AgastFeatureDetector::create() ); test.safe_run(); } TEST( Features2d_Detector_GFTT, regression ) { CV_FeatureDetectorTest test( "detector-gftt", GFTTDetector::create() ); test.safe_run(); } TEST( Features2d_Detector_Harris, regression ) { Ptr gftt = GFTTDetector::create(); gftt->setHarrisDetector(true); CV_FeatureDetectorTest test( "detector-harris", gftt); test.safe_run(); } TEST( Features2d_Detector_MSER, DISABLED_regression ) { CV_FeatureDetectorTest test( "detector-mser", MSER::create() ); test.safe_run(); } TEST( Features2d_Detector_ORB, regression ) { CV_FeatureDetectorTest test( "detector-orb", ORB::create() ); test.safe_run(); } TEST( Features2d_Detector_KAZE, regression ) { CV_FeatureDetectorTest test( "detector-kaze", KAZE::create() ); test.safe_run(); } TEST( Features2d_Detector_AKAZE, regression ) { CV_FeatureDetectorTest test( "detector-akaze", AKAZE::create() ); test.safe_run(); } TEST( Features2d_Detector_AKAZE_DESCRIPTOR_KAZE, regression ) { CV_FeatureDetectorTest test( "detector-akaze-with-kaze-desc", AKAZE::create(AKAZE::DESCRIPTOR_KAZE) ); test.safe_run(); } }} // namespace