/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; using namespace std; #if !defined (HAVE_CUDA) cv::gpu::BruteForceMatcher_GPU_base::BruteForceMatcher_GPU_base(DistType) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::add(const vector&) { throw_nogpu(); } const vector& cv::gpu::BruteForceMatcher_GPU_base::getTrainDescriptors() const { throw_nogpu(); return trainDescCollection; } void cv::gpu::BruteForceMatcher_GPU_base::clear() { throw_nogpu(); } bool cv::gpu::BruteForceMatcher_GPU_base::empty() const { throw_nogpu(); return true; } bool cv::gpu::BruteForceMatcher_GPU_base::isMaskSupported() const { throw_nogpu(); return true; } void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, const GpuMat&, vector&) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, const GpuMat&, vector&, const GpuMat&) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat&, GpuMat&, const vector&) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, const GpuMat&, const GpuMat&, std::vector&) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, std::vector&, const std::vector&) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, const GpuMat&) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat&, const GpuMat&, std::vector< std::vector >&, bool) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, std::vector< std::vector >&, int, const GpuMat&, bool) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, std::vector< std::vector >&, int, const std::vector&, bool) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, const GpuMat&) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat&, const GpuMat&, const GpuMat&, std::vector< std::vector >&, bool) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, const GpuMat&, std::vector< std::vector >&, float, const GpuMat&, bool) { throw_nogpu(); } void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, std::vector< std::vector >&, float, const std::vector&, bool) { throw_nogpu(); } #else /* !defined (HAVE_CUDA) */ namespace cv { namespace gpu { namespace bfmatcher { template void matchSingleL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance); template void matchSingleL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance); template void matchCollectionL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance); template void matchCollectionL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance); template void knnMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist); template void knnMatchL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist); template void radiusMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance); template void radiusMatchL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance); }}} cv::gpu::BruteForceMatcher_GPU_base::BruteForceMatcher_GPU_base(DistType distType_) : distType(distType_) { } //////////////////////////////////////////////////////////////////// // Train collection void cv::gpu::BruteForceMatcher_GPU_base::add(const vector& descCollection) { trainDescCollection.insert(trainDescCollection.end(), descCollection.begin(), descCollection.end()); } const vector& cv::gpu::BruteForceMatcher_GPU_base::getTrainDescriptors() const { return trainDescCollection; } void cv::gpu::BruteForceMatcher_GPU_base::clear() { trainDescCollection.clear(); } bool cv::gpu::BruteForceMatcher_GPU_base::empty() const { return trainDescCollection.empty(); } bool cv::gpu::BruteForceMatcher_GPU_base::isMaskSupported() const { return true; } //////////////////////////////////////////////////////////////////// // Match void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat& queryDescs, const GpuMat& trainDescs, GpuMat& trainIdx, GpuMat& distance, const GpuMat& mask) { if (queryDescs.empty() || trainDescs.empty()) return; using namespace cv::gpu::bfmatcher; typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance); static const match_caller_t match_callers[2][8] = { { matchSingleL1_gpu, matchSingleL1_gpu, matchSingleL1_gpu, matchSingleL1_gpu, matchSingleL1_gpu, matchSingleL1_gpu, 0, 0 }, { matchSingleL2_gpu, matchSingleL2_gpu, matchSingleL2_gpu, matchSingleL2_gpu, matchSingleL2_gpu, matchSingleL2_gpu, 0, 0 } }; CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F); CV_Assert(trainDescs.cols == queryDescs.cols && trainDescs.type() == queryDescs.type()); const int nQuery = queryDescs.rows; trainIdx.create(1, nQuery, CV_32S); distance.create(1, nQuery, CV_32F); match_caller_t func = match_callers[distType][queryDescs.depth()]; CV_Assert(func != 0); // For single train there is no need to save imgIdx, so we just save imgIdx to trainIdx. // trainIdx store after imgIdx, so we doesn't lose it value. func(queryDescs, trainDescs, mask, trainIdx, trainIdx, distance); } void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, const GpuMat& distance, vector& matches) { if (trainIdx.empty() || distance.empty()) return; CV_Assert(trainIdx.type() == CV_32SC1 && trainIdx.isContinuous()); CV_Assert(distance.type() == CV_32FC1 && distance.isContinuous() && distance.size().area() == trainIdx.size().area()); const int nQuery = trainIdx.cols; Mat trainIdxCPU = trainIdx; Mat distanceCPU = distance; matches.clear(); matches.reserve(nQuery); const int* trainIdx_ptr = trainIdxCPU.ptr(); const float* distance_ptr = distanceCPU.ptr(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr) { int trainIdx = *trainIdx_ptr; if (trainIdx == -1) continue; float distance = *distance_ptr; DMatch m(queryIdx, trainIdx, 0, distance); matches.push_back(m); } } void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, const GpuMat& trainDescs, vector& matches, const GpuMat& mask) { GpuMat trainIdx, distance; matchSingle(queryDescs, trainDescs, trainIdx, distance, mask); matchDownload(trainIdx, distance, matches); } void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const vector& masks) { if (empty()) return; if (masks.empty()) { Mat trainCollectionCPU(1, trainDescCollection.size(), CV_8UC(sizeof(DevMem2D))); for (size_t i = 0; i < trainDescCollection.size(); ++i) { const GpuMat& trainDescs = trainDescCollection[i]; trainCollectionCPU.ptr(0)[i] = trainDescs; } trainCollection.upload(trainCollectionCPU); } else { CV_Assert(masks.size() == trainDescCollection.size()); Mat trainCollectionCPU(1, trainDescCollection.size(), CV_8UC(sizeof(DevMem2D))); Mat maskCollectionCPU(1, trainDescCollection.size(), CV_8UC(sizeof(PtrStep))); for (size_t i = 0; i < trainDescCollection.size(); ++i) { const GpuMat& trainDescs = trainDescCollection[i]; const GpuMat& mask = masks[i]; CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.cols == trainDescs.rows)); trainCollectionCPU.ptr(0)[i] = trainDescs; maskCollectionCPU.ptr(0)[i] = mask; } trainCollection.upload(trainCollectionCPU); maskCollection.upload(maskCollectionCPU); } } void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat& queryDescs, const GpuMat& trainCollection, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& maskCollection) { if (queryDescs.empty() || trainCollection.empty()) return; using namespace cv::gpu::bfmatcher; typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance); static const match_caller_t match_callers[2][8] = { { matchCollectionL1_gpu, matchCollectionL1_gpu, matchCollectionL1_gpu, matchCollectionL1_gpu, matchCollectionL1_gpu, matchCollectionL1_gpu, 0, 0 }, { matchCollectionL2_gpu, matchCollectionL2_gpu, matchCollectionL2_gpu, matchCollectionL2_gpu, matchCollectionL2_gpu, matchCollectionL2_gpu, 0, 0 } }; CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F); const int nQuery = queryDescs.rows; trainIdx.create(1, nQuery, CV_32S); imgIdx.create(1, nQuery, CV_32S); distance.create(1, nQuery, CV_32F); match_caller_t func = match_callers[distType][queryDescs.depth()]; CV_Assert(func != 0); func(queryDescs, trainCollection, maskCollection, trainIdx, imgIdx, distance); } void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, vector& matches) { if (trainIdx.empty() || imgIdx.empty() || distance.empty()) return; CV_Assert(trainIdx.type() == CV_32SC1 && trainIdx.isContinuous()); CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.isContinuous()); CV_Assert(distance.type() == CV_32FC1 && distance.isContinuous()); const int nQuery = trainIdx.cols; Mat trainIdxCPU = trainIdx; Mat imgIdxCPU = imgIdx; Mat distanceCPU = distance; matches.clear(); matches.reserve(nQuery); const int* trainIdx_ptr = trainIdxCPU.ptr(); const int* imgIdx_ptr = imgIdxCPU.ptr(); const float* distance_ptr = distanceCPU.ptr(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr) { int