/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2014-2015, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/core/hal/intrin.hpp" #include "opencl_kernels_imgproc.hpp" #include "opencv2/core/openvx/ovx_defs.hpp" /* * This file includes the code, contributed by Simon Perreault * (the function icvMedianBlur_8u_O1) * * Constant-time median filtering -- http://nomis80.org/ctmf.html * Copyright (C) 2006 Simon Perreault * * Contact: * Laboratoire de vision et systemes numeriques * Pavillon Adrien-Pouliot * Universite Laval * Sainte-Foy, Quebec, Canada * G1K 7P4 * * perreaul@gel.ulaval.ca */ namespace cv { /****************************************************************************************\ Box Filter \****************************************************************************************/ template struct RowSum : public BaseRowFilter { RowSum( int _ksize, int _anchor ) : BaseRowFilter() { ksize = _ksize; anchor = _anchor; } virtual void operator()(const uchar* src, uchar* dst, int width, int cn) { const T* S = (const T*)src; ST* D = (ST*)dst; int i = 0, k, ksz_cn = ksize*cn; width = (width - 1)*cn; if( ksize == 3 ) { for( i = 0; i < width + cn; i++ ) { D[i] = (ST)S[i] + (ST)S[i+cn] + (ST)S[i+cn*2]; } } else if( ksize == 5 ) { for( i = 0; i < width + cn; i++ ) { D[i] = (ST)S[i] + (ST)S[i+cn] + (ST)S[i+cn*2] + (ST)S[i + cn*3] + (ST)S[i + cn*4]; } } else if( cn == 1 ) { ST s = 0; for( i = 0; i < ksz_cn; i++ ) s += (ST)S[i]; D[0] = s; for( i = 0; i < width; i++ ) { s += (ST)S[i + ksz_cn] - (ST)S[i]; D[i+1] = s; } } else if( cn == 3 ) { ST s0 = 0, s1 = 0, s2 = 0; for( i = 0; i < ksz_cn; i += 3 ) { s0 += (ST)S[i]; s1 += (ST)S[i+1]; s2 += (ST)S[i+2]; } D[0] = s0; D[1] = s1; D[2] = s2; for( i = 0; i < width; i += 3 ) { s0 += (ST)S[i + ksz_cn] - (ST)S[i]; s1 += (ST)S[i + ksz_cn + 1] - (ST)S[i + 1]; s2 += (ST)S[i + ksz_cn + 2] - (ST)S[i + 2]; D[i+3] = s0; D[i+4] = s1; D[i+5] = s2; } } else if( cn == 4 ) { ST s0 = 0, s1 = 0, s2 = 0, s3 = 0; for( i = 0; i < ksz_cn; i += 4 ) { s0 += (ST)S[i]; s1 += (ST)S[i+1]; s2 += (ST)S[i+2]; s3 += (ST)S[i+3]; } D[0] = s0; D[1] = s1; D[2] = s2; D[3] = s3; for( i = 0; i < width; i += 4 ) { s0 += (ST)S[i + ksz_cn] - (ST)S[i]; s1 += (ST)S[i + ksz_cn + 1] - (ST)S[i + 1]; s2 += (ST)S[i + ksz_cn + 2] - (ST)S[i + 2]; s3 += (ST)S[i + ksz_cn + 3] - (ST)S[i + 3]; D[i+4] = s0; D[i+5] = s1; D[i+6] = s2; D[i+7] = s3; } } else for( k = 0; k < cn; k++, S++, D++ ) { ST s = 0; for( i = 0; i < ksz_cn; i += cn ) s += (ST)S[i]; D[0] = s; for( i = 0; i < width; i += cn ) { s += (ST)S[i + ksz_cn] - (ST)S[i]; D[i+cn] = s; } } } }; template struct ColumnSum : public BaseColumnFilter { ColumnSum( int _ksize, int _anchor, double _scale ) : BaseColumnFilter() { ksize = _ksize; anchor = _anchor; scale = _scale; sumCount = 0; } virtual void reset() { sumCount = 0; } virtual void operator()(const uchar** src, uchar* dst, int dststep, int count, int width) { int i; ST* SUM; bool haveScale = scale != 1; double _scale = scale; if( width != (int)sum.size() ) { sum.resize(width); sumCount = 0; } SUM = &sum[0]; if( sumCount == 0 ) { memset((void*)SUM, 0, width*sizeof(ST)); for( ; sumCount < ksize - 1; sumCount++, src++ ) { const ST* Sp = (const ST*)src[0]; for( i = 0; i < width; i++ ) SUM[i] += Sp[i]; } } else { CV_Assert( sumCount == ksize-1 ); src += ksize-1; } for( ; count--; src++ ) { const ST* Sp = (const ST*)src[0]; const ST* Sm = (const ST*)src[1-ksize]; T* D = (T*)dst; if( haveScale ) { for( i = 0; i <= width - 2; i += 2 ) { ST s0 = SUM[i] + Sp[i], s1 = SUM[i+1] + Sp[i+1]; D[i] = saturate_cast(s0*_scale); D[i+1] = saturate_cast(s1*_scale); s0 -= Sm[i]; s1 -= Sm[i+1]; SUM[i] = s0; SUM[i+1] = s1; } for( ; i < width; i++ ) { ST s0 = SUM[i] + Sp[i]; D[i] = saturate_cast(s0*_scale); SUM[i] = s0 - Sm[i]; } } else { for( i = 0; i <= width - 2; i += 2 ) { ST s0 = SUM[i] + Sp[i], s1 = SUM[i+1] + Sp[i+1]; D[i] = saturate_cast(s0); D[i+1] = saturate_cast(s1); s0 -= Sm[i]; s1 -= Sm[i+1]; SUM[i] = s0; SUM[i+1] = s1; } for( ; i < width; i++ ) { ST s0 = SUM[i] + Sp[i]; D[i] = saturate_cast(s0); SUM[i] = s0 - Sm[i]; } } dst += dststep; } } double scale; int sumCount; std::vector sum; }; template<> struct ColumnSum : public BaseColumnFilter { ColumnSum( int _ksize, int _anchor, double _scale ) : BaseColumnFilter() { ksize = _ksize; anchor = _anchor; scale = _scale; sumCount = 0; } virtual void reset() { sumCount = 0; } virtual void operator()(const uchar** src, uchar* dst, int dststep, int count, int width) { int* SUM; bool haveScale = scale != 1; double _scale = scale; #if CV_SIMD128 bool haveSIMD128 = hasSIMD128(); #endif if( width != (int)sum.size() ) { sum.resize(width); sumCount = 0; } SUM = &sum[0]; if( sumCount == 0 ) { memset((void*)SUM, 0, width*sizeof(int)); for( ; sumCount < ksize - 1; sumCount++, src++ ) { const int* Sp = (const int*)src[0]; int i = 0; #if CV_SIMD128 if( haveSIMD128 ) { for (; i <= width - 4; i += 4) { v_store(SUM + i, v_load(SUM + i) + v_load(Sp + i)); } } #endif for( ; i < width; i++ ) SUM[i] += Sp[i]; } } else { CV_Assert( sumCount == ksize-1 ); src += ksize-1; } for( ; count--; src++ ) { const int* Sp = (const int*)src[0]; const int* Sm = (const int*)src[1-ksize]; uchar* D = (uchar*)dst; if( haveScale ) { int i = 0; #if CV_SIMD128 if( haveSIMD128 ) { v_float32x4 v_scale = v_setall_f32((float)_scale); for( ; i <= width-8; i+=8 ) { v_int32x4 v_s0 = v_load(SUM + i) + v_load(Sp + i); v_int32x4 v_s01 = v_load(SUM + i + 4) + v_load(Sp + i + 4); v_uint32x4 v_s0d = v_reinterpret_as_u32(v_round(v_cvt_f32(v_s0) * v_scale)); v_uint32x4 v_s01d = v_reinterpret_as_u32(v_round(v_cvt_f32(v_s01) * v_scale)); v_uint16x8 v_dst = v_pack(v_s0d, v_s01d); v_pack_store(D + i, v_dst); v_store(SUM + i, v_s0 - v_load(Sm + i)); v_store(SUM + i + 4, v_s01 - v_load(Sm + i + 4)); } } #endif for( ; i < width; i++ ) { int s0 = SUM[i] + Sp[i]; D[i] = saturate_cast(s0*_scale); SUM[i] = s0 - Sm[i]; } } else { int i = 0; #if CV_SIMD128 if( haveSIMD128 ) { for( ; i <= width-8; i+=8 ) { v_int32x4 v_s0 = v_load(SUM + i) + v_load(Sp + i); v_int32x4 v_s01 = v_load(SUM + i + 4) + v_load(Sp + i + 4); v_uint16x8 v_dst = v_pack(v_reinterpret_as_u32(v_s0), v_reinterpret_as_u32(v_s01)); v_pack_store(D + i, v_dst); v_store(SUM + i, v_s0 - v_load(Sm + i)); v_store(SUM + i + 4, v_s01 - v_load(Sm + i + 4)); } } #endif for( ; i < width; i++ ) { int s0 = SUM[i] + Sp[i]; D[i] = saturate_cast(s0); SUM[i] = s0 - Sm[i]; } } dst += dststep; } } double scale; int sumCount; std::vector sum; }; template<> struct ColumnSum : public BaseColumnFilter { enum { SHIFT = 23 }; ColumnSum( int _ksize, int _anchor, double _scale ) : BaseColumnFilter() { ksize = _ksize; anchor = _anchor; scale = _scale; sumCount = 0; divDelta = 0; divScale = 1; if( scale != 1 ) { int d = cvRound(1./scale); double scalef = ((double)(1 << SHIFT))/d; divScale = cvFloor(scalef); scalef -= divScale; divDelta = d/2; if( scalef < 0.5 ) divDelta++; else divScale++; } } virtual void reset() { sumCount = 0; } virtual void operator()(const uchar** src, uchar* dst, int dststep, int count, int width) { const int ds = divScale; const int dd = divDelta; ushort* SUM; const bool haveScale = scale != 1; #if CV_SIMD128 bool haveSIMD128 = hasSIMD128(); #endif if( width != (int)sum.size() ) { sum.resize(width); sumCount = 0; } SUM = &sum[0]; if( sumCount == 0 ) { memset((void*)SUM, 0, width*sizeof(SUM[0])); for( ; sumCount < ksize - 1; sumCount++, src++ ) { const ushort* Sp = (const ushort*)src[0]; int i = 0; #if CV_SIMD128 if( haveSIMD128 ) { for( ; i <= width - 8; i += 8 ) { v_store(SUM + i, v_load(SUM + i) + v_load(Sp + i)); } } #endif for( ; i < width; i++ ) SUM[i] += Sp[i]; } } else { CV_Assert( sumCount == ksize-1 ); src += ksize-1; } for( ; count--; src++ ) { const ushort* Sp = (const ushort*)src[0]; const ushort* Sm = (const ushort*)src[1-ksize]; uchar* D = (uchar*)dst; if( haveScale ) { int i = 0; #if CV_SIMD128 v_uint32x4 ds4 = v_setall_u32((unsigned)ds); v_uint16x8 dd8 = v_setall_u16((ushort)dd); for( ; i <= width-16; i+=16 ) { v_uint16x8 _sm0 = v_load(Sm + i); v_uint16x8 _sm1 = v_load(Sm + i + 8); v_uint16x8 _s0 = v_add_wrap(v_load(SUM + i), v_load(Sp + i)); v_uint16x8 _s1 = v_add_wrap(v_load(SUM + i + 8), v_load(Sp + i + 8)); v_uint32x4 _s00, _s01, _s10, _s11; v_expand(_s0 + dd8, _s00, _s01); v_expand(_s1 + dd8, _s10, _s11); _s00 = v_shr(_s00*ds4); _s01 = v_shr(_s01*ds4); _s10 = v_shr(_s10*ds4); _s11 = v_shr(_s11*ds4); v_int16x8 r0 = v_pack(v_reinterpret_as_s32(_s00), v_reinterpret_as_s32(_s01)); v_int16x8 r1 = v_pack(v_reinterpret_as_s32(_s10), v_reinterpret_as_s32(_s11)); _s0 = v_sub_wrap(_s0, _sm0); _s1 = v_sub_wrap(_s1, _sm1); v_store(D + i, v_pack_u(r0, r1)); v_store(SUM + i, _s0); v_store(SUM + i + 8, _s1); } #endif for( ; i < width; i++ ) { int s0 = SUM[i] + Sp[i]; D[i] = (uchar)((s0 + dd)*ds >> SHIFT); SUM[i] = (ushort)(s0 - Sm[i]); } } else { int i = 0; for( ; i < width; i++ ) { int s0 = SUM[i] + Sp[i]; D[i] = saturate_cast(s0); SUM[i] = (ushort)(s0 - Sm[i]); } } dst += dststep; } } double scale; int sumCount; int divDelta; int divScale; std::vector sum; }; template<> struct ColumnSum : public BaseColumnFilter { ColumnSum( int _ksize, int _anchor, double _scale ) : BaseColumnFilter() { ksize = _ksize; anchor = _anchor; scale = _scale; sumCount = 0; } virtual void reset() { sumCount = 0; } virtual void operator()(const uchar** src, uchar* dst, int dststep, int count, int width) { int i; int* SUM; bool haveScale = scale != 1; double _scale = scale; #if CV_SIMD128 bool haveSIMD128 = hasSIMD128(); #endif if( width != (int)sum.size() ) { sum.resize(width); sumCount = 0; } SUM = &sum[0]; if( sumCount == 0 ) { memset((void*)SUM, 0, width*sizeof(int)); for( ; sumCount < ksize - 1; sumCount++, src++ ) { const int* Sp = (const int*)src[0]; i = 0; #if CV_SIMD128 if( haveSIMD128 ) { for( ; i <= width - 4; i+=4 ) { v_store(SUM + i, v_load(SUM + i) + v_load(Sp + i)); } } #endif for( ; i < width; i++ ) SUM[i] += Sp[i]; } } else { CV_Assert( sumCount == ksize-1 ); src += ksize-1; } for( ; count--; src++ ) { const int* Sp = (const int*)src[0]; const int* Sm = (const int*)src[1-ksize]; short* D = (short*)dst; if( haveScale ) { i = 0; #if CV_SIMD128 if( haveSIMD128 ) { v_float32x4 v_scale = v_setall_f32((float)_scale); for( ; i <= width-8; i+=8 ) { v_int32x4 v_s0 = v_load(SUM + i) + v_load(Sp + i); v_int32x4 v_s01 = v_load(SUM + i + 4) + v_load(Sp + i + 4); v_int32x4 v_s0d = v_round(v_cvt_f32(v_s0) * v_scale); v_int32x4 v_s01d = v_round(v_cvt_f32(v_s01) * v_scale); v_store(D + i, v_pack(v_s0d, v_s01d)); v_store(SUM + i, v_s0 - v_load(Sm + i)); v_store(SUM + i + 4, v_s01 - v_load(Sm + i + 4)); } } #endif for( ; i < width; i++ ) { int s0 = SUM[i] + Sp[i]; D[i] = saturate_cast(s0*_scale); SUM[i] = s0 - Sm[i]; } } else { i = 0; #if CV_SIMD128 if( haveSIMD128 ) { for( ; i <= width-8; i+=8 ) { v_int32x4 v_s0 = v_load(SUM + i) + v_load(Sp + i); v_int32x4 v_s01 = v_load(SUM + i + 4) + v_load(Sp + i + 4); v_store(D + i, v_pack(v_s0, v_s01)); v_store(SUM + i, v_s0 - v_load(Sm + i)); v_store(SUM + i + 4, v_s01 - v_load(Sm + i + 4)); } } #endif for( ; i < width; i++ ) { int s0 = SUM[i] + Sp[i]; D[i] = saturate_cast(s0); SUM[i] = s0 - Sm[i]; } } dst += dststep; } } double scale; int sumCount; std::vector sum; }; template<> struct ColumnSum : public BaseColumnFilter { ColumnSum( int _ksize, int _anchor, double _scale ) : BaseColumnFilter() { ksize = _ksize; anchor = _anchor; scale = _scale; sumCount = 0; } virtual void reset() { sumCount = 0; } virtual void operator()(const uchar** src, uchar* dst, int dststep, int count, int width) { int* SUM; bool haveScale = scale != 1; double _scale = scale; #if CV_SIMD128 bool haveSIMD128 = hasSIMD128(); #endif if( width != (int)sum.size() ) { sum.resize(width); sumCount = 0; } SUM = &sum[0]; if( sumCount == 0 ) { memset((void*)SUM, 0, width*sizeof(int)); for( ; sumCount < ksize - 1; sumCount++, src++ ) { const int* Sp = (const int*)src[0]; int i = 0; #if CV_SIMD128 if( haveSIMD128 ) { for (; i <= width - 4; i += 4) { v_store(SUM + i, v_load(SUM + i) + v_load(Sp + i)); } } #endif for( ; i < width; i++ ) SUM[i] += Sp[i]; } } else { CV_Assert( sumCount == ksize-1 ); src += ksize-1; } for( ; count--; src++ ) { const int* Sp = (const int*)src[0]; const int* Sm = (const int*)src[1-ksize]; ushort* D = (ushort*)dst; if( haveScale ) { int i = 0; #if CV_SIMD128 if( haveSIMD128 ) { v_float32x4 v_scale = v_setall_f32((float)_scale); for( ; i <= width-8; i+=8 ) { v_int32x4 v_s0 = v_load(SUM + i) + v_load(Sp + i); v_int32x4 v_s01 = v_load(SUM + i + 4) + v_load(Sp + i + 4); v_uint32x4 v_s0d = v_reinterpret_as_u32(v_round(v_cvt_f32(v_s0) * v_scale)); v_uint32x4 v_s01d = v_reinterpret_as_u32(v_round(v_cvt_f32(v_s01) * v_scale)); v_store(D + i, v_pack(v_s0d, v_s01d)); v_store(SUM + i, v_s0 - v_load(Sm + i)); v_store(SUM + i + 4, v_s01 - v_load(Sm + i + 4)); } } #endif for( ; i < width; i++ ) { int s0 = SUM[i] + Sp[i]; D[i] = saturate_cast(s0*_scale); SUM[i] = s0 - Sm[i]; } } else { int i = 0; #if CV_SIMD128 if( haveSIMD128 ) { for( ; i <= width-8; i+=8 ) { v_int32x4 v_s0 = v_load(SUM + i) + v_load(Sp + i); v_int32x4 v_s01 = v_load(SUM + i + 4) + v_load(Sp + i + 4); v_store(D + i, v_pack(v_reinterpret_as_u32(v_s0), v_reinterpret_as_u32(v_s01))); v_store(SUM + i, v_s0 - v_load(Sm + i)); v_store(SUM + i + 4, v_s01 - v_load(Sm + i + 4)); } } #endif for( ; i < width; i++ ) { int s0 = SUM[i] + Sp[i]; D[i] = saturate_cast(s0); SUM[i] = s0 - Sm[i]; } } dst += dststep; } } double scale; int sumCount; std::vector sum; }; template<> struct ColumnSum : public BaseColumnFilter { ColumnSum( int _ksize, int _anchor, double _scale ) : BaseColumnFilter() { ksize = _ksize; anchor = _anchor; scale = _scale; sumCount = 0; } virtual void reset() { sumCount = 0; } virtual void operator()(const uchar** src, uchar* dst, int dststep, int count, int width) { int* SUM; bool haveScale = scale != 1; double _scale = scale; #if CV_SIMD128 bool haveSIMD128 = hasSIMD128(); #endif if( width != (int)sum.size() ) { sum.resize(width); sumCount = 0; } SUM = &sum[0]; if( sumCount == 0 ) { memset((void*)SUM, 0, width*sizeof(int)); for( ; sumCount < ksize - 1; sumCount++, src++ ) { const int* Sp = (const int*)src[0]; int i = 0; #if CV_SIMD128 if( haveSIMD128 ) { for( ; i <= width - 4; i+=4 ) { v_store(SUM + i, v_load(SUM + i) + v_load(Sp + i)); } } #endif for( ; i < width; i++ ) SUM[i] += Sp[i]; } } else { CV_Assert( sumCount == ksize-1 ); src += ksize-1; } for( ; count--; src++ ) { const int* Sp = (const int*)src[0]; const int* Sm = (const int*)src[1-ksize]; int* D = (int*)dst; if( haveScale ) { int i = 0; #if CV_SIMD128 if( haveSIMD128 ) { v_float32x4 v_scale = v_setall_f32((float)_scale); for( ; i <= width-4; i+=4 ) { v_int32x4 v_s0 = v_load(SUM + i) + v_load(Sp + i); v_int32x4 v_s0d = v_round(v_cvt_f32(v_s0) * v_scale); v_store(D + i, v_s0d); v_store(SUM + i, v_s0 - v_load(Sm + i)); } } #endif for( ; i < width; i++ ) { int s0 = SUM[i] + Sp[i]; D[i] = saturate_cast(s0*_scale); SUM[i] = s0 - Sm[i]; } } else { int i = 0; #if CV_SIMD128 if( haveSIMD128 ) { for( ; i <= width-4; i+=4 ) { v_int32x4 v_s0 = v_load(SUM + i) + v_load(Sp + i); v_store(D + i, v_s0); v_store(SUM + i, v_s0 - v_load(Sm + i)); } } #endif for( ; i < width; i++ ) { int s0 = SUM[i] + Sp[i]; D[i] = s0; SUM[i] = s0 - Sm[i]; } } dst += dststep; } } double scale; int sumCount; std::vector sum; }; template<> struct ColumnSum : public BaseColumnFilter { ColumnSum( int _ksize, int _anchor, double _scale ) : BaseColumnFilter() { ksize = _ksize; anchor = _anchor; scale = _scale; sumCount = 0; } virtual void reset() { sumCount = 0; } virtual void operator()(const uchar** src, uchar* dst, int dststep, int count, int width) { int* SUM; bool haveScale = scale != 1; double _scale = scale; #if CV_SIMD128 bool haveSIMD128 = hasSIMD128(); #endif if( width != (int)sum.size() ) { sum.resize(width); sumCount = 0; } SUM = &sum[0]; if( sumCount == 0 ) { memset((void*)SUM, 0, width*sizeof(int)); for( ; sumCount < ksize - 1; sumCount++, src++ ) { const int* Sp = (const int*)src[0]; int i = 0; #if CV_SIMD128 if( haveSIMD128 ) { for( ; i <= width - 4; i+=4 ) { v_store(SUM + i, v_load(SUM + i) + v_load(Sp + i)); } } #endif for( ; i < width; i++ ) SUM[i] += Sp[i]; } } else { CV_Assert( sumCount == ksize-1 ); src += ksize-1; } for( ; count--; src++ ) { const int * Sp = (const int*)src[0]; const int * Sm = (const int*)src[1-ksize]; float* D = (float*)dst; if( haveScale ) { int i = 0; #if CV_SIMD128 if( haveSIMD128 ) { v_float32x4 v_scale = v_setall_f32((float)_scale); for (; i <= width - 8; i += 8) { v_int32x4 v_s0 = v_load(SUM + i) + v_load(Sp + i); v_int32x4 v_s01 = v_load(SUM + i + 4) + v_load(Sp + i + 4); v_store(D + i, v_cvt_f32(v_s0) * v_scale); v_store(D + i + 4, v_cvt_f32(v_s01) * v_scale); v_store(SUM + i, v_s0 - v_load(Sm + i)); v_store(SUM + i + 4, v_s01 - v_load(Sm + i + 4)); } } #endif for( ; i < width; i++ ) { int s0 = SUM[i] + Sp[i]; D[i] = (float)(s0*_scale); SUM[i] = s0 - Sm[i]; } } else { int i = 0; #if CV_SIMD128 if( haveSIMD128 ) { for( ; i <= width-8; i+=8 ) { v_int32x4 v_s0 = v_load(SUM + i) + v_load(Sp + i); v_int32x4 v_s01 = v_load(SUM + i + 4) + v_load(Sp + i + 4); v_store(D + i, v_cvt_f32(v_s0)); v_store(D + i + 4, v_cvt_f32(v_s01)); v_store(SUM + i, v_s0 - v_load(Sm + i)); v_store(SUM + i + 4, v_s01 - v_load(Sm + i + 4)); } } #endif for( ; i < width; i++ ) { int s0 = SUM[i] + Sp[i]; D[i] = (float)(s0); SUM[i] = s0 - Sm[i]; } } dst += dststep; } } double scale; int sumCount; std::vector sum; }; #ifdef HAVE_OPENCL static bool ocl_boxFilter3x3_8UC1( InputArray _src, OutputArray _dst, int ddepth, Size ksize, Point anchor, int borderType, bool normalize ) { const ocl::Device & dev = ocl::Device::getDefault(); int type = _src.type(), sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); if (ddepth < 0) ddepth = sdepth; if (anchor.x < 0) anchor.x = ksize.width / 2; if (anchor.y < 0) anchor.y = ksize.height / 2; if ( !(dev.isIntel() && (type == CV_8UC1) && (_src.offset() == 0) && (_src.step() % 4 == 0) && (_src.cols() % 16 == 0) && (_src.rows() % 2 == 0) && (anchor.x == 1) && (anchor.y == 1) && (ksize.width == 3) && (ksize.height == 3)) ) return false; float alpha = 1.0f / (ksize.height * ksize.width); Size size = _src.size(); size_t globalsize[2] = { 0, 0 }; size_t localsize[2] = { 0, 0 }; const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", 0, "BORDER_REFLECT_101" }; globalsize[0] = size.width / 16; globalsize[1] = size.height / 2; char build_opts[1024]; sprintf(build_opts, "-D %s %s", borderMap[borderType], normalize ? "-D NORMALIZE" : ""); ocl::Kernel kernel("boxFilter3x3_8UC1_cols16_rows2", cv::ocl::imgproc::boxFilter3x3_oclsrc, build_opts); if (kernel.empty()) return false; UMat src = _src.getUMat(); _dst.create(size, CV_MAKETYPE(ddepth, cn)); if (!(_dst.offset() == 0 && _dst.step() % 4 == 0)) return false; UMat dst = _dst.getUMat(); int idxArg = kernel.set(0, ocl::KernelArg::PtrReadOnly(src)); idxArg = kernel.set(idxArg, (int)src.step); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst)); idxArg = kernel.set(idxArg, (int)dst.step); idxArg = kernel.set(idxArg, (int)dst.rows); idxArg = kernel.set(idxArg, (int)dst.cols); if (normalize) idxArg = kernel.set(idxArg, (float)alpha); return kernel.run(2, globalsize, (localsize[0] == 0) ? NULL : localsize, false); } #define DIVUP(total, grain) ((total + grain - 1) / (grain)) #define ROUNDUP(sz, n) ((sz) + (n) - 1 - (((sz) + (n) - 1) % (n))) static bool ocl_boxFilter( InputArray _src, OutputArray _dst, int ddepth, Size ksize, Point anchor, int borderType, bool normalize, bool sqr = false ) { const ocl::Device & dev = ocl::Device::getDefault(); int type = _src.type(), sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), esz = CV_ELEM_SIZE(type); bool doubleSupport = dev.doubleFPConfig() > 0; if (ddepth < 0) ddepth = sdepth; if (cn > 4 || (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F)) || _src.offset() % esz != 0 || _src.step() % esz != 0) return false; if (anchor.x < 0) anchor.x = ksize.width / 2; if (anchor.y < 0) anchor.y = ksize.height / 2; int computeUnits = ocl::Device::getDefault().maxComputeUnits(); float alpha = 1.0f / (ksize.height * ksize.width); Size size = _src.size(), wholeSize; bool isolated = (borderType & BORDER_ISOLATED) != 0; borderType &= ~BORDER_ISOLATED; int wdepth = std::max(CV_32F, std::max(ddepth, sdepth)), wtype = CV_MAKE_TYPE(wdepth, cn), dtype = CV_MAKE_TYPE(ddepth, cn); const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", 0, "BORDER_REFLECT_101" }; size_t globalsize[2] = { (size_t)size.width, (size_t)size.height }; size_t localsize_general[2] = { 0, 1 }, * localsize = NULL; UMat src = _src.getUMat(); if (!isolated) { Point ofs; src.locateROI(wholeSize, ofs); } int h = isolated ? size.height : wholeSize.height; int w = isolated ? size.width : wholeSize.width; size_t maxWorkItemSizes[32]; ocl::Device::getDefault().maxWorkItemSizes(maxWorkItemSizes); int tryWorkItems = (int)maxWorkItemSizes[0]; ocl::Kernel kernel; if (dev.isIntel() && !(dev.type() & ocl::Device::TYPE_CPU) && ((ksize.width < 5 && ksize.height < 5 && esz <= 4) || (ksize.width == 5 && ksize.height == 5 && cn == 1))) { if (w < ksize.width || h < ksize.height) return false; // Figure out what vector size to use for loading the pixels. int pxLoadNumPixels = cn != 1 || size.width % 4 ? 1 : 4; int pxLoadVecSize = cn * pxLoadNumPixels; // Figure out how many pixels per work item to compute in X and Y // directions. Too many and we run out of registers. int pxPerWorkItemX = 1, pxPerWorkItemY = 1; if (cn <= 2 && ksize.width <= 4 && ksize.height <= 4) { pxPerWorkItemX = size.width % 8 ? size.width % 4 ? size.width % 2 ? 1 : 2 : 4 : 8; pxPerWorkItemY = size.height % 2 ? 1 : 2; } else if (cn < 4 || (ksize.width <= 4 && ksize.height <= 4)) { pxPerWorkItemX = size.width % 2 ? 1 : 2; pxPerWorkItemY = size.height % 2 ? 1 : 2; } globalsize[0] = size.width / pxPerWorkItemX; globalsize[1] = size.height / pxPerWorkItemY; // Need some padding in the private array for pixels int privDataWidth = ROUNDUP(pxPerWorkItemX + ksize.width - 1, pxLoadNumPixels); // Make the global size a nice round number so the runtime can pick // from reasonable choices for the workgroup size const int wgRound = 256; globalsize[0] = ROUNDUP(globalsize[0], wgRound); char build_options[1024], cvt[2][40]; sprintf(build_options, "-D cn=%d " "-D ANCHOR_X=%d -D ANCHOR_Y=%d -D KERNEL_SIZE_X=%d -D KERNEL_SIZE_Y=%d " "-D PX_LOAD_VEC_SIZE=%d -D PX_LOAD_NUM_PX=%d " "-D PX_PER_WI_X=%d -D PX_PER_WI_Y=%d -D PRIV_DATA_WIDTH=%d -D %s -D %s " "-D PX_LOAD_X_ITERATIONS=%d -D PX_LOAD_Y_ITERATIONS=%d " "-D srcT=%s -D srcT1=%s -D dstT=%s -D dstT1=%s -D WT=%s -D WT1=%s " "-D convertToWT=%s -D convertToDstT=%s%s%s -D PX_LOAD_FLOAT_VEC_CONV=convert_%s -D OP_BOX_FILTER", cn, anchor.x, anchor.y, ksize.width, ksize.height, pxLoadVecSize, pxLoadNumPixels, pxPerWorkItemX, pxPerWorkItemY, privDataWidth, borderMap[borderType], isolated ? "BORDER_ISOLATED" : "NO_BORDER_ISOLATED", privDataWidth / pxLoadNumPixels, pxPerWorkItemY + ksize.height - 1, ocl::typeToStr(type), ocl::typeToStr(sdepth), ocl::typeToStr(dtype), ocl::typeToStr(ddepth), ocl::typeToStr(wtype), ocl::typeToStr(wdepth), ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]), ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1]), normalize ? " -D NORMALIZE" : "", sqr ? " -D SQR" : "", ocl::typeToStr(CV_MAKE_TYPE(wdepth, pxLoadVecSize)) //PX_LOAD_FLOAT_VEC_CONV ); if (!kernel.create("filterSmall", cv::ocl::imgproc::filterSmall_oclsrc, build_options)) return false; } else { localsize = localsize_general; for ( ; ; ) { int BLOCK_SIZE_X = tryWorkItems, BLOCK_SIZE_Y = std::min(ksize.height * 10, size.height); while (BLOCK_SIZE_X > 32 && BLOCK_SIZE_X >= ksize.width * 2 && BLOCK_SIZE_X > size.width * 2) BLOCK_SIZE_X /= 2; while (BLOCK_SIZE_Y < BLOCK_SIZE_X / 8 && BLOCK_SIZE_Y * computeUnits * 32 < size.height) BLOCK_SIZE_Y *= 2; if (ksize.width > BLOCK_SIZE_X || w < ksize.width || h < ksize.height) return false; char cvt[2][50]; String opts = format("-D LOCAL_SIZE_X=%d -D BLOCK_SIZE_Y=%d -D ST=%s -D DT=%s -D WT=%s -D convertToDT=%s -D convertToWT=%s" " -D ANCHOR_X=%d -D ANCHOR_Y=%d -D KERNEL_SIZE_X=%d -D KERNEL_SIZE_Y=%d -D %s%s%s%s%s" " -D ST1=%s -D DT1=%s -D cn=%d", BLOCK_SIZE_X, BLOCK_SIZE_Y, ocl::typeToStr(type), ocl::typeToStr(CV_MAKE_TYPE(ddepth, cn)), ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)), ocl::convertTypeStr(wdepth, ddepth, cn, cvt[0]), ocl::convertTypeStr(sdepth, wdepth, cn, cvt[1]), anchor.x, anchor.y, ksize.width, ksize.height, borderMap[borderType], isolated ? " -D BORDER_ISOLATED" : "", doubleSupport ? " -D DOUBLE_SUPPORT" : "", normalize ? " -D NORMALIZE" : "", sqr ? " -D SQR" : "", ocl::typeToStr(sdepth), ocl::typeToStr(ddepth), cn); localsize[0] = BLOCK_SIZE_X; globalsize[0] = DIVUP(size.width, BLOCK_SIZE_X - (ksize.width - 1)) * BLOCK_SIZE_X; globalsize[1] = DIVUP(size.height, BLOCK_SIZE_Y); kernel.create("boxFilter", cv::ocl::imgproc::boxFilter_oclsrc, opts); if (kernel.empty()) return false; size_t kernelWorkGroupSize = kernel.workGroupSize(); if (localsize[0] <= kernelWorkGroupSize) break; if (BLOCK_SIZE_X < (int)kernelWorkGroupSize) return false; tryWorkItems = (int)kernelWorkGroupSize; } } _dst.create(size, CV_MAKETYPE(ddepth, cn)); UMat dst = _dst.getUMat(); int idxArg = kernel.set(0, ocl::KernelArg::PtrReadOnly(src)); idxArg = kernel.set(idxArg, (int)src.step); int srcOffsetX = (int)((src.offset % src.step) / src.elemSize()); int srcOffsetY = (int)(src.offset / src.step); int srcEndX = isolated ? srcOffsetX + size.width : wholeSize.width; int srcEndY = isolated ? srcOffsetY + size.height : wholeSize.height; idxArg = kernel.set(idxArg, srcOffsetX); idxArg = kernel.set(idxArg, srcOffsetY); idxArg = kernel.set(idxArg, srcEndX); idxArg = kernel.set(idxArg, srcEndY); idxArg = kernel.set(idxArg, ocl::KernelArg::WriteOnly(dst)); if (normalize) idxArg = kernel.set(idxArg, (float)alpha); return kernel.run(2, globalsize, localsize, false); } #undef ROUNDUP #endif } cv::Ptr cv::getRowSumFilter(int srcType, int sumType, int ksize, int anchor) { int sdepth = CV_MAT_DEPTH(srcType), ddepth = CV_MAT_DEPTH(sumType); CV_Assert( CV_MAT_CN(sumType) == CV_MAT_CN(srcType) ); if( anchor < 0 ) anchor = ksize/2; if( sdepth == CV_8U && ddepth == CV_32S ) return makePtr >(ksize, anchor); if( sdepth == CV_8U && ddepth == CV_16U ) return makePtr >(ksize, anchor); if( sdepth == CV_8U && ddepth == CV_64F ) return makePtr >(ksize, anchor); if( sdepth == CV_16U && ddepth == CV_32S ) return makePtr >(ksize, anchor); if( sdepth == CV_16U && ddepth == CV_64F ) return makePtr >(ksize, anchor); if( sdepth == CV_16S && ddepth == CV_32S ) return makePtr >(ksize, anchor); if( sdepth == CV_32S && ddepth == CV_32S ) return makePtr >(ksize, anchor); if( sdepth == CV_16S && ddepth == CV_64F ) return makePtr >(ksize, anchor); if( sdepth == CV_32F && ddepth == CV_64F ) return makePtr >(ksize, anchor); if( sdepth == CV_64F && ddepth == CV_64F ) return makePtr >(ksize, anchor); CV_Error_( CV_StsNotImplemented, ("Unsupported combination of source format (=%d), and buffer format (=%d)", srcType, sumType)); return Ptr(); } cv::Ptr cv::getColumnSumFilter(int sumType, int dstType, int ksize, int anchor, double scale) { int sdepth = CV_MAT_DEPTH(sumType), ddepth = CV_MAT_DEPTH(dstType); CV_Assert( CV_MAT_CN(sumType) == CV_MAT_CN(dstType) ); if( anchor < 0 ) anchor = ksize/2; if( ddepth == CV_8U && sdepth == CV_32S ) return makePtr >(ksize, anchor, scale); if( ddepth == CV_8U && sdepth == CV_16U ) return makePtr >(ksize, anchor, scale); if( ddepth == CV_8U && sdepth == CV_64F ) return makePtr >(ksize, anchor, scale); if( ddepth == CV_16U && sdepth == CV_32S ) return makePtr >(ksize, anchor, scale); if( ddepth == CV_16U && sdepth == CV_64F ) return makePtr >(ksize, anchor, scale); if( ddepth == CV_16S && sdepth == CV_32S ) return makePtr >(ksize, anchor, scale); if( ddepth == CV_16S && sdepth == CV_64F ) return makePtr >(ksize, anchor, scale); if( ddepth == CV_32S && sdepth == CV_32S ) return makePtr >(ksize, anchor, scale); if( ddepth == CV_32F && sdepth == CV_32S ) return makePtr >(ksize, anchor, scale); if( ddepth == CV_32F && sdepth == CV_64F ) return makePtr >(ksize, anchor, scale); if( ddepth == CV_64F && sdepth == CV_32S ) return makePtr >(ksize, anchor, scale); if( ddepth == CV_64F && sdepth == CV_64F ) return makePtr >(ksize, anchor, scale); CV_Error_( CV_StsNotImplemented, ("Unsupported combination of sum format (=%d), and destination format (=%d)", sumType, dstType)); return Ptr(); } cv::Ptr cv::createBoxFilter( int srcType, int dstType, Size ksize, Point anchor, bool normalize, int borderType ) { int sdepth = CV_MAT_DEPTH(srcType); int cn = CV_MAT_CN(srcType), sumType = CV_64F; if( sdepth == CV_8U && CV_MAT_DEPTH(dstType) == CV_8U && ksize.width*ksize.height <= 256 ) sumType = CV_16U; else if( sdepth <= CV_32S && (!normalize || ksize.width*ksize.height <= (sdepth == CV_8U ? (1<<23) : sdepth == CV_16U ? (1 << 15) : (1 << 16))) ) sumType = CV_32S; sumType = CV_MAKETYPE( sumType, cn ); Ptr rowFilter = getRowSumFilter(srcType, sumType, ksize.width, anchor.x ); Ptr columnFilter = getColumnSumFilter(sumType, dstType, ksize.height, anchor.y, normalize ? 1./(ksize.width*ksize.height) : 1); return makePtr(Ptr(), rowFilter, columnFilter, srcType, dstType, sumType, borderType ); } #ifdef HAVE_OPENVX namespace cv { namespace ovx { template <> inline bool skipSmallImages(int w, int h) { return w*h < 640 * 480; } } static bool openvx_boxfilter(InputArray _src, OutputArray _dst, int ddepth, Size ksize, Point anchor, bool normalize, int borderType) { if (ddepth < 0) ddepth = CV_8UC1; if (_src.type() != CV_8UC1 || ddepth != CV_8U || !normalize || _src.cols() < 3 || _src.rows() < 3 || ksize.width != 3 || ksize.height != 3 || (anchor.x >= 0 && anchor.x != 1) || (anchor.y >= 0 && anchor.y != 1) || ovx::skipSmallImages(_src.cols(), _src.rows())) return false; Mat src = _src.getMat(); if ((borderType & BORDER_ISOLATED) == 0 && src.isSubmatrix()) return false; //Process isolated borders only vx_enum border; switch (borderType & ~BORDER_ISOLATED) { case BORDER_CONSTANT: border = VX_BORDER_CONSTANT; break; case BORDER_REPLICATE: border = VX_BORDER_REPLICATE; break; default: return false; } _dst.create(src.size(), CV_8UC1); Mat dst = _dst.getMat(); try { ivx::Context ctx = ovx::getOpenVXContext(); Mat a; if (dst.data != src.data) a = src; else src.copyTo(a); ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(a.cols, a.rows, 1, (vx_int32)(a.step)), a.data), ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(dst.cols, dst.rows, 1, (vx_int32)(dst.step)), dst.data); //ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments //since OpenVX standart says nothing about thread-safety for now ivx::border_t prevBorder = ctx.immediateBorder(); ctx.setImmediateBorder(border, (vx_uint8)(0)); ivx::IVX_CHECK_STATUS(vxuBox3x3(ctx, ia, ib)); ctx.setImmediateBorder(prevBorder); } catch (ivx::RuntimeError & e) { VX_DbgThrow(e.what()); } catch (ivx::WrapperError & e) { VX_DbgThrow(e.what()); } return true; } } #endif #if defined(HAVE_IPP) namespace cv { static bool ipp_boxfilter(Mat &src, Mat &dst, Size ksize, Point anchor, bool normalize, int borderType) { #ifdef HAVE_IPP_IW CV_INSTRUMENT_REGION_IPP() #if IPP_VERSION_X100 < 201801 // Problem with SSE42 optimization for 16s and some 8u modes if(ipp::getIppTopFeatures() == ippCPUID_SSE42 && (((src.depth() == CV_16S || src.depth() == CV_16U) && (src.channels() == 3 || src.channels() == 4)) || (src.depth() == CV_8U && src.channels() == 3 && (ksize.width > 5 || ksize.height > 5)))) return false; // Other optimizations has some degradations too if((((src.depth() == CV_16S || src.depth() == CV_16U) && (src.channels() == 4)) || (src.depth() == CV_8U && src.channels() == 1 && (ksize.width > 5 || ksize.height > 5)))) return false; #endif if(!normalize) return false; if(!ippiCheckAnchor(anchor, ksize)) return false; try { ::ipp::IwiImage iwSrc = ippiGetImage(src); ::ipp::IwiImage iwDst = ippiGetImage(dst); ::ipp::IwiSize iwKSize = ippiGetSize(ksize); ::ipp::IwiBorderSize borderSize(iwKSize); ::ipp::IwiBorderType ippBorder(ippiGetBorder(iwSrc, borderType, borderSize)); if(!ippBorder) return false; CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterBox, iwSrc, iwDst, iwKSize, ::ipp::IwDefault(), ippBorder); } catch (::ipp::IwException) { return false; } return true; #else CV_UNUSED(src); CV_UNUSED(dst); CV_UNUSED(ksize); CV_UNUSED(anchor); CV_UNUSED(normalize); CV_UNUSED(borderType); return false; #endif } } #endif void cv::boxFilter( InputArray _src, OutputArray _dst, int ddepth, Size ksize, Point anchor, bool normalize, int borderType ) { CV_INSTRUMENT_REGION() CV_OCL_RUN(_dst.isUMat() && (borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_REFLECT_101), ocl_boxFilter3x3_8UC1(_src, _dst, ddepth, ksize, anchor, borderType, normalize)) CV_OCL_RUN(_dst.isUMat(), ocl_boxFilter(_src, _dst, ddepth, ksize, anchor, borderType, normalize)) CV_OVX_RUN(true, openvx_boxfilter(_src, _dst, ddepth, ksize, anchor, normalize, borderType)) Mat src = _src.getMat(); int stype = src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype); if( ddepth < 0 ) ddepth = sdepth; _dst.create( src.size(), CV_MAKETYPE(ddepth, cn) ); Mat dst = _dst.getMat(); if( borderType != BORDER_CONSTANT && normalize && (borderType & BORDER_ISOLATED) != 0 ) { if( src.rows == 1 ) ksize.height = 1; if( src.cols == 1 ) ksize.width = 1; } Point ofs; Size wsz(src.cols, src.rows); if(!(borderType&BORDER_ISOLATED)) src.locateROI( wsz, ofs ); borderType = (borderType&~BORDER_ISOLATED); CALL_HAL(boxFilter, cv_hal_boxFilter, sdepth, ddepth, src.ptr(), src.step, dst.ptr(), dst.step, src.cols, src.rows, cn, ofs.x, ofs.y, wsz.width - src.cols - ofs.x, wsz.height - src.rows - ofs.y, ksize.width, ksize.height, anchor.x, anchor.y, normalize, borderType); #ifdef HAVE_TEGRA_OPTIMIZATION if ( tegra::useTegra() && tegra::box(src, dst, ksize, anchor, normalize, borderType) ) return; #endif CV_IPP_RUN_FAST(ipp_boxfilter(src, dst, ksize, anchor, normalize, borderType)); Ptr f = createBoxFilter( src.type(), dst.type(), ksize, anchor, normalize, borderType ); f->apply( src, dst, wsz, ofs ); } void cv::blur( InputArray src, OutputArray dst, Size ksize, Point anchor, int borderType ) { CV_INSTRUMENT_REGION() boxFilter( src, dst, -1, ksize, anchor, true, borderType ); } /****************************************************************************************\ Squared Box Filter \****************************************************************************************/ namespace cv { template struct SqrRowSum : public BaseRowFilter { SqrRowSum( int _ksize, int _anchor ) : BaseRowFilter() { ksize = _ksize; anchor = _anchor; } virtual void operator()(const uchar* src, uchar* dst, int width, int cn) { const T* S = (const T*)src; ST* D = (ST*)dst; int i = 0, k, ksz_cn = ksize*cn; width = (width - 1)*cn; for( k = 0; k < cn; k++, S++, D++ ) { ST s = 0; for( i = 0; i < ksz_cn; i += cn ) { ST val = (ST)S[i]; s += val*val; } D[0] = s; for( i = 0; i < width; i += cn ) { ST val0 = (ST)S[i], val1 = (ST)S[i + ksz_cn]; s += val1*val1 - val0*val0; D[i+cn] = s; } } } }; static Ptr getSqrRowSumFilter(int srcType, int sumType, int ksize, int anchor) { int sdepth = CV_MAT_DEPTH(srcType), ddepth = CV_MAT_DEPTH(sumType); CV_Assert( CV_MAT_CN(sumType) == CV_MAT_CN(srcType) ); if( anchor < 0 ) anchor = ksize/2; if( sdepth == CV_8U && ddepth == CV_32S ) return makePtr >(ksize, anchor); if( sdepth == CV_8U && ddepth == CV_64F ) return makePtr >(ksize, anchor); if( sdepth == CV_16U && ddepth == CV_64F ) return makePtr >(ksize, anchor); if( sdepth == CV_16S && ddepth == CV_64F ) return makePtr >(ksize, anchor); if( sdepth == CV_32F && ddepth == CV_64F ) return makePtr >(ksize, anchor); if( sdepth == CV_64F && ddepth == CV_64F ) return makePtr >(ksize, anchor); CV_Error_( CV_StsNotImplemented, ("Unsupported combination of source format (=%d), and buffer format (=%d)", srcType, sumType)); return Ptr(); } } void cv::sqrBoxFilter( InputArray _src, OutputArray _dst, int ddepth, Size ksize, Point anchor, bool normalize, int borderType ) { CV_INSTRUMENT_REGION() int srcType = _src.type(), sdepth = CV_MAT_DEPTH(srcType), cn = CV_MAT_CN(srcType); Size size = _src.size(); if( ddepth < 0 ) ddepth = sdepth < CV_32F ? CV_32F : CV_64F; if( borderType != BORDER_CONSTANT && normalize ) { if( size.height == 1 ) ksize.height = 1; if( size.width == 1 ) ksize.width = 1; } CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2, ocl_boxFilter(_src, _dst, ddepth, ksize, anchor, borderType, normalize, true)) int sumDepth = CV_64F; if( sdepth == CV_8U ) sumDepth = CV_32S; int sumType = CV_MAKETYPE( sumDepth, cn ), dstType = CV_MAKETYPE(ddepth, cn); Mat src = _src.getMat(); _dst.create( size, dstType ); Mat dst = _dst.getMat(); Ptr rowFilter = getSqrRowSumFilter(srcType, sumType, ksize.width, anchor.x ); Ptr columnFilter = getColumnSumFilter(sumType, dstType, ksize.height, anchor.y, normalize ? 