/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include namespace cv { namespace detail { void PairwiseSeamFinder::find(const std::vector &src, const std::vector &corners, std::vector &masks) { LOGLN("Finding seams..."); if (src.size() == 0) return; #if ENABLE_LOG int64 t = getTickCount(); #endif images_ = src; sizes_.resize(src.size()); for (size_t i = 0; i < src.size(); ++i) sizes_[i] = src[i].size(); corners_ = corners; masks_ = masks; run(); LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); } void PairwiseSeamFinder::run() { for (size_t i = 0; i < sizes_.size() - 1; ++i) { for (size_t j = i + 1; j < sizes_.size(); ++j) { Rect roi; if (overlapRoi(corners_[i], corners_[j], sizes_[i], sizes_[j], roi)) findInPair(i, j, roi); } } } void VoronoiSeamFinder::find(const std::vector &sizes, const std::vector &corners, std::vector &masks) { LOGLN("Finding seams..."); if (sizes.size() == 0) return; #if ENABLE_LOG int64 t = getTickCount(); #endif sizes_ = sizes; corners_ = corners; masks_ = masks; run(); LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); } void VoronoiSeamFinder::findInPair(size_t first, size_t second, Rect roi) { const int gap = 10; Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U); Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U); Size img1 = sizes_[first], img2 = sizes_[second]; Mat mask1 = masks_[first], mask2 = masks_[second]; Point tl1 = corners_[first], tl2 = corners_[second]; // Cut submasks with some gap for (int y = -gap; y < roi.height + gap; ++y) { for (int x = -gap; x < roi.width + gap; ++x) { int y1 = roi.y - tl1.y + y; int x1 = roi.x - tl1.x + x; if (y1 >= 0 && x1 >= 0 && y1 < img1.height && x1 < img1.width) submask1.at(y + gap, x + gap) = mask1.at(y1, x1); else submask1.at(y + gap, x + gap) = 0; int y2 = roi.y - tl2.y + y; int x2 = roi.x - tl2.x + x; if (y2 >= 0 && x2 >= 0 && y2 < img2.height && x2 < img2.width) submask2.at(y + gap, x + gap) = mask2.at(y2, x2); else submask2.at(y + gap, x + gap) = 0; } } Mat collision = (submask1 != 0) & (submask2 != 0); Mat unique1 = submask1.clone(); unique1.setTo(0, collision); Mat unique2 = submask2.clone(); unique2.setTo(0, collision); Mat dist1, dist2; distanceTransform(unique1 == 0, dist1, CV_DIST_L1, 3); distanceTransform(unique2 == 0, dist2, CV_DIST_L1, 3); Mat seam = dist1 < dist2; for (int y = 0; y < roi.height; ++y) { for (int x = 0; x < roi.width; ++x) { if (seam.at(y + gap, x + gap)) mask2.at(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0; else mask1.at(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0; } } } DpSeamFinder::DpSeamFinder(CostFunction costFunc) : costFunc_(costFunc) {} void DpSeamFinder::find(const std::vector &src, const std::vector &corners, std::vector &masks) { LOGLN("Finding seams..."); #if ENABLE_LOG int64 t = getTickCount(); #endif if (src.size() == 0) return; std::vector > pairs; for (size_t i = 0; i+1 < src.size(); ++i) for (size_t j = i+1; j < src.size(); ++j) pairs.push_back(std::make_pair(i, j)); sort(pairs.begin(), pairs.end(), ImagePairLess(src, corners)); std::reverse(pairs.begin(), pairs.end()); for (size_t i = 0; i < pairs.size(); ++i) { size_t i0 = pairs[i].first, i1 = pairs[i].second; process(src[i0], src[i1], corners[i0], corners[i1], masks[i0], masks[i1]); } LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); } void DpSeamFinder::process( const Mat &image1, const Mat &image2, Point tl1, Point tl2, Mat &mask1, Mat &mask2) { CV_Assert(image1.size() == mask1.size()); CV_Assert(image2.size() == mask2.size()); Point intersectTl(std::max(tl1.x, tl2.x), std::max(tl1.y, tl2.y)); Point intersectBr(std::min(tl1.x + image1.cols, tl2.x + image2.cols), std::min(tl1.y + image1.rows, tl2.y + image2.rows)); if (intersectTl.x >= intersectBr.x || intersectTl.y >= intersectBr.y) return; // there are no conflicts unionTl_ = Point(std::min(tl1.x, tl2.x), std::min(tl1.y, tl2.y)); unionBr_ = Point(std::max(tl1.x + image1.cols, tl2.x + image2.cols), std::max(tl1.y + image1.rows, tl2.y + image2.rows)); unionSize_ = Size(unionBr_.x - unionTl_.x, unionBr_.y - unionTl_.y); mask1_ = Mat::zeros(unionSize_, CV_8U); mask2_ = Mat::zeros(unionSize_, CV_8U); Mat tmp = mask1_(Rect(tl1.x - unionTl_.x, tl1.y - unionTl_.y, mask1.cols, mask1.rows)); mask1.copyTo(tmp); tmp = mask2_(Rect(tl2.x - unionTl_.x, tl2.y - unionTl_.y, mask2.cols, mask2.rows)); mask2.copyTo(tmp); // find both images contour masks contour1mask_ = Mat::zeros(unionSize_, CV_8U); contour2mask_ = Mat::zeros(unionSize_, CV_8U); for (int y = 0; y < unionSize_.height; ++y) { for (int x = 0; x < unionSize_.width; ++x) { if (mask1_(y, x) && ((x == 0 || !mask1_(y, x-1)) || (x == unionSize_.width-1 || !mask1_(y, x+1)) || (y == 0 || !mask1_(y-1, x)) || (y == unionSize_.height-1 || !mask1_(y+1, x)))) { contour1mask_(y, x) = 255; } if (mask2_(y, x) && ((x == 0 || !mask2_(y, x-1)) || (x == unionSize_.width-1 || !mask2_(y, x+1)) || (y == 0 || !mask2_(y-1, x)) || (y == unionSize_.height-1 || !mask2_(y+1, x)))) { contour2mask_(y, x) = 255; } } } findComponents(); findEdges(); resolveConflicts(image1, image2, tl1, tl2, mask1, mask2); } void DpSeamFinder::findComponents() { // label all connected components and get information about them ncomps_ = 0; labels_.create(unionSize_); states_.clear(); tls_.clear(); brs_.clear(); contours_.clear(); for (int y = 0; y < unionSize_.height; ++y) { for (int x = 0; x < unionSize_.width; ++x) { if (mask1_(y, x) && mask2_(y, x)) labels_(y, x) = std::numeric_limits::max(); else if (mask1_(y, x)) labels_(y, x) = std::numeric_limits::max()-1; else if (mask2_(y, x)) labels_(y, x) = std::numeric_limits::max()-2; else labels_(y, x) = 0; } } for (int y = 0; y < unionSize_.height; ++y) { for (int x = 0; x < unionSize_.width; ++x) { if (labels_(y, x) >= std::numeric_limits::max()-2) { if (labels_(y, x) == std::numeric_limits::max()) states_.push_back(INTERS); else if (labels_(y, x) == std::numeric_limits::max()-1) states_.push_back(FIRST); else if (labels_(y, x) == std::numeric_limits::max()-2) states_.push_back(SECOND); floodFill(labels_, Point(x, y), ++ncomps_); tls_.push_back(Point(x, y)); brs_.push_back(Point(x+1, y+1)); contours_.push_back(std::vector()); } if (labels_(y, x)) { int l = labels_(y, x); int ci = l-1; tls_[ci].x = std::min(tls_[ci].x, x); tls_[ci].y = std::min(tls_[ci].y, y); brs_[ci].x = std::max(brs_[ci].x, x+1); brs_[ci].y = std::max(brs_[ci].y, y+1); if ((x == 0 || labels_(y, x-1) != l) || (x == unionSize_.width-1 || labels_(y, x+1) != l) || (y == 0 || labels_(y-1, x) != l) || (y == unionSize_.height-1 || labels_(y+1, x) != l)) { contours_[ci].push_back(Point(x, y)); } } } } } void DpSeamFinder::findEdges() { // find edges between components std::map, int> wedges; // weighted edges for (int ci = 0; ci < ncomps_-1; ++ci) { for (int cj = ci+1; cj < ncomps_; ++cj) { wedges[std::make_pair(ci, cj)] = 0; wedges[std::make_pair(cj, ci)] = 0; } } for (int ci = 0; ci < ncomps_; ++ci) { for (size_t i = 0; i < contours_[ci].size(); ++i) { int x = contours_[ci][i].x; int y = contours_[ci][i].y; int l = ci + 1; if (x > 0 && labels_(y, x-1) && labels_(y, x-1) != l) { wedges[std::make_pair(ci, labels_(y, x-1)-1)]++; wedges[std::make_pair(labels_(y, x-1)-1, ci)]++; } if (y > 0 && labels_(y-1, x) && labels_(y-1, x) != l) { wedges[std::make_pair(ci, labels_(y-1, x)-1)]++; wedges[std::make_pair(labels_(y-1, x)-1, ci)]++; } if (x < unionSize_.width-1 && labels_(y, x+1) && labels_(y, x+1) != l) { wedges[std::make_pair(ci, labels_(y, x+1)-1)]++; wedges[std::make_pair(labels_(y, x+1)-1, ci)]++; } if (y < unionSize_.height-1 && labels_(y+1, x) && labels_(y+1, x) != l) { wedges[std::make_pair(ci, labels_(y+1, x)-1)]++; wedges[std::make_pair(labels_(y+1, x)-1, ci)]++; } } } edges_.clear(); for (int ci = 0; ci < ncomps_-1; ++ci) { for (int cj = ci+1; cj < ncomps_; ++cj) { std::map, int>::iterator itr = wedges.find(std::make_pair(ci, cj)); if (itr != wedges.end() && itr->second > 0) edges_.insert(itr->first); itr = wedges.find(std::make_pair(cj, ci)); if (itr != wedges.end() && itr->second > 0) edges_.insert(itr->first); } } } void DpSeamFinder::resolveConflicts( const Mat &image1, const Mat &image2, Point tl1, Point tl2, Mat &mask1, Mat &mask2) { if (costFunc_ == COLOR_GRAD) computeGradients(image1, image2); // resolve conflicts between components bool hasConflict = true; while (hasConflict) { int c1 = 0, c2 = 0; hasConflict = false; for (std::set >::iterator itr = edges_.begin(); itr != edges_.end(); ++itr) { c1 = itr->first; c2 = itr->second; if ((states_[c1] & INTERS) && (states_[c1] & (~INTERS)) != states_[c2]) { hasConflict = true; break; } } if (hasConflict) { int l1 = c1+1, l2 = c2+1; if (hasOnlyOneNeighbor(c1)) { // if the first components has only one adjacent component for (int y = tls_[c1].y; y < brs_[c1].y; ++y) for (int x = tls_[c1].x; x < brs_[c1].x; ++x) if (labels_(y, x) == l1) labels_(y, x) = l2; states_[c1] = states_[c2] == FIRST ? SECOND : FIRST; } else { // if the first component has more than one adjacent component Point p1, p2; if (getSeamTips(c1, c2, p1, p2)) { std::vector seam; bool isHorizontalSeam; if (estimateSeam(image1, image2, tl1, tl2, c1, p1, p2, seam, isHorizontalSeam)) updateLabelsUsingSeam(c1, c2, seam, isHorizontalSeam); } states_[c1] = states_[c2] == FIRST ? INTERS_SECOND : INTERS_FIRST; } const int c[] = {c1, c2}; const int l[] = {l1, l2}; for (int i = 0; i < 2; ++i) { // update information about the (i+1)-th component int x0 = tls_[c[i]].x, x1 = brs_[c[i]].x; int y0 = tls_[c[i]].y, y1 = brs_[c[i]].y; tls_[c[i]] = Point(std::numeric_limits::max(), std::numeric_limits::max()); brs_[c[i]] = Point(std::numeric_limits::min(), std::numeric_limits::min()); contours_[c[i]].clear(); for (int y = y0; y < y1; ++y) { for (int x = x0; x < x1; ++x) { if (labels_(y, x) == l[i]) { tls_[c[i]].x = std::min(tls_[c[i]].x, x); tls_[c[i]].y = std::min(tls_[c[i]].y, y); brs_[c[i]].x = std::max(brs_[c[i]].x, x+1); brs_[c[i]].y = std::max(brs_[c[i]].y, y+1); if ((x == 0 || labels_(y, x-1) != l[i]) || (x == unionSize_.width-1 || labels_(y, x+1) != l[i]) || (y == 0 || labels_(y-1, x) != l[i]) || (y == unionSize_.height-1 || labels_(y+1, x) != l[i])) { contours_[c[i]].push_back(Point(x, y)); } } } } } // remove edges edges_.erase(std::make_pair(c1, c2)); edges_.erase(std::make_pair(c2, c1)); } } // update masks int dx1 = unionTl_.x - tl1.x, dy1 = unionTl_.y - tl1.y; int dx2 = unionTl_.x - tl2.x, dy2 = unionTl_.y - tl2.y; for (int y = 0; y < mask2.rows; ++y) { for (int x = 0; x < mask2.cols; ++x) { int l = labels_(y - dy2, x - dx2); if (l > 0 && (states_[l-1] & FIRST) && mask1.at(y - dy2 + dy1, x - dx2 + dx1)) mask2.at(y, x) = 0; } } for (int y = 0; y < mask1.rows; ++y) { for (int x = 0; x < mask1.cols; ++x) { int l = labels_(y - dy1, x - dx1); if (l > 0 && (states_[l-1] & SECOND) && mask2.at(y - dy1 + dy2, x - dx1 + dx2)) mask1.at(y, x) = 0; } } } void DpSeamFinder::computeGradients(const Mat &image1, const Mat &image2) { CV_Assert(image1.channels() == 3 || image1.channels() == 4); CV_Assert(image2.channels() == 3 || image2.channels() == 4); CV_Assert(costFunction() == COLOR_GRAD); Mat gray; if (image1.channels() == 3) cvtColor(image1, gray, CV_BGR2GRAY); else if (image1.channels() == 4) cvtColor(image1, gray, CV_BGRA2GRAY); Sobel(gray, gradx1_, CV_32F, 1, 0); Sobel(gray, grady1_, CV_32F, 0, 1); if (image2.channels() == 3) cvtColor(image2, gray, CV_BGR2GRAY); else if (image2.channels() == 4) cvtColor(image2, gray, CV_BGRA2GRAY); Sobel(gray, gradx2_, CV_32F, 1, 0); Sobel(gray, grady2_, CV_32F, 0, 1); } bool DpSeamFinder::hasOnlyOneNeighbor(int comp) { std::set >::iterator begin, end; begin = lower_bound(edges_.begin(), edges_.end(), std::make_pair(comp, std::numeric_limits::min())); end = upper_bound(edges_.begin(), edges_.end(), std::make_pair(comp, std::numeric_limits::max())); return ++begin == end; } bool DpSeamFinder::closeToContour(int y, int x, const Mat_ &contourMask) { const int rad = 2; for (int dy = -rad; dy <= rad; ++dy) { if (y + dy >= 0 && y + dy < unionSize_.height) { for (int dx = -rad; dx <= rad; ++dx) { if (x + dx >= 0 && x + dx < unionSize_.width && contourMask(y + dy, x + dx)) { return true; } } } } return false; } bool DpSeamFinder::getSeamTips(int comp1, int comp2, Point &p1, Point &p2) { CV_Assert(states_[comp1] & INTERS); // find special points std::vector specialPoints; int l2 = comp2+1; for (size_t i = 0; i < contours_[comp1].size(); ++i) { int x = contours_[comp1][i].x; int y = contours_[comp1][i].y; if (closeToContour(y, x, contour1mask_) && closeToContour(y, x, contour2mask_) && ((x > 0 && labels_(y, x-1) == l2) || (y > 0 && labels_(y-1, x) == l2) || (x < unionSize_.width-1 && labels_(y, x+1) == l2) || (y < unionSize_.height-1 && labels_(y+1, x) == l2))) { specialPoints.push_back(Point(x, y)); } } if (specialPoints.size() < 2) return false; // find clusters std::vector labels; cv::partition(specialPoints, labels, ClosePoints(10)); int nlabels = *std::max_element(labels.begin(), labels.end()) + 1; if (nlabels < 2) return false; std::vector sum(nlabels); std::vector > points(nlabels); for (size_t i = 0; i < specialPoints.size(); ++i) { sum[labels[i]] += specialPoints[i]; points[labels[i]].push_back(specialPoints[i]); } // select two most distant clusters int idx[2] = {-1,-1}; double maxDist = -std::numeric_limits::max(); for (int i = 0; i < nlabels-1; ++i) { for (int j = i+1; j < nlabels; ++j) { double size1 = static_cast(points[i].size()), size2 = static_cast(points[j].size()); double cx1 = cvRound(sum[i].x / size1), cy1 = cvRound(sum[i].y / size1); double cx2 = cvRound(sum[j].x / size2), cy2 = cvRound(sum[j].y / size1); double dist = (cx1 - cx2) * (cx1 - cx2) + (cy1 - cy2) * (cy1 - cy2); if (dist > maxDist) { maxDist = dist; idx[0] = i; idx[1] = j; } } } // select two points closest to the clusters' centers Point p[2]; for (int i = 0; i < 2; ++i) { double size = static_cast(points[idx[i]].size()); double cx = cvRound(sum[idx[i]].x / size); double cy = cvRound(sum[idx[i]].y / size); size_t closest = points[idx[i]].size(); double minDist = std::numeric_limits::max(); for (size_t j = 0; j < points[idx[i]].size(); ++j) { double dist = (points[idx[i]][j].x - cx) * (points[idx[i]][j].x - cx) + (points[idx[i]][j].y - cy) * (points[idx[i]][j].y - cy); if (dist < minDist) { minDist = dist; closest = j; } } p[i] = points[idx[i]][closest]; } p1 = p[0]; p2 = p[1]; return true; } namespace { template float diffL2Square3(const Mat &image1, int y1, int x1, const Mat &image2, int y2, int x2) { const T *r1 = image1.ptr(y1); const T *r2 = image2.ptr(y2); return static_cast(sqr(r1[3*x1] - r2[3*x2]) + sqr(r1[3*x1+1] - r2[3*x2+1]) + sqr(r1[3*x1+2] - r2[3*x2+2])); } template float diffL2Square4(const Mat &image1, int y1, int x1, const Mat &image2, int y2, int x2) { const T *r1 = image1.ptr(y1); const T *r2 = image2.ptr(y2); return