/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #if defined __clang__ # pragma GCC diagnostic ignored "-Wdelete-non-virtual-dtor" #endif #include "precomp.hpp" #include "opencv2/videostab/stabilizer.hpp" using namespace std; namespace cv { namespace videostab { StabilizerBase::StabilizerBase() { setLog(new NullLog()); setFrameSource(new NullFrameSource()); setMotionEstimator(new PyrLkRobustMotionEstimator()); setDeblurer(new NullDeblurer()); setInpainter(new NullInpainter()); setRadius(15); setTrimRatio(0); setCorrectionForInclusion(false); setBorderMode(BORDER_REPLICATE); } void StabilizerBase::setUp(int cacheSize, const Mat &frame) { InpainterBase *_inpainter = static_cast(inpainter_); doInpainting_ = dynamic_cast(_inpainter) == 0; if (doInpainting_) { inpainter_->setRadius(radius_); inpainter_->setFrames(frames_); inpainter_->setMotions(motions_); inpainter_->setStabilizedFrames(stabilizedFrames_); inpainter_->setStabilizationMotions(stabilizationMotions_); inpainter_->update(); } DeblurerBase *deblurer = static_cast(deblurer_); doDeblurring_ = dynamic_cast(deblurer) == 0; if (doDeblurring_) { blurrinessRates_.resize(cacheSize); float blurriness = calcBlurriness(frame); for (int i = -radius_; i <= 0; ++i) at(i, blurrinessRates_) = blurriness; deblurer_->setRadius(radius_); deblurer_->setFrames(frames_); deblurer_->setMotions(motions_); deblurer_->setBlurrinessRates(blurrinessRates_); deblurer_->update(); } log_->print("processing frames"); } Mat StabilizerBase::nextStabilizedFrame() { if (curStabilizedPos_ == curPos_ && curStabilizedPos_ != -1) return Mat(); // we've processed all frames already bool processed; do processed = doOneIteration(); while (processed && curStabilizedPos_ == -1); if (curStabilizedPos_ == -1) return Mat(); // frame source is empty const Mat &stabilizedFrame = at(curStabilizedPos_, stabilizedFrames_); int dx = static_cast(floor(trimRatio_ * stabilizedFrame.cols)); int dy = static_cast(floor(trimRatio_ * stabilizedFrame.rows)); return stabilizedFrame(Rect(dx, dy, stabilizedFrame.cols - 2*dx, stabilizedFrame.rows - 2*dy)); } bool StabilizerBase::doOneIteration() { Mat frame = frameSource_->nextFrame(); if (!frame.empty()) { curPos_++; if (curPos_ > 0) { at(curPos_, frames_) = frame; if (doDeblurring_) at(curPos_, blurrinessRates_) = calcBlurriness(frame); estimateMotion(); if (curPos_ >= radius_) { curStabilizedPos_ = curPos_ - radius_; stabilizeFrame(); } } else setUp(frame); log_->print("."); return true; } if (curStabilizedPos_ < curPos_) { curStabilizedPos_++; at(curStabilizedPos_ + radius_, frames_) = at(curPos_, frames_); at(curStabilizedPos_ + radius_ - 1, motions_) = at(curPos_ - 1, motions_); stabilizeFrame(); log_->print("."); return true; } return false; } void StabilizerBase::stabilizeFrame(const Mat &stabilizationMotion) { Mat stabilizationMotion_; if (doCorrectionForInclusion_) stabilizationMotion_ = ensureInclusionConstraint(stabilizationMotion, frameSize_, trimRatio_); else stabilizationMotion_ = stabilizationMotion.clone(); at(curStabilizedPos_, stabilizationMotions_) = stabilizationMotion_; if (doDeblurring_) { at(curStabilizedPos_, frames_).copyTo(preProcessedFrame_); deblurer_->deblur(curStabilizedPos_, preProcessedFrame_); } else preProcessedFrame_ = at(curStabilizedPos_, frames_); // apply stabilization transformation warpAffine( preProcessedFrame_, at(curStabilizedPos_, stabilizedFrames_), stabilizationMotion_(Rect(0,0,3,2)), frameSize_, INTER_LINEAR, borderMode_); if (doInpainting_) { warpAffine( frameMask_, at(curStabilizedPos_, stabilizedMasks_), stabilizationMotion_(Rect(0,0,3,2)), frameSize_, INTER_NEAREST); erode(at(curStabilizedPos_, stabilizedMasks_), at(curStabilizedPos_, stabilizedMasks_), Mat()); at(curStabilizedPos_, stabilizedMasks_).copyTo(inpaintingMask_); inpainter_->inpaint( curStabilizedPos_, at(curStabilizedPos_, stabilizedFrames_), inpaintingMask_); } } OnePassStabilizer::OnePassStabilizer() { setMotionFilter(new