1./(ksize.width*ksize.height) : 1); Ptr f = makePtr(Ptr(), rowFilter, columnFilter, srcType, dstType, sumType, borderType ); Point ofs; Size wsz(src.cols, src.rows); src.locateROI( wsz, ofs ); f->apply( src, dst, wsz, ofs ); } /****************************************************************************************\ Gaussian Blur \****************************************************************************************/ cv::Mat cv::getGaussianKernel( int n, double sigma, int ktype ) { const int SMALL_GAUSSIAN_SIZE = 7; static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE] = { {1.f}, {0.25f, 0.5f, 0.25f}, {0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f}, {0.03125f, 0.109375f, 0.21875f, 0.28125f, 0.21875f, 0.109375f, 0.03125f} }; const float* fixed_kernel = n % 2 == 1 && n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 ? small_gaussian_tab[n>>1] : 0; CV_Assert( ktype == CV_32F || ktype == CV_64F ); Mat kernel(n, 1, ktype); float* cf = kernel.ptr(); double* cd = kernel.ptr(); double sigmaX = sigma > 0 ? sigma : ((n-1)*0.5 - 1)*0.3 + 0.8; double scale2X = -0.5/(sigmaX*sigmaX); double sum = 0; int i; for( i = 0; i < n; i++ ) { double x = i - (n-1)*0.5; double t = fixed_kernel ? (double)fixed_kernel[i] : std::exp(scale2X*x*x); if( ktype == CV_32F ) { cf[i] = (float)t; sum += cf[i]; } else { cd[i] = t; sum += cd[i]; } } sum = 1./sum; for( i = 0; i < n; i++ ) { if( ktype == CV_32F ) cf[i] = (float)(cf[i]*sum); else cd[i] *= sum; } return kernel; } namespace cv { static void createGaussianKernels( Mat & kx, Mat & ky, int type, Size ksize, double sigma1, double sigma2 ) { int depth = CV_MAT_DEPTH(type); if( sigma2 <= 0 ) sigma2 = sigma1; // automatic detection of kernel size from sigma if( ksize.width <= 0 && sigma1 > 0 ) ksize.width = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1; if( ksize.height <= 0 && sigma2 > 0 ) ksize.height = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1; CV_Assert( ksize.width > 0 && ksize.width % 2 == 1 && ksize.height > 0 && ksize.height % 2 == 1 ); sigma1 = std::max( sigma1, 0. ); sigma2 = std::max( sigma2, 0. ); kx = getGaussianKernel( ksize.width, sigma1, std::max(depth, CV_32F) ); if( ksize.height == ksize.width && std::abs(sigma1 - sigma2) < DBL_EPSILON ) ky = kx; else ky = getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F) ); } } cv::Ptr cv::createGaussianFilter( int type, Size ksize, double sigma1, double sigma2, int borderType ) { Mat kx, ky; createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); return createSeparableLinearFilter( type, type, kx, ky, Point(-1,-1), 0, borderType ); } namespace cv { #ifdef HAVE_OPENCL static bool ocl_GaussianBlur_8UC1(InputArray _src, OutputArray _dst, Size ksize, int ddepth, InputArray _kernelX, InputArray _kernelY, int borderType) { const ocl::Device & dev = ocl::Device::getDefault(); int type = _src.type(), sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); if ( !(dev.isIntel() && (type == CV_8UC1) && (_src.offset() == 0) && (_src.step() % 4 == 0) && ((ksize.width == 5 && (_src.cols() % 4 == 0)) || (ksize.width == 3 && (_src.cols() % 16 == 0) && (_src.rows() % 2 == 0)))) ) return false; Mat kernelX = _kernelX.getMat().reshape(1, 1); if (kernelX.cols % 2 != 1) return false; Mat kernelY = _kernelY.getMat().reshape(1, 1); if (kernelY.cols % 2 != 1) return false; if (ddepth < 0) ddepth = sdepth; Size size = _src.size(); size_t globalsize[2] = { 0, 0 }; size_t localsize[2] = { 0, 0 }; if (ksize.width == 3) { globalsize[0] = size.width / 16; globalsize[1] = size.height / 2; } else if (ksize.width == 5) { globalsize[0] = size.width / 4; globalsize[1] = size.height / 1; } const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", 0, "BORDER_REFLECT_101" }; char build_opts[1024]; sprintf(build_opts, "-D %s %s%s", borderMap[borderType], ocl::kernelToStr(kernelX, CV_32F, "KERNEL_MATRIX_X").c_str(), ocl::kernelToStr(kernelY, CV_32F, "KERNEL_MATRIX_Y").c_str()); ocl::Kernel kernel; if (ksize.width == 3) kernel.create("gaussianBlur3x3_8UC1_cols16_rows2", cv::ocl::imgproc::gaussianBlur3x3_oclsrc, build_opts); else if (ksize.width == 5) kernel.create("gaussianBlur5x5_8UC1_cols4", cv::ocl::imgproc::gaussianBlur5x5_oclsrc, build_opts); if (kernel.empty()) return false; UMat src = _src.getUMat(); _dst.create(size, CV_MAKETYPE(ddepth, cn)); if (!(_dst.offset() == 0 && _dst.step() % 4 == 0)) return false; UMat dst = _dst.getUMat(); int idxArg = kernel.set(0, ocl::KernelArg::PtrReadOnly(src)); idxArg = kernel.set(idxArg, (int)src.step); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst)); idxArg = kernel.set(idxArg, (int)dst.step); idxArg = kernel.set(idxArg, (int)dst.rows); idxArg = kernel.set(idxArg, (int)dst.cols); return kernel.run(2, globalsize, (localsize[0] == 0) ? NULL : localsize, false); } #endif #ifdef HAVE_OPENVX namespace ovx { template <> inline bool skipSmallImages(int w, int h) { return w*h < 320 * 240; } } static bool openvx_gaussianBlur(InputArray _src, OutputArray _dst, Size ksize, double sigma1, double sigma2, int borderType) { if (sigma2 <= 0) sigma2 = sigma1; // automatic detection of kernel size from sigma if (ksize.width <= 0 && sigma1 > 0) ksize.width = cvRound(sigma1*6 + 1) | 1; if (ksize.height <= 0 && sigma2 > 0) ksize.height = cvRound(sigma2*6 + 1) | 1; if (_src.type() != CV_8UC1 || _src.cols() < 3 || _src.rows() < 3 || ksize.width != 3 || ksize.height != 3) return false; sigma1 = std::max(sigma1, 0.); sigma2 = std::max(sigma2, 0.); if (!(sigma1 == 0.0 || (sigma1 - 0.8) < DBL_EPSILON) || !(sigma2 == 0.0 || (sigma2 - 0.8) < DBL_EPSILON) || ovx::skipSmallImages(_src.cols(), _src.rows())) return false; Mat src = _src.getMat(); Mat dst = _dst.getMat(); if ((borderType & BORDER_ISOLATED) == 0 && src.isSubmatrix()) return false; //Process isolated borders only vx_enum border; switch (borderType & ~BORDER_ISOLATED) { case BORDER_CONSTANT: border = VX_BORDER_CONSTANT; break; case BORDER_REPLICATE: border = VX_BORDER_REPLICATE; break; default: return false; } try { ivx::Context ctx = ovx::getOpenVXContext(); Mat a; if (dst.data != src.data) a = src; else src.copyTo(a); ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(a.cols, a.rows, 1, (vx_int32)(a.step)), a.data), ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(dst.cols, dst.rows, 1, (vx_int32)(dst.step)), dst.data); //ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments //since OpenVX standart says nothing about thread-safety for now ivx::border_t prevBorder = ctx.immediateBorder(); ctx.setImmediateBorder(border, (vx_uint8)(0)); ivx::IVX_CHECK_STATUS(vxuGaussian3x3(ctx, ia, ib)); ctx.setImmediateBorder(prevBorder); } catch (ivx::RuntimeError & e) { VX_DbgThrow(e.what()); } catch (ivx::WrapperError & e) { VX_DbgThrow(e.what()); } return true; } #endif #ifdef HAVE_IPP #if IPP_VERSION_X100 == 201702 // IW 2017u2 has bug which doesn't allow use of partial inMem with tiling #define IPP_GAUSSIANBLUR_PARALLEL 0 #else #define IPP_GAUSSIANBLUR_PARALLEL 1 #endif #ifdef HAVE_IPP_IW class ipp_gaussianBlurParallel: public ParallelLoopBody { public: ipp_gaussianBlurParallel(::ipp::IwiImage &src, ::ipp::IwiImage &dst, int kernelSize, float sigma, ::ipp::IwiBorderType &border, bool *pOk): m_src(src), m_dst(dst), m_kernelSize(kernelSize), m_sigma(sigma), m_border(border), m_pOk(pOk) { *m_pOk = true; } ~ipp_gaussianBlurParallel() { } virtual void operator() (const Range& range) const { CV_INSTRUMENT_REGION_IPP() if(!*m_pOk) return; try { ::ipp::IwiTile tile = ::ipp::IwiRoi(0, range.start, m_dst.m_size.width, range.end - range.start); CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterGaussian, m_src, m_dst, m_kernelSize, m_sigma, ::ipp::IwDefault(), m_border, tile); } catch(::ipp::IwException e) { *m_pOk = false; return; } } private: ::ipp::IwiImage &m_src; ::ipp::IwiImage &m_dst; int m_kernelSize; float m_sigma; ::ipp::IwiBorderType &m_border; volatile bool *m_pOk; const ipp_gaussianBlurParallel& operator= (const ipp_gaussianBlurParallel&); }; #endif static bool ipp_GaussianBlur(InputArray _src, OutputArray _dst, Size ksize, double sigma1, double sigma2, int borderType ) { #ifdef HAVE_IPP_IW CV_INSTRUMENT_REGION_IPP() #if IPP_VERSION_X100 < 201800 && ((defined _MSC_VER && defined _M_IX86) || (defined __GNUC__ && defined __i386__)) CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(sigma1); CV_UNUSED(sigma2); CV_UNUSED(borderType); return false; // bug on ia32 #else if(sigma1 != sigma2) return false; if(sigma1 < FLT_EPSILON) return false; if(ksize.width != ksize.height) return false; // Acquire data and begin processing try { Mat src = _src.getMat(); Mat dst = _dst.getMat(); ::ipp::IwiImage iwSrc = ippiGetImage(src); ::ipp::IwiImage iwDst = ippiGetImage(dst); ::ipp::IwiBorderSize borderSize = ::ipp::iwiSizeToBorderSize(ippiGetSize(ksize)); ::ipp::IwiBorderType ippBorder(ippiGetBorder(iwSrc, borderType, borderSize)); if(!ippBorder) return false; const int threads = ippiSuggestThreadsNum(iwDst, 2); if(IPP_GAUSSIANBLUR_PARALLEL && threads > 1) { bool ok; ipp_gaussianBlurParallel invoker(iwSrc, iwDst, ksize.width, (float) sigma1, ippBorder, &ok); if(!ok) return false; const Range range(0, (int) iwDst.m_size.height); parallel_for_(range, invoker, threads*4); if(!ok) return false; } else { CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterGaussian, iwSrc, iwDst, ksize.width, sigma1, ::ipp::IwDefault(), ippBorder); } } catch (::ipp::IwException ex) { return false; } return true; #endif #else CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(sigma1); CV_UNUSED(sigma2); CV_UNUSED(borderType); return false; #endif } #endif } void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize, double sigma1, double sigma2, int borderType ) { CV_INSTRUMENT_REGION() int type = _src.type(); Size size = _src.size(); _dst.create( size, type ); if( borderType != BORDER_CONSTANT && (borderType & BORDER_ISOLATED) != 0 ) { if( size.height == 1 ) ksize.height = 1; if( size.width == 1 ) ksize.width = 1; } if( ksize.width == 1 && ksize.height == 1 ) { _src.copyTo(_dst); return; } CV_OVX_RUN(true, openvx_gaussianBlur(_src, _dst, ksize, sigma1, sigma2, borderType)) Mat src = _src.getMat(); Mat dst = _dst.getMat(); #ifdef HAVE_TEGRA_OPTIMIZATION if(sigma1 == 0 && sigma2 == 0 && tegra::useTegra() && tegra::gaussian(src, dst, ksize, borderType)) return; #endif bool useOpenCL = (ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 && ((ksize.width == 3 && ksize.height == 3) || (ksize.width == 5 && ksize.height == 5)) && _src.rows() > ksize.height && _src.cols() > ksize.width); (void)useOpenCL; int sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); Point ofs; Size wsz(src.cols, src.rows); if(!