static_cast(sqr(r1[4*x1] - r2[4*x2]) + sqr(r1[4*x1+1] - r2[4*x2+1]) + sqr(r1[4*x1+2] - r2[4*x2+2])); } } // namespace void DpSeamFinder::computeCosts( const Mat &image1, const Mat &image2, Point tl1, Point tl2, int comp, Mat_ &costV, Mat_ &costH) { CV_Assert(states_[comp] & INTERS); // compute costs float (*diff)(const Mat&, int, int, const Mat&, int, int) = 0; if (image1.type() == CV_32FC3 && image2.type() == CV_32FC3) diff = diffL2Square3; else if (image1.type() == CV_8UC3 && image2.type() == CV_8UC3) diff = diffL2Square3; else if (image1.type() == CV_32FC4 && image2.type() == CV_32FC4) diff = diffL2Square4; else if (image1.type() == CV_8UC4 && image2.type() == CV_8UC4) diff = diffL2Square4; else CV_Error(CV_StsBadArg, "both images must have CV_32FC3(4) or CV_8UC3(4) type"); int l = comp+1; Rect roi(tls_[comp], brs_[comp]); int dx1 = unionTl_.x - tl1.x, dy1 = unionTl_.y - tl1.y; int dx2 = unionTl_.x - tl2.x, dy2 = unionTl_.y - tl2.y; const float badRegionCost = normL2(Point3f(255.f, 255.f, 255.f), Point3f(0.f, 0.f, 0.f)); costV.create(roi.height, roi.width+1); for (int y = roi.y; y < roi.br().y; ++y) { for (int x = roi.x; x < roi.br().x+1; ++x) { if (labels_(y, x) == l && x > 0 && labels_(y, x-1) == l) { float costColor = (diff(image1, y + dy1, x + dx1 - 1, image2, y + dy2, x + dx2) + diff(image1, y + dy1, x + dx1, image2, y + dy2, x + dx2 - 1)) / 2; if (costFunc_ == COLOR) costV(y - roi.y, x - roi.x) = costColor; else if (costFunc_ == COLOR_GRAD) { float costGrad = std::abs(gradx1_(y + dy1, x + dx1)) + std::abs(gradx1_(y + dy1, x + dx1 - 1)) + std::abs(gradx2_(y + dy2, x + dx2)) + std::abs(gradx2_(y + dy2, x + dx2 - 1)) + 1.f; costV(y - roi.y, x - roi.x) = costColor / costGrad; } } else costV(y - roi.y, x - roi.x) = badRegionCost; } } costH.create(roi.height+1, roi.width); for (int y = roi.y; y < roi.br().y+1; ++y) { for (int x = roi.x; x < roi.br().x; ++x) { if (labels_(y, x) == l && y > 0 && labels_(y-1, x) == l) { float costColor = (diff(image1, y + dy1 - 1, x + dx1, image2, y + dy2, x + dx2) + diff(image1, y + dy1, x + dx1, image2, y + dy2 - 1, x + dx2)) / 2; if (costFunc_ == COLOR) costH(y - roi.y, x - roi.x) = costColor; else if (costFunc_ == COLOR_GRAD) { float costGrad = std::abs(grady1_(y + dy1, x + dx1)) + std::abs(grady1_(y + dy1 - 1, x + dx1)) + std::abs(grady2_(y + dy2, x + dx2)) + std::abs(grady2_(y + dy2 - 1, x + dx2)) + 1.f; costH(y - roi.y, x - roi.x) = costColor / costGrad; } } else costH(y - roi.y, x - roi.x) = badRegionCost; } } } bool DpSeamFinder::estimateSeam( const Mat &image1, const Mat &image2, Point tl1, Point tl2, int comp, Point p1, Point p2, std::vector &seam, bool &isHorizontal) { CV_Assert(states_[comp] & INTERS); Mat_ costV, costH; computeCosts(image1, image2, tl1, tl2, comp, costV, costH); Rect roi(tls_[comp], brs_[comp]); Point src = p1 - roi.tl(); Point dst = p2 - roi.tl(); int l = comp+1; // estimate seam direction bool swapped = false; isHorizontal = std::abs(dst.x - src.x) > std::abs(dst.y - src.y); if (isHorizontal) { if (src.x > dst.x) { std::swap(src, dst); swapped = true; } } else if (src.y > dst.y) { swapped = true; std::swap(src, dst); } // find optimal control Mat_ control = Mat::zeros(roi.size(), CV_8U); Mat_ reachable = Mat::zeros(roi.size(), CV_8U); Mat_ cost = Mat::zeros(roi.size(), CV_32F); reachable(src) = 1; cost(src) = 0.f; int nsteps; std::pair steps[3]; if (isHorizontal) { for (int x = src.x+1; x <= dst.x; ++x) { for (int y = 0; y < roi.height; ++y) { // seam follows along upper side of pixels nsteps = 0; if (labels_(y + roi.y, x + roi.x) == l) { if (reachable(y, x-1)) steps[nsteps++] = std::make_pair(cost(y, x-1) + costH(y, x-1), 1); if (y > 0 && reachable(y-1, x-1)) steps[nsteps++] = std::make_pair(cost(y-1, x-1) + costH(y-1, x-1) + costV(y-1, x), 2); if (y < roi.height-1 && reachable(y+1, x-1)) steps[nsteps++] = std::make_pair(cost(y+1, x-1) + costH(y+1, x-1) + costV(y, x), 3); } if (nsteps) { std::pair opt = *min_element(steps, steps + nsteps); cost(y, x) = opt.first; control(y, x) = (uchar)opt.second; reachable(y, x) = 255; } } } } else { for (int y = src.y+1; y <= dst.y; ++y) { for (int x = 0; x < roi.width; ++x) { // seam follows along left side of pixels nsteps = 0; if (labels_(y + roi.y, x + roi.x) == l) { if (reachable(y-1, x)) steps[nsteps++] = std::make_pair(cost(y-1, x) + costV(y-1, x), 1); if (x > 0 && reachable(y-1, x-1)) steps[nsteps++] = std::make_pair(cost(y-1, x-1) + costV(y-1, x-1) + costH(y, x-1), 2); if (x < roi.width-1 && reachable(y-1, x+1)) steps[nsteps++] = std::make_pair(cost(y-1, x+1) + costV(y-1, x+1) + costH(y, x), 3); } if (nsteps) { std::pair opt = *min_element(steps, steps + nsteps); cost(y, x) = opt.first; control(y, x) = (uchar)opt.second; reachable(y, x) = 255; } } } } if (!reachable(dst)) return false; // restore seam Point p = dst; seam.clear(); seam.push_back(p + roi.tl()); if (isHorizontal) { for (; p.x != src.x; seam.push_back(p + roi.tl())) { if (control(p) == 2) p.y--; else if (control(p) == 3) p.y++; p.x--; } } else { for (; p.y != src.y; seam.push_back(p + roi.tl())) { if (control(p) == 2) p.x--; else if (control(p) == 3) p.x++; p.y--; } } if (!swapped) std::reverse(seam.begin(), seam.end()); CV_Assert(seam.front() == p1); CV_Assert(seam.back() == p2); return true; } void DpSeamFinder::updateLabelsUsingSeam( int comp1, int comp2, const std::vector &seam, bool isHorizontalSeam) { Mat_ mask = Mat::zeros(brs_[comp1].y - tls_[comp1].y, brs_[comp1].x - tls_[comp1].x, CV_32S); for (size_t i = 0; i < contours_[comp1].size(); ++i) mask(contours_[comp1][i] - tls_[comp1]) = 255; for (size_t i = 0; i < seam.size(); ++i) mask(seam[i] - tls_[comp1]) = 255; // find connected components after seam carving int l1 = comp1+1, l2 = comp2+1; int ncomps = 0; for (int y = 0; y < mask.rows; ++y) for (int x = 0; x < mask.cols; ++x) if (!mask(y, x) && labels_(y + tls_[comp1].y, x + tls_[comp1].x) == l1) floodFill(mask, Point(x, y), ++ncomps); for (size_t i = 0; i < contours_[comp1].size(); ++i) { int x = contours_[comp1][i].x - tls_[comp1].x; int y = contours_[comp1][i].y - tls_[comp1].y; bool ok = false; static const int dx[] = {-1, +1, 0, 0, -1, +1, -1, +1}; static const int dy[] = {0, 0, -1, +1, -1, -1, +1, +1}; for (int j = 0; j < 8; ++j) { int c = x + dx[j]; int r = y + dy[j]; if (c >= 0 && c < mask.cols && r >= 0 && r < mask.rows && mask(r, c) && mask(r, c) != 255) { ok = true; mask(y, x) = mask(r, c); } } if (!ok) mask(y, x) = 0; } if (isHorizontalSeam) { for (size_t i = 0; i < seam.size(); ++i) { int x = seam[i].x - tls_[comp1].x; int y = seam[i].y - tls_[comp1].y; if (y < mask.rows-1 && mask(y+1, x) && mask(y+1, x) != 255) mask(y, x) = mask(y+1, x); else mask(y, x) = 0; } } else { for (size_t i = 0; i < seam.size(); ++i) { int x = seam[i].x - tls_[comp1].x; int y = seam[i].y - tls_[comp1].y; if (x < mask.cols-1 && mask(y, x+1) && mask(y, x+1) != 255) mask(y, x) = mask(y, x+1); else mask(y, x) = 0; } } // find new components connected with the second component and // with other components except the ones we are working with std::map connect2; std::map connectOther; for (int i = 1; i <= ncomps; ++i) { connect2.insert(std::make_pair(i, 0)); connectOther.insert(std::make_pair(i, 0)); } for (size_t i = 0; i < contours_[comp1].size(); ++i) { int x = contours_[comp1][i].x; int y = contours_[comp1][i].y; if ((x > 0 && labels_(y, x-1) == l2) || (y > 0 && labels_(y-1, x) == l2) || (x < unionSize_.width-1 && labels_(y, x+1) == l2) || (y < unionSize_.height-1 && labels_(y+1, x) == l2)) { connect2[mask(y - tls_[comp1].y, x - tls_[comp1].x)]++; } if ((x > 0 && labels_(y, x-1) != l1 && labels_(y, x-1) != l2) || (y > 0 && labels_(y-1, x) != l1 && labels_(y-1, x) != l2) || (x < unionSize_.width-1 && labels_(y, x+1) != l1 && labels_(y, x+1) != l2) || (y < unionSize_.height-1 && labels_(y+1, x) != l1 && labels_(y+1, x) != l2)) { connectOther[mask(y - tls_[comp1].y, x - tls_[comp1].x)]++; } } std::vector isAdjComp(ncomps + 1, 0); for (std::map::iterator itr = connect2.begin(); itr != connect2.end(); ++itr) { double len = static_cast(contours_[comp1].size()); isAdjComp[itr->first] = itr->second / len > 0.05 && connectOther.find(itr->first)->second / len < 0.1; } // update labels for (int y = 0; y < mask.rows; ++y) for (int x = 0; x < mask.cols; ++x) if (mask(y, x) && isAdjComp[mask(y, x)]) labels_(y + tls_[comp1].y, x + tls_[comp1].x) = l2; } class GraphCutSeamFinder::Impl : public PairwiseSeamFinder { public: Impl(int cost_type, float terminal_cost, float bad_region_penalty) : cost_type_(cost_type), terminal_cost_(terminal_cost), bad_region_penalty_(bad_region_penalty) {} ~Impl() {} void find(const std::vector &src, const std::vector &corners, std::vector &masks); void findInPair(size_t first, size_t second, Rect roi); private: void setGraphWeightsColor(const Mat &img1, const Mat &img2, const Mat &mask1, const Mat &mask2, GCGraph &graph); void setGraphWeightsColorGrad(const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2, const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2, GCGraph &graph); std::vector dx_, dy_; int cost_type_; float terminal_cost_; float bad_region_penalty_; }; void GraphCutSeamFinder::Impl::find(const std::vector &src, const std::vector &corners, std::vector &masks) { // Compute gradients dx_.resize(src.size()); dy_.resize(src.size()); Mat dx, dy; for (size_t i = 0; i < src.size(); ++i) { CV_Assert(src[i].channels() == 3); Sobel(src[i], dx, CV_32F, 1, 0); Sobel(src[i], dy, CV_32F, 0, 1); dx_[i].create(src[i].size(), CV_32F); dy_[i].create(src[i].size(), CV_32F); for (int y = 0; y < src[i].rows; ++y) { const Point3f* dx_row = dx.ptr(y); const Point3f* dy_row = dy.ptr(y); float* dx_row_ = dx_[i].ptr(y); float* dy_row_ = dy_[i].ptr(y); for (int x = 0; x < src[i].cols; ++x) { dx_row_[x] = normL2(dx_row[x]); dy_row_[x] = normL2(dy_row[x]); } } } PairwiseSeamFinder::find(src, corners, masks); } void GraphCutSeamFinder::Impl::setGraphWeightsColor(const