trainIdx = *trainIdx_ptr; if (trainIdx == -1) continue; int imgIdx = *imgIdx_ptr; float distance = *distance_ptr; DMatch m(queryIdx, trainIdx, imgIdx, distance); matches.push_back(m); } } void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, vector& matches, const vector& masks) { GpuMat trainCollection; GpuMat maskCollection; makeGpuCollection(trainCollection, maskCollection, masks); GpuMat trainIdx, imgIdx, distance; matchCollection(queryDescs, trainCollection, trainIdx, imgIdx, distance, maskCollection); matchDownload(trainIdx, imgIdx, distance, matches); } //////////////////////////////////////////////////////////////////// // KnnMatch void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs, GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask) { if (queryDescs.empty() || trainDescs.empty()) return; using namespace cv::gpu::bfmatcher; typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist); static const match_caller_t match_callers[2][8] = { { knnMatchL1_gpu, knnMatchL1_gpu, knnMatchL1_gpu, knnMatchL1_gpu, knnMatchL1_gpu, knnMatchL1_gpu, 0, 0 }, { knnMatchL2_gpu, knnMatchL2_gpu, knnMatchL2_gpu, knnMatchL2_gpu, knnMatchL2_gpu, knnMatchL2_gpu, 0, 0 } }; CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F); CV_Assert(trainDescs.type() == queryDescs.type() && trainDescs.cols == queryDescs.cols); const int nQuery = queryDescs.rows; const int nTrain = trainDescs.rows; trainIdx.create(nQuery, k, CV_32S); trainIdx.setTo(Scalar::all(-1)); distance.create(nQuery, k, CV_32F); allDist.create(nQuery, nTrain, CV_32F); match_caller_t func = match_callers[distType][queryDescs.depth()]; CV_Assert(func != 0); func(queryDescs, trainDescs, k, mask, trainIdx, distance, allDist); } void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, vector< vector >& matches, bool compactResult) { if (trainIdx.empty() || distance.empty()) return; CV_Assert(trainIdx.type() == CV_32SC1); CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size()); const int nQuery = distance.rows; const int k = trainIdx.cols; Mat trainIdxCPU = trainIdx; Mat distanceCPU = distance; matches.clear(); matches.reserve(nQuery); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) { matches.push_back(vector()); vector& curMatches = matches.back(); curMatches.reserve(k); int* trainIdx_ptr = trainIdxCPU.ptr(queryIdx); float* distance_ptr = distanceCPU.ptr(queryIdx); for (int i = 0; i < k; ++i, ++trainIdx_ptr, ++distance_ptr) { int trainIdx = *trainIdx_ptr; if (trainIdx != -1) { float distance = *distance_ptr; DMatch m(queryIdx, trainIdx, 0, distance); curMatches.push_back(m); } } if (compactResult && curMatches.empty()) matches.pop_back(); } } void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs, vector< vector >& matches, int k, const GpuMat& mask, bool compactResult) { GpuMat trainIdx, distance, allDist; knnMatch(queryDescs, trainDescs, trainIdx, distance, allDist, k, mask); knnMatchDownload(trainIdx, distance, matches, compactResult); } namespace { class ImgIdxSetter { public: ImgIdxSetter(int imgIdx_) : imgIdx(imgIdx_) {} void operator()(DMatch& m) const {m.imgIdx = imgIdx;} private: int imgIdx; }; } void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, vector< vector >& matches, int knn, const vector& masks, bool compactResult) { if (queryDescs.empty() || empty()) return; vector< vector > curMatches; vector temp; temp.reserve(2 * knn); matches.resize(queryDescs.rows); for_each(matches.begin(), matches.end(), bind2nd(mem_fun_ref(&vector::reserve), knn)); for (size_t imgIdx = 0; imgIdx < trainDescCollection.size(); ++imgIdx) { knnMatch(queryDescs, trainDescCollection[imgIdx], curMatches, knn, masks.empty() ? GpuMat() : masks[imgIdx]); for (int queryIdx = 0; queryIdx < queryDescs.rows; ++queryIdx) { vector& localMatch = curMatches[queryIdx]; vector& globalMatch = matches[queryIdx]; for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(imgIdx)); temp.clear(); merge(globalMatch.begin(), globalMatch.end(), localMatch.begin(), localMatch.end(), back_inserter(temp)); globalMatch.clear(); const size_t count = std::min((size_t)knn, temp.size()); copy(temp.begin(), temp.begin() + count, back_inserter(globalMatch)); } } if (compactResult) { vector< vector >::iterator new_end = remove_if(matches.begin(), matches.end(), mem_fun_ref(&vector::empty)); matches.erase(new_end, matches.end()); } } //////////////////////////////////////////////////////////////////// // RadiusMatch void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs, GpuMat& trainIdx, GpuMat& nMatches, GpuMat& distance, float maxDistance, const GpuMat& mask) { if (queryDescs.empty() || trainDescs.empty()) return; using namespace cv::gpu::bfmatcher; typedef void (*radiusMatch_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance); static const radiusMatch_caller_t radiusMatch_callers[2][8] = { { radiusMatchL1_gpu, radiusMatchL1_gpu, radiusMatchL1_gpu, radiusMatchL1_gpu, radiusMatchL1_gpu, radiusMatchL1_gpu, 0, 0 }, { radiusMatchL2_gpu, radiusMatchL2_gpu, radiusMatchL2_gpu, radiusMatchL2_gpu, radiusMatchL2_gpu, radiusMatchL2_gpu, 0, 0 } }; CV_Assert(DeviceInfo().has(ATOMICS)); const int nQuery = queryDescs.rows; const int nTrain = trainDescs.rows; CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F); CV_Assert(trainDescs.type() == queryDescs.type() && trainDescs.cols == queryDescs.cols); CV_Assert(trainIdx.empty() || trainIdx.rows == nQuery); nMatches.create(1, nQuery, CV_32SC1); nMatches.setTo(Scalar::all(0)); if (trainIdx.empty()) { trainIdx.create(nQuery, nTrain, CV_32SC1); distance.create(nQuery, nTrain, CV_32FC1); } radiusMatch_caller_t func = radiusMatch_callers[distType][queryDescs.depth()]; CV_Assert(func != 0); func(queryDescs, trainDescs, maxDistance, mask, trainIdx, nMatches.ptr(), distance); } void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& nMatches, const GpuMat& distance, std::vector< std::vector >& matches, bool compactResult) { if (trainIdx.empty() || nMatches.empty() || distance.empty()) return; CV_Assert(trainIdx.type() == CV_32SC1); CV_Assert(nMatches.type() == CV_32SC1 && nMatches.isContinuous() && nMatches.size().area() == trainIdx.rows); CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size()); const int nQuery = trainIdx.rows; Mat trainIdxCPU = trainIdx; Mat nMatchesCPU = nMatches; Mat distanceCPU = distance; matches.clear(); matches.reserve(nQuery); const unsigned int* nMatches_ptr = nMatchesCPU.ptr(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) { const int* trainIdx_ptr = trainIdxCPU.ptr(queryIdx); const float* distance_ptr = distanceCPU.ptr(queryIdx); const int nMatches = std::min(static_cast(nMatches_ptr[queryIdx]), trainIdx.cols); if (nMatches == 0) { if (!compactResult) matches.push_back(vector()); continue; } matches.push_back(vector()); vector& curMatches = matches.back(); curMatches.reserve(nMatches); for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++distance_ptr) { int trainIdx = *trainIdx_ptr; float distance = *distance_ptr; DMatch m(queryIdx, trainIdx, 0, distance); curMatches.push_back(m); } sort(curMatches.begin(), curMatches.end()); } } void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs, vector< vector >& matches, float maxDistance, const GpuMat& mask, bool compactResult) { GpuMat trainIdx, nMatches, distance; radiusMatch(queryDescs, trainDescs, trainIdx, nMatches, distance, maxDistance, mask); radiusMatchDownload(trainIdx, nMatches, distance, matches, compactResult); } void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, vector< vector >& matches, float maxDistance, const vector& masks, bool compactResult) { if (queryDescs.empty() || empty()) return; matches.resize(queryDescs.rows); vector< vector > curMatches; for (size_t imgIdx = 0; imgIdx < trainDescCollection.size(); ++imgIdx) { radiusMatch(queryDescs, trainDescCollection[imgIdx], curMatches, maxDistance, masks.empty() ? GpuMat() : masks[imgIdx]); for (int queryIdx = 0; queryIdx < queryDescs.rows; ++queryIdx) { vector& localMatch = curMatches[queryIdx]; vector& globalMatch = matches[queryIdx]; for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(imgIdx)); const size_t oldSize = globalMatch.size(); copy(localMatch.begin(), localMatch.end(), back_inserter(globalMatch)); inplace_merge(globalMatch.begin(), globalMatch.begin() + oldSize, globalMatch.end()); } } if (compactResult) { vector< vector >::iterator new_end = remove_if(matches.begin(), matches.end(), mem_fun_ref(&vector::empty)); matches.erase(new_end, matches.end()); } } #endif /* !defined (HAVE_CUDA) */