(borderType & BORDER_ISOLATED)) src.locateROI( wsz, ofs ); borderType = (borderType&~BORDER_ISOLATED); CALL_HAL(gaussianBlur, cv_hal_gaussianBlur, sdepth, src.ptr(), src.step, dst.ptr(), dst.step, src.cols, src.rows, cn, ofs.x, ofs.y, wsz.width - src.cols - ofs.x, wsz.height - src.rows - ofs.y, ksize.width, ksize.height, sigma1, sigma2, borderType); src.release(); dst.release(); CV_IPP_RUN(!useOpenCL, ipp_GaussianBlur( _src, _dst, ksize, sigma1, sigma2, borderType)); Mat kx, ky; createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); CV_OCL_RUN(useOpenCL, ocl_GaussianBlur_8UC1(_src, _dst, ksize, CV_MAT_DEPTH(type), kx, ky, borderType)); sepFilter2D(_src, _dst, CV_MAT_DEPTH(type), kx, ky, Point(-1,-1), 0, borderType ); } /****************************************************************************************\ Median Filter \****************************************************************************************/ namespace cv { typedef ushort HT; /** * This structure represents a two-tier histogram. The first tier (known as the * "coarse" level) is 4 bit wide and the second tier (known as the "fine" level) * is 8 bit wide. Pixels inserted in the fine level also get inserted into the * coarse bucket designated by the 4 MSBs of the fine bucket value. * * The structure is aligned on 16 bits, which is a prerequisite for SIMD * instructions. Each bucket is 16 bit wide, which means that extra care must be * taken to prevent overflow. */ typedef struct { HT coarse[16]; HT fine[16][16]; } Histogram; #if CV_SIMD128 static inline void histogram_add_simd( const HT x[16], HT y[16] ) { v_store(y, v_load(x) + v_load(y)); v_store(y + 8, v_load(x + 8) + v_load(y + 8)); } static inline void histogram_sub_simd( const HT x[16], HT y[16] ) { v_store(y, v_load(y) - v_load(x)); v_store(y + 8, v_load(y + 8) - v_load(x + 8)); } #endif static inline void histogram_add( const HT x[16], HT y[16] ) { int i; for( i = 0; i < 16; ++i ) y[i] = (HT)(y[i] + x[i]); } static inline void histogram_sub( const HT x[16], HT y[16] ) { int i; for( i = 0; i < 16; ++i ) y[i] = (HT)(y[i] - x[i]); } static inline void histogram_muladd( int a, const HT x[16], HT y[16] ) { for( int i = 0; i < 16; ++i ) y[i] = (HT)(y[i] + a * x[i]); } static void medianBlur_8u_O1( const Mat& _src, Mat& _dst, int ksize ) { /** * HOP is short for Histogram OPeration. This macro makes an operation \a op on * histogram \a h for pixel value \a x. It takes care of handling both levels. */ #define HOP(h,x,op) \ h.coarse[x>>4] op, \ *((HT*)h.fine + x) op #define COP(c,j,x,op) \ h_coarse[ 16*(n*c+j) + (x>>4) ] op, \ h_fine[ 16 * (n*(16*c+(x>>4)) + j) + (x & 0xF) ] op int cn = _dst.channels(), m = _dst.rows, r = (ksize-1)/2; CV_Assert(cn > 0 && cn <= 4); size_t sstep = _src.step, dstep = _dst.step; Histogram CV_DECL_ALIGNED(16) H[4]; HT CV_DECL_ALIGNED(16) luc[4][16]; int STRIPE_SIZE = std::min( _dst.cols, 512/cn ); std::vector _h_coarse(1 * 16 * (STRIPE_SIZE + 2*r) * cn + 16); std::vector _h_fine(16 * 16 * (STRIPE_SIZE + 2*r) * cn + 16); HT* h_coarse = alignPtr(&_h_coarse[0], 16); HT* h_fine = alignPtr(&_h_fine[0], 16); #if CV_SIMD128 volatile bool useSIMD = hasSIMD128(); #endif for( int x = 0; x < _dst.cols; x += STRIPE_SIZE ) { int i, j, k, c, n = std::min(_dst.cols - x, STRIPE_SIZE) + r*2; const uchar* src = _src.ptr() + x*cn; uchar* dst = _dst.ptr() + (x - r)*cn; memset( h_coarse, 0, 16*n*cn*sizeof(h_coarse[0]) ); memset( h_fine, 0, 16*16*n*cn*sizeof(h_fine[0]) ); // First row initialization for( c = 0; c < cn; c++ ) { for( j = 0; j < n; j++ ) COP( c, j, src[cn*j+c], += (cv::HT)(r+2) ); for( i = 1; i < r; i++ ) { const uchar* p = src + sstep*std::min(i, m-1); for ( j = 0; j < n; j++ ) COP( c, j, p[cn*j+c], ++ ); } } for( i = 0; i < m; i++ ) { const uchar* p0 = src + sstep * std::max( 0, i-r-1 ); const uchar* p1 = src + sstep * std::min( m-1, i+r ); memset( H, 0, cn*sizeof(H[0]) ); memset( luc, 0, cn*sizeof(luc[0]) ); for( c = 0; c < cn; c++ ) { // Update column histograms for the entire row. for( j = 0; j < n; j++ ) { COP( c, j, p0[j*cn + c], -- ); COP( c, j, p1[j*cn + c], ++ ); } // First column initialization for( k = 0; k < 16; ++k ) histogram_muladd( 2*r+1, &h_fine[16*n*(16*c+k)], &H[c].fine[k][0] ); #if CV_SIMD128 if( useSIMD ) { for( j = 0; j < 2*r; ++j ) histogram_add_simd( &h_coarse[16*(n*c+j)], H[c].coarse ); for( j = r; j < n-r; j++ ) { int t = 2*r*r + 2*r, b, sum = 0; HT* segment; histogram_add_simd( &h_coarse[16*(n*c + std::min(j+r,n-1))], H[c].coarse ); // Find median at coarse level for ( k = 0; k < 16 ; ++k ) { sum += H[c].coarse[k]; if ( sum > t ) { sum -= H[c].coarse[k]; break; } } CV_Assert( k < 16 ); /* Update corresponding histogram segment */ if ( luc[c][k] <= j-r ) { memset( &H[c].fine[k], 0, 16 * sizeof(HT) ); for ( luc[c][k] = cv::HT(j-r); luc[c][k] < MIN(j+r+1,n); ++luc[c][k] ) histogram_add_simd( &h_fine[16*(n*(16*c+k)+luc[c][k])], H[c].fine[k] ); if ( luc[c][k] < j+r+1 ) { histogram_muladd( j+r+1 - n, &h_fine[16*(n*(16*c+k)+(n-1))], &H[c].fine[k][0] ); luc[c][k] = (HT)(j+r+1); } } else { for ( ; luc[c][k] < j+r+1; ++luc[c][k] ) { histogram_sub_simd( &h_fine[16*(n*(16*c+k)+MAX(luc[c][k]-2*r-1,0))], H[c].fine[k] ); histogram_add_simd( &h_fine[16*(n*(16*c+k)+MIN(luc[c][k],n-1))], H[c].fine[k] ); } } histogram_sub_simd( &h_coarse[16*(n*c+MAX(j-r,0))], H[c].coarse ); /* Find median in segment */ segment = H[c].fine[k]; for ( b = 0; b < 16 ; b++ ) { sum += segment[b]; if ( sum > t ) { dst[dstep*i+cn*j+c] = (uchar)(16*k + b); break; } } CV_Assert( b < 16 ); } } else #endif { for( j = 0; j < 2*r; ++j ) histogram_add( &h_coarse[16*(n*c+j)], H[c].coarse ); for( j = r; j < n-r; j++ ) { int t = 2*r*r + 2*r, b, sum = 0; HT* segment; histogram_add( &h_coarse[16*(n*c + std::min(j+r,n-1))], H[c].coarse ); // Find median at coarse level for ( k = 0; k < 16 ; ++k ) { sum += H[c].coarse[k]; if ( sum > t ) { sum -= H[c].coarse[k]; break; } } CV_Assert( k < 16 ); /* Update corresponding histogram segment */ if ( luc[c][k] <= j-r ) { memset( &H[c].fine[k], 0, 16 * sizeof(HT) ); for ( luc[c][k] = cv::HT(j-r); luc[c][k] < MIN(j+r+1,n); ++luc[c][k] ) histogram_add( &h_fine[16*(n*(16*c+k)+luc[c][k])], H[c].fine[k] ); if ( luc[c][k] < j+r+1 ) { histogram_muladd( j+r+1 - n, &h_fine[16*(n*(16*c+k)+(n-1))], &H[c].fine[k][0] ); luc[c][k] = (HT)(j+r+1); } } else { for ( ; luc[c][k] < j+r+1; ++luc[c][k] ) { histogram_sub( &h_fine[16*(n*(16*c+k)+MAX(luc[c][k]-2*r-1,0))], H[c].fine[k] ); histogram_add( &h_fine[16*(n*(16*c+k)+MIN(luc[c][k],n-1))], H[c].fine[k] ); } } histogram_sub( &h_coarse[16*(n*c+MAX(j-r,0))], H[c].coarse ); /* Find median in segment */ segment = H[c].fine[k]; for ( b = 0; b < 16 ; b++ ) { sum += segment[b]; if ( sum > t ) { dst[dstep*i+cn*j+c] = (uchar)(16*k + b); break; } } CV_Assert( b < 16 ); } } } } } #undef HOP #undef COP } static void medianBlur_8u_Om( const Mat& _src, Mat& _dst, int m ) { #define N 16 int zone0[4][N]; int zone1[4][N*N]; int x, y; int n2 = m*m/2; Size size = _dst.size(); const uchar* src = _src.ptr(); uchar* dst = _dst.ptr(); int src_step = (int)_src.step, dst_step = (int)_dst.step; int cn = _src.channels(); const uchar* src_max = src + size.height*src_step; CV_Assert(cn > 0 && cn <= 4); #define UPDATE_ACC01( pix, cn, op ) \ { \ int p = (pix); \ zone1[cn][p] op; \ zone0[cn][p >> 4] op; \ } //CV_Assert( size.height >= nx && size.width >= nx ); for( x = 0; x < size.width; x++, src += cn, dst += cn ) { uchar* dst_cur = dst; const uchar* src_top = src; const uchar* src_bottom = src; int k, c; int src_step1 = src_step, dst_step1 = dst_step; if( x % 2 != 0 ) { src_bottom = src_top += src_step*(size.height-1); dst_cur += dst_step*(size.height-1); src_step1 = -src_step1; dst_step1 = -dst_step1; } // init accumulator memset( zone0, 0, sizeof(zone0[0])*cn ); memset( zone1, 0, sizeof(zone1[0])*cn ); for( y = 0; y <= m/2; y++ ) { for( c = 0; c < cn; c++ ) { if( y > 0 ) { for( k = 0; k < m*cn; k += cn ) UPDATE_ACC01( src_bottom[k+c], c, ++ ); } else { for( k = 0; k < m*cn; k += cn ) UPDATE_ACC01( src_bottom[k+c], c, += m/2+1 ); } } if( (src_step1 > 0 && y < size.height-1) || (src_step1 < 0 && size.height-y-1 > 0) ) src_bottom += src_step1; } for( y = 0; y < size.height; y++, dst_cur += dst_step1 ) { // find median for( c = 0; c < cn; c++ ) { int s = 0; for( k = 0; ; k++ ) { int t = s + zone0[c][k]; if( t > n2 ) break; s = t; } for( k *= N; ;k++ ) { s += zone1[c][k]; if( s > n2 ) break; } dst_cur[c] = (uchar)k; } if( y+1 == size.height ) break; if( cn == 1 ) { for( k = 0; k < m; k++ ) { int p = src_top[k]; int q = src_bottom[k]; zone1[0][p]--; zone0[0][p>>4]--; zone1[0][q]++; zone0[0][q>>4]++; } } else if( cn == 3 ) { for( k = 0; k < m*3; k += 3 ) { UPDATE_ACC01( src_top[k], 0, -- ); UPDATE_ACC01( src_top[k+1], 1, -- ); UPDATE_ACC01( src_top[k+2], 2, -- ); UPDATE_ACC01( src_bottom[k], 0, ++ ); UPDATE_ACC01( src_bottom[k+1], 1, ++ ); UPDATE_ACC01( src_bottom[k+2], 2, ++ ); } } else { assert( cn == 4 ); for( k = 0; k < m*4; k += 4 ) { UPDATE_ACC01( src_top[k], 0, -- ); UPDATE_ACC01( src_top[k+1], 1, -- ); UPDATE_ACC01( src_top[k+2], 2, -- ); UPDATE_ACC01( src_top[k+3], 3, -- ); UPDATE_ACC01( src_bottom[k], 0, ++ ); UPDATE_ACC01( src_bottom[k+1], 1, ++ ); UPDATE_ACC01( src_bottom[k+2], 2, ++ ); UPDATE_ACC01( src_bottom[k+3], 3, ++ ); } } if( (src_step1 > 0 && src_bottom + src_step1 < src_max) || (src_step1 < 0 && src_bottom + src_step1 >= src) ) src_bottom += src_step1; if( y >= m/2 ) src_top += src_step1; } } #undef N #undef UPDATE_ACC } struct MinMax8u { typedef uchar value_type; typedef int arg_type; enum { SIZE = 1 }; arg_type load(const uchar* ptr) { return *ptr; } void store(uchar* ptr, arg_type val) { *ptr = (uchar)val; } void operator()(arg_type& a, arg_type& b) const { int t = CV_FAST_CAST_8U(a - b); b += t; a -= t; } }; struct MinMax16u { typedef ushort value_type; typedef int arg_type; enum { SIZE = 1 }; arg_type load(const ushort* ptr) { return *ptr; } void store(ushort* ptr, arg_type val) { *ptr = (ushort)val; } void operator()(arg_type& a, arg_type& b) const { arg_type t = a; a = std::min(a, b); b = std::max(b, t); } }; struct MinMax16s { typedef short value_type; typedef int arg_type; enum { SIZE = 1 }; arg_type load(const short* ptr) { return *ptr; } void store(short* ptr, arg_type val) { *ptr = (short)val; } void operator()(arg_type& a, arg_type& b) const { arg_type t = a; a = std::min(a, b); b = std::max(b, t); } }; struct MinMax32f { typedef float value_type; typedef float arg_type; enum { SIZE = 1 }; arg_type load(const float* ptr) { return *ptr; } void store(float* ptr, arg_type val) { *ptr = val; } void operator()(arg_type& a, arg_type& b) const { arg_type t = a; a = std::min(a, b); b = std::max(b, t); } }; #if CV_SIMD128 struct MinMaxVec8u { typedef uchar value_type; typedef v_uint8x16 arg_type; enum { SIZE = 16 }; arg_type load(const uchar* ptr) { return v_load(ptr); } void store(uchar* ptr, const arg_type &val) { v_store(ptr, val); } void operator()(arg_type& a, arg_type& b) const { arg_type t = a; a = v_min(a, b); b = v_max(b, t); } }; struct MinMaxVec16u { typedef ushort value_type; typedef v_uint16x8 arg_type; enum { SIZE = 8 }; arg_type load(const ushort* ptr) { return v_load(ptr); } void store(ushort* ptr, const arg_type &val) { v_store(ptr, val); } void operator()(arg_type& a, arg_type& b) const { arg_type t = a; a = v_min(a, b); b = v_max(b, t); } }; struct MinMaxVec16s { typedef short value_type; typedef v_int16x8 arg_type; enum { SIZE = 8 }; arg_type load(const short* ptr) { return v_load(ptr); } void store(short* ptr, const arg_type &val) { v_store(ptr, val); } void operator()(arg_type& a, arg_type& b) const { arg_type t = a; a = v_min(a, b); b = v_max(b, t); } }; struct MinMaxVec32f { typedef float value_type; typedef v_float32x4 arg_type; enum { SIZE = 4 }; arg_type load(const float* ptr) { return v_load(ptr); } void store(float* ptr, const arg_type &val) { v_store(ptr, val); } void operator()(arg_type& a, arg_type& b) const { arg_type t = a; a = v_min(a, b); b = v_max(b, t); } }; #else typedef MinMax8u MinMaxVec8u; typedef MinMax16u MinMaxVec16u; typedef MinMax16s MinMaxVec16s; typedef MinMax32f MinMaxVec32f; #endif template static void medianBlur_SortNet( const Mat& _src, Mat& _dst, int m ) { typedef typename Op::value_type T; typedef typename Op::arg_type WT; typedef typename VecOp::arg_type VT; const T* src = _src.ptr(); T* dst = _dst.ptr(); int sstep = (int)(_src.step/sizeof(T)); int dstep = (int)(_dst.step/sizeof(T)); Size size = _dst.size(); int i, j, k, cn = _src.channels(); Op op; VecOp vop; volatile bool useSIMD = hasSIMD128(); if( m == 3 ) { if( size.width == 1 || size.height == 1 ) { int len = size.width + size.height - 1; int sdelta = size.height == 1 ? cn : sstep; int sdelta0 = size.height == 1 ? 