Mat &img1, const Mat &img2, const Mat &mask1, const Mat &mask2, GCGraph &graph) { const Size img_size = img1.size(); // Set terminal weights for (int y = 0; y < img_size.height; ++y) { for (int x = 0; x < img_size.width; ++x) { int v = graph.addVtx(); graph.addTermWeights(v, mask1.at(y, x) ? terminal_cost_ : 0.f, mask2.at(y, x) ? terminal_cost_ : 0.f); } } // Set regular edge weights const float weight_eps = 1.f; for (int y = 0; y < img_size.height; ++y) { for (int x = 0; x < img_size.width; ++x) { int v = y * img_size.width + x; if (x < img_size.width - 1) { float weight = normL2(img1.at(y, x), img2.at(y, x)) + normL2(img1.at(y, x + 1), img2.at(y, x + 1)) + weight_eps; if (!mask1.at(y, x) || !mask1.at(y, x + 1) || !mask2.at(y, x) || !mask2.at(y, x + 1)) weight += bad_region_penalty_; graph.addEdges(v, v + 1, weight, weight); } if (y < img_size.height - 1) { float weight = normL2(img1.at(y, x), img2.at(y, x)) + normL2(img1.at(y + 1, x), img2.at(y + 1, x)) + weight_eps; if (!mask1.at(y, x) || !mask1.at(y + 1, x) || !mask2.at(y, x) || !mask2.at(y + 1, x)) weight += bad_region_penalty_; graph.addEdges(v, v + img_size.width, weight, weight); } } } } void GraphCutSeamFinder::Impl::setGraphWeightsColorGrad( const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2, const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2, GCGraph &graph) { const Size img_size = img1.size(); // Set terminal weights for (int y = 0; y < img_size.height; ++y) { for (int x = 0; x < img_size.width; ++x) { int v = graph.addVtx(); graph.addTermWeights(v, mask1.at(y, x) ? terminal_cost_ : 0.f, mask2.at(y, x) ? terminal_cost_ : 0.f); } } // Set regular edge weights const float weight_eps = 1.f; for (int y = 0; y < img_size.height; ++y) { for (int x = 0; x < img_size.width; ++x) { int v = y * img_size.width + x; if (x < img_size.width - 1) { float grad = dx1.at(y, x) + dx1.at(y, x + 1) + dx2.at(y, x) + dx2.at(y, x + 1) + weight_eps; float weight = (normL2(img1.at(y, x), img2.at(y, x)) + normL2(img1.at(y, x + 1), img2.at(y, x + 1))) / grad + weight_eps; if (!mask1.at(y, x) || !mask1.at(y, x + 1) || !mask2.at(y, x) || !mask2.at(y, x + 1)) weight += bad_region_penalty_; graph.addEdges(v, v + 1, weight, weight); } if (y < img_size.height - 1) { float grad = dy1.at(y, x) + dy1.at(y + 1, x) + dy2.at(y, x) + dy2.at(y + 1, x) + weight_eps; float weight = (normL2(img1.at(y, x), img2.at(y, x)) + normL2(img1.at(y + 1, x), img2.at(y + 1, x))) / grad + weight_eps; if (!mask1.at(y, x) || !mask1.at(y + 1, x) || !mask2.at(y, x) || !mask2.at(y + 1, x)) weight += bad_region_penalty_; graph.addEdges(v, v + img_size.width, weight, weight); } } } } void GraphCutSeamFinder::Impl::findInPair(size_t first, size_t second, Rect roi) { Mat img1 = images_[first], img2 = images_[second]; Mat dx1 = dx_[first], dx2 = dx_[second]; Mat dy1 = dy_[first], dy2 = dy_[second]; Mat mask1 = masks_[first], mask2 = masks_[second]; Point tl1 = corners_[first], tl2 = corners_[second]; const int gap = 10; Mat subimg1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3); Mat subimg2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3); Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U); Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U); Mat subdx1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); Mat subdy1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); Mat subdx2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); Mat subdy2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); // Cut subimages and submasks with some gap for (int y = -gap; y < roi.height + gap; ++y) { for (int x = -gap; x < roi.width + gap; ++x) { int y1 = roi.y - tl1.y + y; int x1 = roi.x - tl1.x + x; if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols) { subimg1.at(y + gap, x + gap) = img1.at(y1, x1); submask1.at(y + gap, x + gap) = mask1.at(y1, x1); subdx1.at(y + gap, x + gap) = dx1.at(y1, x1); subdy1.at(y + gap, x + gap) = dy1.at(y1, x1); } else { subimg1.at(y + gap, x + gap) = Point3f(0, 0, 0); submask1.at(y + gap, x + gap) = 0; subdx1.at(y + gap, x + gap) = 0.f; subdy1.at(y + gap, x + gap) = 0.f; } int y2 = roi.y - tl2.y + y; int x2 = roi.x - tl2.x + x; if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols) { subimg2.at(y + gap, x + gap) = img2.at(y2, x2); submask2.at(y + gap, x + gap) = mask2.at(y2, x2); subdx2.at(y + gap, x + gap) = dx2.at(y2, x2); subdy2.at(y + gap, x + gap) = dy2.at(y2, x2); } else { subimg2.at(y + gap, x + gap) = Point3f(0, 0, 0); submask2.at(y + gap, x + gap) = 0; subdx2.at(y + gap, x + gap) = 0.f; subdy2.at(y + gap, x + gap) = 0.f; } } } const int vertex_count = (roi.height + 2 * gap) * (roi.width + 2 * gap); const int edge_count = (roi.height - 1 + 2 * gap) * (roi.width + 2 * gap) + (roi.width - 1 + 2 * gap) * (roi.height + 2 * gap); GCGraph graph(vertex_count, edge_count); switch (cost_type_) { case GraphCutSeamFinder::COST_COLOR: setGraphWeightsColor(subimg1, subimg2, submask1, submask2, graph); break; case