#!/usr/bin/env python ''' Texture flow direction estimation. Sample shows how cv2.cornerEigenValsAndVecs function can be used to estimate image texture flow direction. ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 import sys from tests_common import NewOpenCVTests class texture_flow_test(NewOpenCVTests): def test_texture_flow(self): img = self.get_sample('samples/cpp/pic6.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) h, w = img.shape[:2] eigen = cv2.cornerEigenValsAndVecs(gray, 15, 3) eigen = eigen.reshape(h, w, 3, 2) # [[e1, e2], v1, v2] flow = eigen[:,:,2] vis = img.copy() vis[:] = (192 + np.uint32(vis)) / 2 d = 80 points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2) textureVectors = [] for x, y in np.int32(points): textureVectors.append(np.int32(flow[y, x]*d)) eps = 0.05 testTextureVectors = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [-38, 70], [-79, 3], [0, 0], [0, 0], [-39, 69], [-79, -1], [0, 0], [0, 0], [0, -79], [17, -78], [-48, -63], [65, -46], [-69, -39], [-48, -63]] for i in range(len(testTextureVectors)): self.assertLessEqual(cv2.norm(textureVectors[i] - testTextureVectors[i], cv2.NORM_L2), eps)