0 : sstep - cn; int ddelta = size.height == 1 ? cn : dstep; for( i = 0; i < len; i++, src += sdelta0, dst += ddelta ) for( j = 0; j < cn; j++, src++ ) { WT p0 = src[i > 0 ? -sdelta : 0]; WT p1 = src[0]; WT p2 = src[i < len - 1 ? sdelta : 0]; op(p0, p1); op(p1, p2); op(p0, p1); dst[j] = (T)p1; } return; } size.width *= cn; for( i = 0; i < size.height; i++, dst += dstep ) { const T* row0 = src + std::max(i - 1, 0)*sstep; const T* row1 = src + i*sstep; const T* row2 = src + std::min(i + 1, size.height-1)*sstep; int limit = useSIMD ? cn : size.width; for(j = 0;; ) { for( ; j < limit; j++ ) { int j0 = j >= cn ? j - cn : j; int j2 = j < size.width - cn ? j + cn : j; WT p0 = row0[j0], p1 = row0[j], p2 = row0[j2]; WT p3 = row1[j0], p4 = row1[j], p5 = row1[j2]; WT p6 = row2[j0], p7 = row2[j], p8 = row2[j2]; op(p1, p2); op(p4, p5); op(p7, p8); op(p0, p1); op(p3, p4); op(p6, p7); op(p1, p2); op(p4, p5); op(p7, p8); op(p0, p3); op(p5, p8); op(p4, p7); op(p3, p6); op(p1, p4); op(p2, p5); op(p4, p7); op(p4, p2); op(p6, p4); op(p4, p2); dst[j] = (T)p4; } if( limit == size.width ) break; for( ; j <= size.width - VecOp::SIZE - cn; j += VecOp::SIZE ) { VT p0 = vop.load(row0+j-cn), p1 = vop.load(row0+j), p2 = vop.load(row0+j+cn); VT p3 = vop.load(row1+j-cn), p4 = vop.load(row1+j), p5 = vop.load(row1+j+cn); VT p6 = vop.load(row2+j-cn), p7 = vop.load(row2+j), p8 = vop.load(row2+j+cn); vop(p1, p2); vop(p4, p5); vop(p7, p8); vop(p0, p1); vop(p3, p4); vop(p6, p7); vop(p1, p2); vop(p4, p5); vop(p7, p8); vop(p0, p3); vop(p5, p8); vop(p4, p7); vop(p3, p6); vop(p1, p4); vop(p2, p5); vop(p4, p7); vop(p4, p2); vop(p6, p4); vop(p4, p2); vop.store(dst+j, p4); } limit = size.width; } } } else if( m == 5 ) { if( size.width == 1 || size.height == 1 ) { int len = size.width + size.height - 1; int sdelta = size.height == 1 ? cn : sstep; int sdelta0 = size.height == 1 ? 0 : sstep - cn; int ddelta = size.height == 1 ? cn : dstep; for( i = 0; i < len; i++, src += sdelta0, dst += ddelta ) for( j = 0; j < cn; j++, src++ ) { int i1 = i > 0 ? -sdelta : 0; int i0 = i > 1 ? -sdelta*2 : i1; int i3 = i < len-1 ? sdelta : 0; int i4 = i < len-2 ? sdelta*2 : i3; WT p0 = src[i0], p1 = src[i1], p2 = src[0], p3 = src[i3], p4 = src[i4]; op(p0, p1); op(p3, p4); op(p2, p3); op(p3, p4); op(p0, p2); op(p2, p4); op(p1, p3); op(p1, p2); dst[j] = (T)p2; } return; } size.width *= cn; for( i = 0; i < size.height; i++, dst += dstep ) { const T* row[5]; row[0] = src + std::max(i - 2, 0)*sstep; row[1] = src + std::max(i - 1, 0)*sstep; row[2] = src + i*sstep; row[3] = src + std::min(i + 1, size.height-1)*sstep; row[4] = src + std::min(i + 2, size.height-1)*sstep; int limit = useSIMD ? cn*2 : size.width; for(j = 0;; ) { for( ; j < limit; j++ ) { WT p[25]; int j1 = j >= cn ? j - cn : j; int j0 = j >= cn*2 ? j - cn*2 : j1; int j3 = j < size.width - cn ? j + cn : j; int j4 = j < size.width - cn*2 ? j + cn*2 : j3; for( k = 0; k < 5; k++ ) { const T* rowk = row[k]; p[k*5] = rowk[j0]; p[k*5+1] = rowk[j1]; p[k*5+2] = rowk[j]; p[k*5+3] = rowk[j3]; p[k*5+4] = rowk[j4]; } op(p[1], p[2]); op(p[0], p[1]); op(p[1], p[2]); op(p[4], p[5]); op(p[3], p[4]); op(p[4], p[5]); op(p[0], p[3]); op(p[2], p[5]); op(p[2], p[3]); op(p[1], p[4]); op(p[1], p[2]); op(p[3], p[4]); op(p[7], p[8]); op(p[6], p[7]); op(p[7], p[8]); op(p[10], p[11]); op(p[9], p[10]); op(p[10], p[11]); op(p[6], p[9]); op(p[8], p[11]); op(p[8], p[9]); op(p[7], p[10]); op(p[7], p[8]); op(p[9], p[10]); op(p[0], p[6]); op(p[4], p[10]); op(p[4], p[6]); op(p[2], p[8]); op(p[2], p[4]); op(p[6], p[8]); op(p[1], p[7]); op(p[5], p[11]); op(p[5], p[7]); op(p[3], p[9]); op(p[3], p[5]); op(p[7], p[9]); op(p[1], p[2]); op(p[3], p[4]); op(p[5], p[6]); op(p[7], p[8]); op(p[9], p[10]); op(p[13], p[14]); op(p[12], p[13]); op(p[13], p[14]); op(p[16], p[17]); op(p[15], p[16]); op(p[16], p[17]); op(p[12], p[15]); op(p[14], p[17]); op(p[14], p[15]); op(p[13], p[16]); op(p[13], p[14]); op(p[15], p[16]); op(p[19], p[20]); op(p[18], p[19]); op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[21], p[23]); op(p[22], p[24]); op(p[22], p[23]); op(p[18], p[21]); op(p[20], p[23]); op(p[20], p[21]); op(p[19], p[22]); op(p[22], p[24]); op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[12], p[18]); op(p[16], p[22]); op(p[16], p[18]); op(p[14], p[20]); op(p[20], p[24]); op(p[14], p[16]); op(p[18], p[20]); op(p[22], p[24]); op(p[13], p[19]); op(p[17], p[23]); op(p[17], p[19]); op(p[15], p[21]); op(p[15], p[17]); op(p[19], p[21]); op(p[13], p[14]); op(p[15], p[16]); op(p[17], p[18]); op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[0], p[12]); op(p[8], p[20]); op(p[8], p[12]); op(p[4], p[16]); op(p[16], p[24]); op(p[12], p[16]); op(p[2], p[14]); op(p[10], p[22]); op(p[10], p[14]); op(p[6], p[18]); op(p[6], p[10]); op(p[10], p[12]); op(p[1], p[13]); op(p[9], p[21]); op(p[9], p[13]); op(p[5], p[17]); op(p[13], p[17]); op(p[3], p[15]); op(p[11], p[23]); op(p[11], p[15]); op(p[7], p[19]); op(p[7], p[11]); op(p[11], p[13]); op(p[11], p[12]); dst[j] = (T)p[12]; } if( limit == size.width ) break; for( ; j <= size.width - VecOp::SIZE - cn*2; j += VecOp::SIZE ) { VT p[25]; for( k = 0; k < 5; k++ ) { const T* rowk = row[k]; p[k*5] = vop.load(rowk+j-cn*2); p[k*5+1] = vop.load(rowk+j-cn); p[k*5+2] = vop.load(rowk+j); p[k*5+3] = vop.load(rowk+j+cn); p[k*5+4] = vop.load(rowk+j+cn*2); } vop(p[1], p[2]); vop(p[0], p[1]); vop(p[1], p[2]); vop(p[4], p[5]); vop(p[3], p[4]); vop(p[4], p[5]); vop(p[0], p[3]); vop(p[2], p[5]); vop(p[2], p[3]); vop(p[1], p[4]); vop(p[1], p[2]); vop(p[3], p[4]); vop(p[7], p[8]); vop(p[6], p[7]); vop(p[7], p[8]); vop(p[10], p[11]); vop(p[9], p[10]); vop(p[10], p[11]); vop(p[6], p[9]); vop(p[8], p[11]); vop(p[8], p[9]); vop(p[7], p[10]); vop(p[7], p[8]); vop(p[9], p[10]); vop(p[0], p[6]); vop(p[4], p[10]); vop(p[4], p[6]); vop(p[2], p[8]); vop(p[2], p[4]); vop(p[6], p[8]); vop(p[1], p[7]); vop(p[5], p[11]); vop(p[5], p[7]); vop(p[3], p[9]); vop(p[3], p[5]); vop(p[7], p[9]); vop(p[1], p[2]); vop(p[3], p[4]); vop(p[5], p[6]); vop(p[7], p[8]); vop(p[9], p[10]); vop(p[13], p[14]); vop(p[12], p[13]); vop(p[13], p[14]); vop(p[16], p[17]); vop(p[15], p[16]); vop(p[16], p[17]); vop(p[12], p[15]); vop(p[14], p[17]); vop(p[14], p[15]); vop(p[13], p[16]); vop(p[13], p[14]); vop(p[15], p[16]); vop(p[19], p[20]); vop(p[18], p[19]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[21], p[23]); vop(p[22], p[24]); vop(p[22], p[23]); vop(p[18], p[21]); vop(p[20], p[23]); vop(p[20], p[21]); vop(p[19], p[22]); vop(p[22], p[24]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[12], p[18]); vop(p[16], p[22]); vop(p[16], p[18]); vop(p[14], p[20]); vop(p[20], p[24]); vop(p[14], p[16]); vop(p[18], p[20]); vop(p[22], p[24]); vop(p[13], p[19]); vop(p[17], p[23]); vop(p[17], p[19]); vop(p[15], p[21]); vop(p[15], p[17]); vop(p[19], p[21]); vop(p[13], p[14]); vop(p[15], p[16]); vop(p[17], p[18]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[0], p[12]); vop(p[8], p[20]); vop(p[8], p[12]); vop(p[4], p[16]); vop(p[16], p[24]); vop(p[12], p[16]); vop(p[2], p[14]); vop(p[10], p[22]); vop(p[10], p[14]); vop(p[6], p[18]); vop(p[6], p[10]); vop(p[10], p[12]); vop(p[1], p[13]); vop(p[9], p[21]); vop(p[9], p[13]); vop(p[5], p[17]); vop(p[13], p[17]); vop(p[3], p[15]); vop(p[11], p[23]); vop(p[11], p[15]); vop(p[7], p[19]); vop(p[7], p[11]); vop(p[11], p[13]); vop(p[11], p[12]); vop.store(dst+j, p[12]); } limit = size.width; } } } } #ifdef HAVE_OPENCL static bool ocl_medianFilter(InputArray _src, OutputArray _dst, int m) { size_t localsize[2] = { 16, 16 }; size_t globalsize[2]; int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); if ( !((depth == CV_8U || depth == CV_16U || depth == CV_16S || depth == CV_32F) && cn <= 4 && (m == 3 || m == 5)) ) return false; Size imgSize = _src.size(); bool useOptimized = (1 == cn) && (size_t)imgSize.width >= localsize[0] * 8 && (size_t)imgSize.height >= localsize[1] * 8 && imgSize.width % 4 == 0 && imgSize.height % 4 == 0 && (ocl::Device::getDefault().isIntel()); cv::String kname = format( useOptimized ? "medianFilter%d_u" : "medianFilter%d", m) ; cv::String kdefs = useOptimized ? format("-D T=%s -D T1=%s -D T4=%s%d -D cn=%d -D USE_4OPT", ocl::typeToStr(type), ocl::typeToStr(depth), ocl::typeToStr(depth), cn*4, cn) : format("-D T=%s -D T1=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn) ; ocl::Kernel k(kname.c_str(), ocl::imgproc::medianFilter_oclsrc, kdefs.c_str() ); if (k.empty()) return false; UMat src = _src.getUMat(); _dst.create(src.size(), type); UMat dst = _dst.getUMat(); k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst)); if( useOptimized ) { globalsize[0] = DIVUP(src.cols / 4, localsize[0]) * localsize[0]; globalsize[1] = DIVUP(src.rows / 4, localsize[1]) * localsize[1]; } else { globalsize[0] = (src.cols + localsize[0] + 2) / localsize[0] * localsize[0]; globalsize[1] = (src.rows + localsize[1] - 1) / localsize[1] * localsize[1]; } return k.run(2, globalsize, localsize, false); } #endif } #ifdef HAVE_OPENVX namespace cv { namespace ovx { template <> inline bool skipSmallImages(int w, int h) { return w*h < 1280 * 720; } } static bool openvx_medianFilter(InputArray _src, OutputArray _dst, int ksize) { if (_src.type() != CV_8UC1 || _dst.type() != CV_8U #ifndef VX_VERSION_1_1 || ksize != 3 #endif ) return false; Mat src = _src.getMat(); Mat dst = _dst.getMat(); if ( #ifdef VX_VERSION_1_1 ksize != 3 ? ovx::skipSmallImages(src.cols, src.rows) : #endif ovx::skipSmallImages(src.cols, src.rows) ) return false; try { ivx::Context ctx = ovx::getOpenVXContext(); #ifdef VX_VERSION_1_1 if ((vx_size)ksize > ctx.nonlinearMaxDimension()) return false; #endif Mat a; if (dst.data != src.data) a = src; else src.copyTo(a); ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(a.cols, a.rows, 1, (vx_int32)(a.step)), a.data), ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(dst.cols, dst.rows, 1, (vx_int32)(dst.step)), dst.data); //ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments //since OpenVX standart says nothing about thread-safety for now ivx::border_t prevBorder = ctx.immediateBorder(); ctx.setImmediateBorder(VX_BORDER_REPLICATE); #ifdef VX_VERSION_1_1 if (ksize == 3) #endif { ivx::IVX_CHECK_STATUS(vxuMedian3x3(ctx, ia, ib)); } #ifdef VX_VERSION_1_1 else { ivx::Matrix mtx; if(ksize == 5) mtx = ivx::Matrix::createFromPattern(ctx, VX_PATTERN_BOX, ksize, ksize); else { vx_size supportedSize; ivx::IVX_CHECK_STATUS(vxQueryContext(ctx, VX_CONTEXT_NONLINEAR_MAX_DIMENSION, &supportedSize, sizeof(supportedSize))); if ((vx_size)ksize > supportedSize) { ctx.setImmediateBorder(prevBorder); return false; } Mat mask(ksize, ksize, CV_8UC1, Scalar(255)); mtx = ivx::Matrix::create(ctx, VX_TYPE_UINT8, ksize, ksize); mtx.copyFrom(mask); } ivx::IVX_CHECK_STATUS(vxuNonLinearFilter(ctx, VX_NONLINEAR_FILTER_MEDIAN, ia, mtx, ib)); } #endif ctx.setImmediateBorder(prevBorder); } catch (ivx::RuntimeError & e) { VX_DbgThrow(e.what()); } catch (ivx::WrapperError & e) { VX_DbgThrow(e.what()); } return true; } } #endif #ifdef HAVE_IPP namespace cv { static bool ipp_medianFilter(Mat &src0, Mat &dst, int ksize) { CV_INSTRUMENT_REGION_IPP() #if IPP_VERSION_X100 < 201801 // Degradations for big kernel if(ksize > 7) return false; #endif { int bufSize; IppiSize dstRoiSize = ippiSize(dst.cols, dst.rows), maskSize = ippiSize(ksize, ksize); IppDataType ippType = ippiGetDataType(src0.type()); int channels = src0.channels(); IppAutoBuffer buffer; if(src0.isSubmatrix()) return false; Mat src; if(dst.data != src0.data) src = src0; else src0.copyTo(src); if(ippiFilterMedianBorderGetBufferSize(dstRoiSize, maskSize, ippType, channels, &bufSize) < 0) return false; buffer.allocate(bufSize); switch(ippType) { case ipp8u: if(channels == 