GraphCutSeamFinder::COST_COLOR_GRAD: setGraphWeightsColorGrad(subimg1, subimg2, subdx1, subdx2, subdy1, subdy2, submask1, submask2, graph); break; default: CV_Error(CV_StsBadArg, "unsupported pixel similarity measure"); } graph.maxFlow(); for (int y = 0; y < roi.height; ++y) { for (int x = 0; x < roi.width; ++x) { if (graph.inSourceSegment((y + gap) * (roi.width + 2 * gap) + x + gap)) { if (mask1.at(roi.y - tl1.y + y, roi.x - tl1.x + x)) mask2.at(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0; } else { if (mask2.at(roi.y - tl2.y + y, roi.x - tl2.x + x)) mask1.at(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0; } } } } GraphCutSeamFinder::GraphCutSeamFinder(int cost_type, float terminal_cost, float bad_region_penalty) : impl_(new Impl(cost_type, terminal_cost, bad_region_penalty)) {} GraphCutSeamFinder::~GraphCutSeamFinder() {} void GraphCutSeamFinder::find(const std::vector &src, const std::vector &corners, std::vector &masks) { impl_->find(src, corners, masks); } #ifdef HAVE_OPENCV_GPU void GraphCutSeamFinderGpu::find(const std::vector &src, const std::vector &corners, std::vector &masks) { // Compute gradients dx_.resize(src.size()); dy_.resize(src.size()); Mat dx, dy; for (size_t i = 0; i < src.size(); ++i) { CV_Assert(src[i].channels() == 3); Sobel(src[i], dx, CV_32F, 1, 0); Sobel(src[i], dy, CV_32F, 0, 1); dx_[i].create(src[i].size(), CV_32F); dy_[i].create(src[i].size(), CV_32F); for (int y = 0; y < src[i].rows; ++y) { const Point3f* dx_row = dx.ptr(y); const Point3f* dy_row = dy.ptr(y); float* dx_row_ = dx_[i].ptr(y); float* dy_row_ = dy_[i].ptr(y); for (int x = 0; x < src[i].cols; ++x) { dx_row_[x] = normL2(dx_row[x]); dy_row_[x] = normL2(dy_row[x]); } } } PairwiseSeamFinder::find(src, corners, masks); } void GraphCutSeamFinderGpu::findInPair(size_t first, size_t second, Rect roi) { Mat img1 = images_[first], img2 = images_[second]; Mat dx1 = dx_[first], dx2 = dx_[second]; Mat dy1 = dy_[first], dy2 = dy_[second]; Mat mask1 = masks_[first], mask2 = masks_[second]; Point tl1 = corners_[first], tl2 = corners_[second]; const int gap = 10; Mat subimg1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3); Mat subimg2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3); Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U); Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U); Mat subdx1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); Mat subdy1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); Mat subdx2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); Mat subdy2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); // Cut subimages and submasks with some gap for (int y = -gap; y < roi.height + gap; ++y) { for (int x = -gap; x < roi.width + gap; ++x) { int y1 = roi.y - tl1.y + y; int x1 = roi.x - tl1.x + x; if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols) { subimg1.at(y + gap, x + gap) = img1.at(y1, x1); submask1.at(y + gap, x + gap) = mask1.at(y1, x1); subdx1.at(y + gap, x + gap) = dx1.at(y1, x1); subdy1.at(y + gap, x + gap) = dy1.at(y1, x1); } else { subimg1.at(y + gap, x + gap) = Point3f(0, 0, 0); submask1.at(y + gap, x + gap) = 0; subdx1.at(y + gap, x + gap) = 0.f; subdy1.at(y + gap, x + gap) = 0.f; } int y2 = roi.y - tl2.y + y; int x2 = roi.x - tl2.x + x; if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols) { subimg2.at(y + gap, x + gap) = img2.at(y2, x2); submask2.at(y + gap, x + gap) = mask2.at(y2, x2); subdx2.at(y + gap, x + gap) = dx2.at(y2, x2); subdy2.at(y + gap, x + gap) = dy2.at(y2, x2); } else { subimg2.at(y + gap, x + gap) = Point3f(0, 0, 0); submask2.at(y + gap, x + gap) = 0; subdx2.at(y + gap, x + gap) = 0.f; subdy2.at(y + gap, x + gap) = 0.f; } } } Mat terminals, leftT, rightT, top, bottom; switch (cost_type_) { case GraphCutSeamFinder::COST_COLOR: setGraphWeightsColor(subimg1, subimg2, submask1, submask2, terminals, leftT, rightT, top, bottom); break; case GraphCutSeamFinder::COST_COLOR_GRAD: setGraphWeightsColorGrad(subimg1, subimg2, subdx1, subdx2, subdy1, subdy2, submask1, submask2, terminals, leftT, rightT, top, bottom); break; default: CV_Error(CV_StsBadArg, "unsupported pixel similarity measure"); } gpu::GpuMat terminals_d(terminals); gpu::GpuMat leftT_d(leftT); gpu::GpuMat rightT_d(rightT); gpu::GpuMat top_d(top); gpu::GpuMat bottom_d(bottom); gpu::GpuMat labels_d, buf_d; gpu::graphcut(terminals_d, leftT_d, rightT_d, top_d, bottom_d, labels_d, buf_d); Mat_ labels = (Mat)labels_d; for (int y = 0; y < roi.height; ++y) { for (int x = 0; x < roi.width; ++x) { if (labels(y + gap, x + gap)) { if (mask1.at(roi.y - tl1.y + y, roi.x - tl1.x + x)) mask2.at(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0; } else { if (mask2.at(roi.y - tl2.y + y, roi.x - tl2.x + x)) mask1.at(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0; } } } } void GraphCutSeamFinderGpu::setGraphWeightsColor(const Mat &img1, const Mat &img2, const Mat &mask1, const