GaussianMotionFilter()); resetImpl(); } void OnePassStabilizer::resetImpl() { curPos_ = -1; curStabilizedPos_ = -1; frames_.clear(); motions_.clear(); stabilizedFrames_.clear(); stabilizationMotions_.clear(); doDeblurring_ = false; doInpainting_ = false; } void OnePassStabilizer::setUp(Mat &firstFrame) { frameSize_ = firstFrame.size(); frameMask_.create(frameSize_, CV_8U); frameMask_.setTo(255); int cacheSize = 2*radius_ + 1; frames_.resize(cacheSize); stabilizedFrames_.resize(cacheSize); stabilizedMasks_.resize(cacheSize); motions_.resize(cacheSize); stabilizationMotions_.resize(cacheSize); for (int i = -radius_; i < 0; ++i) { at(i, motions_) = Mat::eye(3, 3, CV_32F); at(i, frames_) = firstFrame; } at(0, frames_) = firstFrame; motionFilter_->setRadius(radius_); motionFilter_->update(); StabilizerBase::setUp(cacheSize, firstFrame); } void OnePassStabilizer::estimateMotion() { at(curPos_ - 1, motions_) = motionEstimator_->estimate( at(curPos_ - 1, frames_), at(curPos_, frames_)); } void OnePassStabilizer::stabilizeFrame() { Mat stabilizationMotion = motionFilter_->stabilize(curStabilizedPos_, &motions_[0], (int)motions_.size()); StabilizerBase::stabilizeFrame(stabilizationMotion); } TwoPassStabilizer::TwoPassStabilizer() { setMotionStabilizer(new GaussianMotionFilter()); setEstimateTrimRatio(false); resetImpl(); } Mat TwoPassStabilizer::nextFrame() { runPrePassIfNecessary(); return StabilizerBase::nextStabilizedFrame(); } vector TwoPassStabilizer::motions() const { if (frameCount_ == 0) return vector(); vector res(frameCount_ - 1); copy(motions_.begin(), motions_.begin() + frameCount_ - 1, res.begin()); return res; } void TwoPassStabilizer::resetImpl() { isPrePassDone_ = false; frameCount_ = 0; curPos_ = -1; curStabilizedPos_ = -1; frames_.clear(); motions_.clear(); stabilizedFrames_.clear(); stabilizationMotions_.clear(); doDeblurring_ = false; doInpainting_ = false; } void TwoPassStabilizer::runPrePassIfNecessary() { if (!isPrePassDone_) { log_->print("first pass: estimating motions"); Mat prevFrame, frame; while (!(frame = frameSource_->nextFrame()).empty()) { if (frameCount_ > 0) motions_.push_back(motionEstimator_->estimate(prevFrame, frame)); else { frameSize_ = frame.size(); frameMask_.create(frameSize_, CV_8U); frameMask_.setTo(255); } prevFrame = frame; frameCount_++; log_->print("."); } for (int i = 0; i < radius_; ++i) motions_.push_back(Mat::eye(3, 3, CV_32F)); log_->print("\n"); IMotionStabilizer *_motionStabilizer = static_cast(motionStabilizer_); MotionFilterBase *motionFilterBase = dynamic_cast(_motionStabilizer); if (motionFilterBase) { motionFilterBase->setRadius(radius_); motionFilterBase->update(); } stabilizationMotions_.resize(frameCount_); motionStabilizer_->stabilize(&motions_[0], frameCount_, &stabilizationMotions_[0]); if (mustEstTrimRatio_) { trimRatio_ = 0; for (int i = 0; i < frameCount_; ++i) { Mat S = stabilizationMotions_[i]; trimRatio_ = std::max(trimRatio_, estimateOptimalTrimRatio(S, frameSize_)); } log_->print("estimated trim ratio: %f\n", static_cast(trimRatio_)); } isPrePassDone_ = true; frameSource_->reset(); } } void TwoPassStabilizer::setUp(Mat &firstFrame) { int cacheSize = 2*radius_ + 1; frames_.resize(cacheSize); stabilizedFrames_.resize(cacheSize); stabilizedMasks_.resize(cacheSize); for (int i = -radius_; i <= 0; ++i) at(i, frames_) = firstFrame; StabilizerBase::setUp(cacheSize, firstFrame); } void TwoPassStabilizer::stabilizeFrame() { StabilizerBase::stabilizeFrame(stabilizationMotions_[curStabilizedPos_]); } } // namespace videostab } // namespace cv