1) return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_8u_C1R, src.ptr(), (int)src.step, dst.ptr(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0; else if(channels == 3) return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_8u_C3R, src.ptr(), (int)src.step, dst.ptr(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0; else if(channels == 4) return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_8u_C4R, src.ptr(), (int)src.step, dst.ptr(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0; else return false; case ipp16u: if(channels == 1) return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_16u_C1R, src.ptr(), (int)src.step, dst.ptr(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0; else if(channels == 3) return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_16u_C3R, src.ptr(), (int)src.step, dst.ptr(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0; else if(channels == 4) return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_16u_C4R, src.ptr(), (int)src.step, dst.ptr(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0; else return false; case ipp16s: if(channels == 1) return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_16s_C1R, src.ptr(), (int)src.step, dst.ptr(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0; else if(channels == 3) return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_16s_C3R, src.ptr(), (int)src.step, dst.ptr(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0; else if(channels == 4) return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_16s_C4R, src.ptr(), (int)src.step, dst.ptr(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0; else return false; case ipp32f: if(channels == 1) return CV_INSTRUMENT_FUN_IPP(ippiFilterMedianBorder_32f_C1R, src.ptr(), (int)src.step, dst.ptr(), (int)dst.step, dstRoiSize, maskSize, ippBorderRepl, 0, buffer) >= 0; else return false; default: return false; } } } } #endif void cv::medianBlur( InputArray _src0, OutputArray _dst, int ksize ) { CV_INSTRUMENT_REGION() CV_Assert( (ksize % 2 == 1) && (_src0.dims() <= 2 )); if( ksize <= 1 || _src0.empty() ) { _src0.copyTo(_dst); return; } CV_OCL_RUN(_dst.isUMat(), ocl_medianFilter(_src0,_dst, ksize)) Mat src0 = _src0.getMat(); _dst.create( src0.size(), src0.type() ); Mat dst = _dst.getMat(); CALL_HAL(medianBlur, cv_hal_medianBlur, src0.data, src0.step, dst.data, dst.step, src0.cols, src0.rows, src0.depth(), src0.channels(), ksize); CV_OVX_RUN(true, openvx_medianFilter(_src0, _dst, ksize)) CV_IPP_RUN_FAST(ipp_medianFilter(src0, dst, ksize)); #ifdef HAVE_TEGRA_OPTIMIZATION if (tegra::useTegra() && tegra::medianBlur(src0, dst, ksize)) return; #endif bool useSortNet = ksize == 3 || (ksize == 5 #if !(CV_SIMD128) && ( src0.depth() > CV_8U || src0.channels() == 2 || src0.channels() > 4 ) #endif ); Mat src; if( useSortNet ) { if( dst.data != src0.data ) src = src0; else src0.copyTo(src); if( src.depth() == CV_8U ) medianBlur_SortNet( src, dst, ksize ); else if( src.depth() == CV_16U ) medianBlur_SortNet( src, dst, ksize ); else if( src.depth() == CV_16S ) medianBlur_SortNet( src, dst, ksize ); else if( src.depth() == CV_32F ) medianBlur_SortNet( src, dst, ksize ); else CV_Error(CV_StsUnsupportedFormat, ""); return; } else { cv::copyMakeBorder( src0, src, 0, 0, ksize/2, ksize/2, BORDER_REPLICATE|BORDER_ISOLATED); int cn = src0.channels(); CV_Assert( src.depth() == CV_8U && (cn == 1 || cn == 3 || cn == 4) ); double img_size_mp = (double)(src0.total())/(1 << 20); if( ksize <= 3 + (img_size_mp < 1 ? 12 : img_size_mp < 4 ? 6 : 2)* (CV_SIMD128 && hasSIMD128() ? 1 : 3)) medianBlur_8u_Om( src, dst, ksize ); else medianBlur_8u_O1( src, dst, ksize ); } } /****************************************************************************************\ Bilateral Filtering \****************************************************************************************/ namespace cv { class BilateralFilter_8u_Invoker : public ParallelLoopBody { public: BilateralFilter_8u_Invoker(Mat& _dest, const Mat& _temp, int _radius, int _maxk, int* _space_ofs, float *_space_weight, float *_color_weight) : temp(&_temp), dest(&_dest), radius(_radius), maxk(_maxk), space_ofs(_space_ofs), space_weight(_space_weight), color_weight(_color_weight) { } virtual void operator() (const Range& range) const { int i, j, cn = dest->channels(), k; Size size = dest->size(); #if CV_SIMD128 int CV_DECL_ALIGNED(16) buf[4]; bool haveSIMD128 = hasSIMD128(); #endif for( i = range.start; i < range.end; i++ ) { const uchar* sptr = temp->ptr(i+radius) + radius*cn; uchar* dptr = dest->ptr(i); if( cn == 1 ) { for( j = 0; j < size.width; j++ ) { float sum = 0, wsum = 0; int val0 = sptr[j]; k = 0; #if CV_SIMD128 if( haveSIMD128 ) { v_float32x4 _val0 = v_setall_f32(static_cast(val0)); v_float32x4 vsumw = v_setzero_f32(); v_float32x4 vsumc = v_setzero_f32(); for( ; k <= maxk - 4; k += 4 ) { v_float32x4 _valF = v_float32x4(sptr[j + space_ofs[k]], sptr[j + space_ofs[k + 1]], sptr[j + space_ofs[k + 2]], sptr[j + space_ofs[k + 3]]); v_float32x4 _val = v_abs(_valF - _val0); v_store(buf, v_round(_val)); v_float32x4 _cw = v_float32x4(color_weight[buf[0]], color_weight[buf[1]], color_weight[buf[2]], color_weight[buf[3]]); v_float32x4 _sw = v_load(space_weight+k); v_float32x4 _w = _cw * _sw; _cw = _w * _valF; vsumw += _w; vsumc += _cw; } float *bufFloat = (float*)buf; v_float32x4 sum4 = v_reduce_sum4(vsumw, vsumc, vsumw, vsumc); v_store(bufFloat, sum4); sum += bufFloat[1]; wsum += bufFloat[0]; } #endif for( ; k < maxk; k++ ) { int val = sptr[j + space_ofs[k]]; float w = space_weight[k]*color_weight[std::abs(val - val0)]; sum += val*w; wsum += w; } // overflow is not possible here => there is no need to use cv::saturate_cast dptr[j] = (uchar)cvRound(sum/wsum); } } else { assert( cn == 3 ); for( j = 0; j < size.width*3; j += 3 ) { float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0; int b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2]; k = 0; #if CV_SIMD128 if( haveSIMD128 ) { v_float32x4 vsumw = v_setzero_f32(); v_float32x4 vsumb = v_setzero_f32(); v_float32x4 vsumg = v_setzero_f32(); v_float32x4 vsumr = v_setzero_f32(); const v_float32x4 _b0 = v_setall_f32(static_cast(b0)); const v_float32x4 _g0 = v_setall_f32(static_cast(g0)); const v_float32x4 _r0 = v_setall_f32(static_cast(r0)); for( ; k <= maxk - 4; k += 4 ) { const uchar* const sptr_k0 = sptr + j + space_ofs[k]; const uchar* const sptr_k1 = sptr + j + space_ofs[k+1]; const uchar* const sptr_k2 = sptr + j + space_ofs[k+2]; const uchar* const sptr_k3 = sptr + j + space_ofs[k+3]; v_float32x4 __b = v_cvt_f32(v_reinterpret_as_s32(v_load_expand_q(sptr_k0))); v_float32x4 __g = v_cvt_f32(v_reinterpret_as_s32(v_load_expand_q(sptr_k1))); v_float32x4 __r = v_cvt_f32(v_reinterpret_as_s32(v_load_expand_q(sptr_k2))); v_float32x4 __z = v_cvt_f32(v_reinterpret_as_s32(v_load_expand_q(sptr_k3))); v_float32x4 _b, _g, _r, _z; v_transpose4x4(__b, __g, __r, __z, _b, _g, _r, _z); v_float32x4 bt = v_abs(_b -_b0); v_float32x4 gt = v_abs(_g -_g0); v_float32x4 rt = v_abs(_r -_r0); bt = rt + bt + gt; v_store(buf, v_round(bt)); v_float32x4 _w = v_float32x4(color_weight[buf[0]],color_weight[buf[1]], color_weight[buf[2]],color_weight[buf[3]]); v_float32x4 _sw = v_load(space_weight+k); _w *= _sw; _b *= _w; _g *= _w; _r *= _w; vsumw += _w; vsumb += _b; vsumg += _g; vsumr += _r; } float *bufFloat = (float*)buf; v_float32x4 sum4 = v_reduce_sum4(vsumw, vsumb, vsumg, vsumr); v_store(bufFloat, sum4); wsum += bufFloat[0]; sum_b += bufFloat[1]; sum_g += bufFloat[2]; sum_r += bufFloat[3]; } #endif for( ; k < maxk; k++ ) { const uchar* sptr_k = sptr + j + space_ofs[k]; int b = sptr_k[0], g = sptr_k[1], r = sptr_k[2]; float w = space_weight[k]*color_weight[std::abs(b - b0) + std::abs(g - g0) + std::abs(r - r0)]; sum_b += b*w; sum_g += g*w; sum_r += r*w; wsum += w; } wsum = 1.f/wsum; b0 = cvRound(sum_b*wsum); g0 = cvRound(sum_g*wsum); r0 = cvRound(sum_r*wsum); dptr[j] = (uchar)b0; dptr[j+1] = (uchar)g0; dptr[j+2] = (uchar)r0; } } } } private: const Mat *temp; Mat *dest; int radius, maxk, *space_ofs; float *space_weight, *color_weight; }; #ifdef HAVE_OPENCL static bool ocl_bilateralFilter_8u(InputArray _src, OutputArray _dst, int d, double sigma_color, double sigma_space, int borderType) { #ifdef __ANDROID__ if (ocl::Device::getDefault().isNVidia()) return false; #endif int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); int i, j, maxk, radius; if (depth != CV_8U || cn > 4) return false; if (sigma_color <= 0) sigma_color = 1; if (sigma_space <= 0) sigma_space = 1; double gauss_color_coeff = -0.5 / (sigma_color * sigma_color); double gauss_space_coeff = -0.5 / (sigma_space * sigma_space); if ( d <= 0 ) radius = cvRound(sigma_space * 1.5); else radius = d / 2; radius = MAX(radius, 1); d = radius * 2 + 1; UMat src = _src.getUMat(), dst = _dst.getUMat(), temp; if (src.u == dst.u) return false; copyMakeBorder(src, temp, radius, radius, radius, radius, borderType); std::vector _space_weight(d * d); std::vector _space_ofs(d * d); float * const space_weight = &_space_weight[0]; int * const space_ofs = &_space_ofs[0]; // initialize space-related bilateral filter coefficients for( i = -radius, maxk = 0; i <= radius; i++ ) for( j = -radius; j <= radius; j++ ) { double r = std::sqrt((double)i * i + (double)j * j); if ( r > radius ) continue; space_weight[maxk] = (float)std::exp(r * r * gauss_space_coeff); space_ofs[maxk++] = (int)(i * temp.step + j * cn); } char cvt[3][40]; String cnstr = cn > 1 ? format("%d", cn) : ""; String kernelName("bilateral"); size_t sizeDiv = 1; if ((ocl::Device::getDefault().isIntel()) && (ocl::Device::getDefault().type() == ocl::Device::TYPE_GPU)) { //Intel GPU if (dst.cols % 4 == 0 && cn == 1) // For single channel x4 sized images. { kernelName = "bilateral_float4"; sizeDiv = 4; } } ocl::Kernel k(kernelName.c_str(), ocl::imgproc::bilateral_oclsrc, format("-D radius=%d -D maxk=%d -D cn=%d -D int_t=%s -D uint_t=uint%s -D convert_int_t=%s" " -D uchar_t=%s -D float_t=%s -D convert_float_t=%s -D convert_uchar_t=%s -D gauss_color_coeff=(float)%f", radius, maxk, cn, ocl::typeToStr(CV_32SC(cn)), cnstr.c_str(), ocl::convertTypeStr(CV_8U, CV_32S, cn, cvt[0]), ocl::typeToStr(type), ocl::typeToStr(CV_32FC(cn)), ocl::convertTypeStr(CV_32S, CV_32F, cn, cvt[1]), ocl::convertTypeStr(CV_32F, CV_8U, cn, cvt[2]), gauss_color_coeff)); if (k.empty()) return false; Mat mspace_weight(1, d * d, CV_32FC1, space_weight); Mat mspace_ofs(1, d * d, CV_32SC1, space_ofs); UMat ucolor_weight, uspace_weight, uspace_ofs; mspace_weight.copyTo(uspace_weight); mspace_ofs.copyTo(uspace_ofs); k.args(ocl::KernelArg::ReadOnlyNoSize(temp), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::PtrReadOnly(uspace_weight), ocl::KernelArg::PtrReadOnly(uspace_ofs)); size_t globalsize[2] = { (size_t)dst.cols / sizeDiv, (size_t)dst.rows }; return k.run(2, globalsize, NULL, false); } #endif static void bilateralFilter_8u( const Mat& src, Mat& dst, int d, double sigma_color, double sigma_space, int borderType ) { int cn = src.channels(); int i, j, maxk, radius; Size size = src.size(); CV_Assert( (src.type() == CV_8UC1 || src.type() == CV_8UC3) && src.data != dst.data ); if( sigma_color <= 0 ) sigma_color = 1; if( sigma_space <= 0 ) sigma_space = 1; double gauss_color_coeff = -0.5/(sigma_color*sigma_color); double gauss_space_coeff = -0.5/(sigma_space*sigma_space); if( d <= 0 ) radius = cvRound(sigma_space*1.5); else radius = d/2; radius = MAX(radius, 1); d = radius*2 + 1; Mat temp; copyMakeBorder( src, temp, radius, radius, radius, radius, borderType ); std::vector _color_weight(cn*256); std::vector _space_weight(d*d); std::vector _space_ofs(d*d); float* color_weight = &_color_weight[0]; float* space_weight = &_space_weight[0]; int* space_ofs = &_space_ofs[0]; // initialize color-related bilateral filter coefficients for( i = 0; i < 256*cn; i++ ) color_weight[i] = (float)std::exp(i*i*gauss_color_coeff); // initialize space-related bilateral filter coefficients for( i = -radius, maxk = 0; i <= radius; i++ ) { j = -radius; for( ; j <= radius; j++ ) { double r = std::sqrt((double)i*i + (double)j*j); if( r > radius ) continue; space_weight[maxk] = (float)std::exp(r*r*gauss_space_coeff); space_ofs[maxk++] = (int)(i*temp.step + j*cn); } } BilateralFilter_8u_Invoker body(dst, temp, radius, maxk, space_ofs, space_weight, color_weight); parallel_for_(Range(0, size.height), body, dst.total()/(double)(1<<16)); } class BilateralFilter_32f_Invoker : public ParallelLoopBody { public: BilateralFilter_32f_Invoker(int _cn, int _radius, int _maxk, int *_space_ofs, const Mat& _temp, Mat& _dest, float _scale_index, float *_space_weight, float *_expLUT) : cn(_cn), radius(_radius), maxk(_maxk), space_ofs(_space_ofs), temp(&_temp), dest(&_dest), scale_index(_scale_index), space_weight(_space_weight), expLUT(_expLUT) { } virtual void operator() (const Range& range) const { int i, j, k; Size size = dest->size(); #if CV_SIMD128 int CV_DECL_ALIGNED(16) idxBuf[4]; bool haveSIMD128 = hasSIMD128(); #endif for( i = range.start; i < range.end; i++ ) { const float* sptr = temp->ptr(i+radius) + radius*cn; float* dptr = dest->ptr(i); if( cn == 1 ) { for( j = 0; j < size.width; j++ ) { float sum = 0, wsum = 0; float val0 = sptr[j]; k = 0; #if CV_SIMD128 if( haveSIMD128 ) { v_float32x4 vecwsum = v_setzero_f32(); v_float32x4 vecvsum = v_setzero_f32(); const v_float32x4 _val0 = v_setall_f32(sptr[j]); const v_float32x4 _scale_index = v_setall_f32(scale_index); for (; k <= maxk - 4; k += 4) { v_float32x4 _sw = v_load(space_weight + k); v_float32x4 _val = v_float32x4(sptr[j + space_ofs[k]], sptr[j + space_ofs[k + 1]], sptr[j + space_ofs[k + 2]], sptr[j + space_ofs[k + 3]]); v_float32x4 _alpha = v_abs(_val - _val0) * _scale_index; v_int32x4 _idx = v_round(_alpha); v_store(idxBuf, _idx); _alpha -= v_cvt_f32(_idx); v_float32x4 _explut = v_float32x4(expLUT[idxBuf[0]], expLUT[idxBuf[1]], expLUT[idxBuf[2]], expLUT[idxBuf[3]]); v_float32x4 _explut1 = v_float32x4(expLUT[idxBuf[0] + 1], expLUT[idxBuf[1] + 1], expLUT[idxBuf[2] + 1], expLUT[idxBuf[3] + 1]); v_float32x4 _w = _sw * (_explut + (_alpha * (_explut1 - _explut))); _val *= _w; vecwsum += _w; vecvsum += _val; } float *bufFloat = (float*)idxBuf; v_float32x4 sum4 = v_reduce_sum4(vecwsum, vecvsum, vecwsum, vecvsum); v_store(bufFloat, sum4); sum += bufFloat[1]; wsum += bufFloat[0]; } #endif for( ; k < maxk; k++ ) { float val = sptr[j + space_ofs[k]]; float alpha = (float)(std::abs(val - val0)*scale_index); int idx = cvFloor(alpha); alpha -= idx; float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx])); sum += val*w; wsum += w; } dptr[j] = (float)(sum/wsum); } } else { CV_Assert( cn == 3 ); for( j = 0; j < size.width*3; j += 3 ) { float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0; float b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2]; k = 0; #if CV_SIMD128 if( haveSIMD128 ) { v_float32x4 sumw = v_setzero_f32(); v_float32x4 sumb = v_setzero_f32(); v_float32x4 sumg = v_setzero_f32(); v_float32x4 sumr = v_setzero_f32(); const v_float32x4 _b0 = v_setall_f32(b0); const v_float32x4 _g0 = v_setall_f32(g0); const v_float32x4 _r0 = v_setall_f32(r0); const v_float32x4 _scale_index = v_setall_f32(scale_index); for( ; k <= maxk-4; k += 4 ) { v_float32x4 _sw = v_load(space_weight + k); const float* const sptr_k0 = sptr + j + space_ofs[k]; const float* const sptr_k1 = sptr + j + space_ofs[k+1]; const float* const sptr_k2 = sptr + j + space_ofs[k+2]; const float* const sptr_k3 = sptr + j + space_ofs[k+3]; v_float32x4 _v0 = v_load(sptr_k0); v_float32x4 _v1 = v_load(sptr_k1); v_float32x4 _v2 = v_load(sptr_k2); v_float32x4 _v3 = v_load(sptr_k3); v_float32x4 _b, _g, _r, _dummy; v_transpose4x4(_v0, _v1, _v2, _v3, _b, _g, _r, _dummy); v_float32x4 _bt = v_abs(_b - _b0); v_float32x4 _gt = v_abs(_g - _g0); v_float32x4 _rt = v_abs(_r - _r0); v_float32x4 _alpha = _scale_index * (_bt + _gt + _rt); v_int32x4 _idx = v_round(_alpha); v_store((int*)idxBuf, _idx); _alpha -= v_cvt_f32(_idx); v_float32x4 _explut = v_float32x4(expLUT[idxBuf[0]], expLUT[idxBuf[1]], expLUT[idxBuf[2]], expLUT[idxBuf[3]]); v_float32x4 _explut1 = v_float32x4(expLUT[idxBuf[0] + 1], expLUT[idxBuf[1] + 1], expLUT[idxBuf[2] + 1], expLUT[idxBuf[3] + 1]); v_float32x4 _w = _sw * (_explut + (_alpha * (_explut1 - _explut))); _b *= _w; _g *= _w; _r *= _w; sumw += _w; sumb += _b; sumg += _g; sumr += _r; } v_float32x4 sum4 = v_reduce_sum4(sumw, sumb, sumg, sumr); float *bufFloat = (float*)idxBuf; v_store(bufFloat, sum4); wsum += bufFloat[0]; sum_b += bufFloat[1]; sum_g += bufFloat[2]; sum_r += bufFloat[3]; } #endif for(; k < maxk; k++ ) { const float* sptr_k = sptr + j + space_ofs[k]; float b = sptr_k[0], g = sptr_k[1], r = sptr_k[2]; float alpha = (float)((std::abs(b - b0) + std::abs(g - g0) + std::abs(r - r0))*scale_index); int idx = cvFloor(alpha); alpha -= idx; float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx])); sum_b += b*w; sum_g += g*w; sum_r += r*w; wsum += w; } wsum = 1.f/wsum; b0 = sum_b*wsum; g0 = sum_g*wsum; r0 = sum_r*wsum; dptr[j] = b0; dptr[j+1] = g0; dptr[j+2] = r0; } } } } private: int cn, radius, maxk, *space_ofs; const Mat* temp; Mat *dest; float scale_index, *space_weight, *expLUT; }; static void bilateralFilter_32f( const Mat& src, Mat& dst, int d, double sigma_color, double sigma_space, int borderType ) { int cn = src.channels(); int i, j, maxk, radius; double minValSrc=-1, maxValSrc=1; const int kExpNumBinsPerChannel = 1 << 12; int kExpNumBins = 0; float lastExpVal = 1.f; float len, scale_index; Size size = src.size(); CV_Assert( (src.type() == CV_32FC1 || src.type() == CV_32FC3) && src.data != dst.data ); if( sigma_color <= 0 ) sigma_color = 1; if( sigma_space <= 0 ) sigma_space = 1; double gauss_color_coeff = -0.5/(sigma_color*sigma_color); double gauss_space_coeff = -0.5/(sigma_space*sigma_space); if( d <= 0 ) radius = cvRound(sigma_space*1.5); else radius = d/2; radius = MAX(radius, 1); d = radius*2 + 1; // compute the min/max range for the input image (even if multichannel) minMaxLoc( src.reshape(1), &minValSrc, &maxValSrc ); if(std::abs(minValSrc - maxValSrc) < FLT_EPSILON) { src.copyTo(dst); return; } // temporary copy of the image with borders for easy processing Mat temp; copyMakeBorder( src, temp, radius, radius, radius, radius, borderType ); const double insteadNaNValue = -5. * sigma_color; patchNaNs( temp, insteadNaNValue ); // this replacement of NaNs makes the assumption that depth values are nonnegative // TODO: make insteadNaNValue avalible in the outside function interface to control the cases breaking the assumption // allocate lookup tables std::vector _space_weight(d*d); std::vector _space_ofs(d*d); float* space_weight = &_space_weight[0]; int* space_ofs = &_space_ofs[0]; // assign a length which is slightly more than needed len = (float)(maxValSrc - minValSrc) * cn; kExpNumBins = kExpNumBinsPerChannel * cn; std::vector _expLUT(kExpNumBins+2); float* expLUT = &_expLUT[0]; scale_index = kExpNumBins/len; // initialize the exp LUT for( i = 0; i < kExpNumBins+2; i++ ) { if( lastExpVal > 0.f ) { double val = i / scale_index; expLUT[i] = (float)std::exp(val * val * gauss_color_coeff); lastExpVal = expLUT[i]; } else expLUT[i] = 0.f; } // initialize space-related bilateral filter coefficients for( i = -radius, maxk = 0; i <= radius; i++ ) for( j = -radius; j <= radius; j++ ) { double r = std::sqrt((double)i*i + (double)j*j); if( r > radius ) continue; space_weight[maxk] = (float)std::exp(r*r*gauss_space_coeff); space_ofs[maxk++] = (int)(i*(temp.step/sizeof(float)) + j*cn); } // parallel_for usage BilateralFilter_32f_Invoker body(cn, radius, maxk, space_ofs, temp, dst, scale_index, space_weight, expLUT); parallel_for_(Range(0, size.height), body, dst.total()/(double)(1<<16)); } #ifdef HAVE_IPP #define IPP_BILATERAL_PARALLEL 1 #ifdef HAVE_IPP_IW class ipp_bilateralFilterParallel: public ParallelLoopBody { public: ipp_bilateralFilterParallel(::ipp::IwiImage &_src, ::ipp::IwiImage &_dst, int _radius, Ipp32f _valSquareSigma, Ipp32f _posSquareSigma, ::ipp::IwiBorderType _borderType, bool *_ok): src(_src), dst(_dst) { pOk = _ok; radius = _radius; valSquareSigma = _valSquareSigma; posSquareSigma = _posSquareSigma; borderType = _borderType; *pOk = true; } ~ipp_bilateralFilterParallel() {} virtual void operator() (const Range& range) const { if(*pOk == false) return; try { ::ipp::IwiTile tile = ::ipp::IwiRoi(0, range.start, dst.m_size.width, range.end - range.start); CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterBilateral, src, dst, radius, valSquareSigma, posSquareSigma, ::ipp::IwDefault(), borderType, tile); } catch(::ipp::IwException) { *pOk = false; return; } } private: ::ipp::IwiImage &src; ::ipp::IwiImage &dst; int radius; Ipp32f valSquareSigma; Ipp32f posSquareSigma; ::ipp::IwiBorderType borderType; bool *pOk; const ipp_bilateralFilterParallel& operator= (const ipp_bilateralFilterParallel&); }; #endif static bool ipp_bilateralFilter(Mat &src, Mat &dst, int d, double sigmaColor, double sigmaSpace, int borderType) { #ifdef HAVE_IPP_IW CV_INSTRUMENT_REGION_IPP() int radius = IPP_MAX(((d <= 0)?cvRound(sigmaSpace*1.5):d/2), 1); Ipp32f valSquareSigma = (Ipp32f)((sigmaColor <= 0)?1:sigmaColor*sigmaColor); Ipp32f posSquareSigma = (Ipp32f)((sigmaSpace <= 0)?1:sigmaSpace*sigmaSpace); // Acquire data and begin processing try { ::ipp::IwiImage iwSrc = ippiGetImage(src); ::ipp::IwiImage iwDst = ippiGetImage(dst); ::ipp::IwiBorderSize borderSize(radius); ::ipp::IwiBorderType ippBorder(ippiGetBorder(iwSrc, borderType, borderSize)); if(!ippBorder) return false; const int threads = ippiSuggestThreadsNum(iwDst, 2); if(IPP_BILATERAL_PARALLEL && threads > 1) { bool ok = true; Range range(0, (int)iwDst.m_size.height); ipp_bilateralFilterParallel invoker(iwSrc, iwDst, radius, valSquareSigma, posSquareSigma, ippBorder, &ok); if(!ok) return false; parallel_for_(range, invoker, threads*4); if(!ok) return false; } else { CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterBilateral, iwSrc, iwDst, radius, valSquareSigma, posSquareSigma, ::ipp::IwDefault(), ippBorder); } } catch (::ipp::IwException) { return false; } return true; #else CV_UNUSED(src); CV_UNUSED(dst); CV_UNUSED(d); CV_UNUSED(sigmaColor); CV_UNUSED(sigmaSpace); CV_UNUSED(borderType); return false; #endif } #endif } void cv::bilateralFilter( InputArray _src, OutputArray _dst, int d, double sigmaColor, double sigmaSpace, int borderType ) { CV_INSTRUMENT_REGION() _dst.create( _src.size(), _src.type() ); CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(), ocl_bilateralFilter_8u(_src, _dst, d, sigmaColor, sigmaSpace, borderType)) Mat src = _src.getMat(), dst = _dst.getMat(); CV_IPP_RUN_FAST(ipp_bilateralFilter(src, dst, d, sigmaColor, sigmaSpace, borderType)); if( src.depth() == CV_8U ) bilateralFilter_8u( src, dst, d, sigmaColor, sigmaSpace, borderType ); else if( src.depth() == CV_32F ) bilateralFilter_32f( src, dst, d, sigmaColor, sigmaSpace, borderType ); else CV_Error( CV_StsUnsupportedFormat, "Bilateral filtering is only implemented for 8u and 32f images" ); } ////////////////////////////////////////////////////////////////////////////////////////// CV_IMPL void cvSmooth( const void* srcarr, void* dstarr, int smooth_type, int param1, int param2, double param3, double param4 ) { cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0; CV_Assert( dst.size() == src.size() && (smooth_type == CV_BLUR_NO_SCALE || dst.type() == src.type()) ); if( param2 <= 0 ) param2 = param1; if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE ) cv::boxFilter( src, dst, dst.depth(), cv::Size(param1, param2), cv::Point(-1,-1), smooth_type == CV_BLUR, cv::BORDER_REPLICATE ); else if( smooth_type == CV_GAUSSIAN ) cv::GaussianBlur( src, dst, cv::Size(param1, param2), param3, param4, cv::BORDER_REPLICATE ); else if( smooth_type == CV_MEDIAN ) cv::medianBlur( src, dst, param1 ); else cv::bilateralFilter( src, dst, param1, param3, param4, cv::BORDER_REPLICATE ); if( dst.data != dst0.data ) CV_Error( CV_StsUnmatchedFormats, "The destination image does not have the proper type" ); } /* End of file. */