Mat &mask2, Mat &terminals, Mat &leftT, Mat &rightT, Mat &top, Mat &bottom) { const Size img_size = img1.size(); terminals.create(img_size, CV_32S); leftT.create(Size(img_size.height, img_size.width), CV_32S); rightT.create(Size(img_size.height, img_size.width), CV_32S); top.create(img_size, CV_32S); bottom.create(img_size, CV_32S); Mat_ terminals_(terminals); Mat_ leftT_(leftT); Mat_ rightT_(rightT); Mat_ top_(top); Mat_ bottom_(bottom); // Set terminal weights for (int y = 0; y < img_size.height; ++y) { for (int x = 0; x < img_size.width; ++x) { float source = mask1.at(y, x) ? terminal_cost_ : 0.f; float sink = mask2.at(y, x) ? terminal_cost_ : 0.f; terminals_(y, x) = saturate_cast((source - sink) * 255.f); } } // Set regular edge weights const float weight_eps = 1.f; for (int y = 0; y < img_size.height; ++y) { for (int x = 0; x < img_size.width; ++x) { if (x > 0) { float weight = normL2(img1.at(y, x - 1), img2.at(y, x - 1)) + normL2(img1.at(y, x), img2.at(y, x)) + weight_eps; if (!mask1.at(y, x - 1) || !mask1.at(y, x) || !mask2.at(y, x - 1) || !mask2.at(y, x)) weight += bad_region_penalty_; leftT_(x, y) = saturate_cast(weight * 255.f); } else leftT_(x, y) = 0; if (x < img_size.width - 1) { float weight = normL2(img1.at(y, x), img2.at(y, x)) + normL2(img1.at(y, x + 1), img2.at(y, x + 1)) + weight_eps; if (!mask1.at(y, x) || !mask1.at(y, x + 1) || !mask2.at(y, x) || !mask2.at(y, x + 1)) weight += bad_region_penalty_; rightT_(x, y) = saturate_cast(weight * 255.f); } else rightT_(x, y) = 0; if (y > 0) { float weight = normL2(img1.at(y - 1, x), img2.at(y - 1, x)) + normL2(img1.at(y, x), img2.at(y, x)) + weight_eps; if (!mask1.at(y - 1, x) || !mask1.at(y, x) || !mask2.at(y - 1, x) || !mask2.at(y, x)) weight += bad_region_penalty_; top_(y, x) = saturate_cast(weight * 255.f); } else top_(y, x) = 0; if (y < img_size.height - 1) { float weight = normL2(img1.at(y, x), img2.at(y, x)) + normL2(img1.at(y + 1, x), img2.at(y + 1, x)) + weight_eps; if (!mask1.at(y, x) || !mask1.at(y + 1, x) || !mask2.at(y, x) || !mask2.at(y + 1, x)) weight += bad_region_penalty_; bottom_(y, x) = saturate_cast(weight * 255.f); } else bottom_(y, x) = 0; } } } void GraphCutSeamFinderGpu::setGraphWeightsColorGrad( const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2, const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2, Mat &terminals, Mat &leftT, Mat &rightT, Mat &top, Mat &bottom) { const Size img_size = img1.size(); terminals.create(img_size, CV_32S); leftT.create(Size(img_size.height, img_size.width), CV_32S); rightT.create(Size(img_size.height, img_size.width), CV_32S); top.create(img_size, CV_32S); bottom.create(img_size, CV_32S); Mat_ terminals_(terminals); Mat_ leftT_(leftT); Mat_ rightT_(rightT); Mat_ top_(top); Mat_ bottom_(bottom); // Set terminal weights for (int y = 0; y < img_size.height; ++y) { for (int x = 0; x < img_size.width; ++x) { float source = mask1.at(y, x) ? terminal_cost_ : 0.f; float sink = mask2.at(y, x) ? terminal_cost_ : 0.f; terminals_(y, x) = saturate_cast((source - sink) * 255.f); } } // Set regular edge weights const float weight_eps = 1.f; for (int y = 0; y < img_size.height; ++y) { for (int x = 0; x < img_size.width; ++x) { if (x > 0) { float grad = dx1.at(y, x - 1) + dx1.at(y, x) + dx2.at(y, x - 1) + dx2.at(y, x) + weight_eps; float weight = (normL2(img1.at(y, x - 1), img2.at(y, x - 1)) + normL2(img1.at(y, x), img2.at(y, x))) / grad + weight_eps; if (!mask1.at(y, x - 1) || !mask1.at(y, x) || !mask2.at(y, x - 1) || !mask2.at(y, x)) weight += bad_region_penalty_; leftT_(x, y) = saturate_cast(weight * 255.f); } else leftT_(x, y) = 0; if (x < img_size.width - 1) { float grad = dx1.at(y, x) + dx1.at(y, x + 1) + dx2.at(y, x) + dx2.at(y, x + 1) + weight_eps; float weight = (normL2(img1.at(y, x), img2.at(y, x)) + normL2(img1.at(y, x + 1), img2.at(y, x + 1))) / grad + weight_eps; if (!mask1.at(y, x) || !mask1.at(y, x + 1) || !mask2.at(y, x) || !mask2.at(y, x + 1)) weight += bad_region_penalty_; rightT_(x, y) = saturate_cast(weight * 255.f); } else rightT_(x, y) = 0; if (y > 0) { float grad = dy1.at(y - 1, x) + dy1.at(y, x) + dy2.at(y - 1, x) + dy2.at(y, x) + weight_eps; float weight = (normL2(img1.at(y - 1, x), img2.at(y - 1, x)) + normL2(img1.at(y, x), img2.at(y, x))) / grad + weight_eps; if (!mask1.at(y - 1, x) || !mask1.at(y, x) || !mask2.at(y - 1, x) || !mask2.at(y, x)) weight += bad_region_penalty_; top_(y, x) = saturate_cast(weight * 255.f); } else top_(y, x) = 0; if (y < img_size.height - 1) { float grad = dy1.at(y, x) + dy1.at(y + 1, x) + dy2.at(y, x) + dy2.at(y + 1, x) + weight_eps; float weight = (normL2(img1.at(y, x), img2.at(y, x)) + normL2(img1.at(y + 1, x), img2.at(y + 1, x))) / grad + weight_eps; if (!mask1.at(y, x) || !mask1.at(y + 1, x) || !mask2.at(y, x) || !mask2.at(y + 1, x)) weight += bad_region_penalty_; bottom_(y, x) = saturate_cast(weight * 255.f); } else bottom_(y, x) = 0; } } } #endif } // namespace detail } // namespace cv