/* adler32_avx512_vnni.c -- compute the Adler-32 checksum of a data stream * Based on Brian Bockelman's AVX2 version * Copyright (C) 1995-2011 Mark Adler * Authors: * Adam Stylinski * Brian Bockelman * For conditions of distribution and use, see copyright notice in zlib.h */ #ifdef X86_AVX512VNNI #include "zbuild.h" #include "adler32_p.h" #include "arch_functions.h" #include #include "x86_intrins.h" #include "adler32_avx512_p.h" #include "adler32_avx2_p.h" Z_INTERNAL uint32_t adler32_avx512_vnni(uint32_t adler, const uint8_t *src, size_t len) { if (src == NULL) return 1L; if (len == 0) return adler; uint32_t adler0, adler1; adler1 = (adler >> 16) & 0xffff; adler0 = adler & 0xffff; rem_peel: if (len < 32) return adler32_ssse3(adler, src, len); if (len < 64) return adler32_avx2(adler, src, len); const __m512i dot2v = _mm512_set_epi8(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64); const __m512i zero = _mm512_setzero_si512(); __m512i vs1, vs2; while (len >= 64) { vs1 = _mm512_zextsi128_si512(_mm_cvtsi32_si128(adler0)); vs2 = _mm512_zextsi128_si512(_mm_cvtsi32_si128(adler1)); size_t k = MIN(len, NMAX); k -= k % 64; len -= k; __m512i vs1_0 = vs1; __m512i vs3 = _mm512_setzero_si512(); /* We might get a tad bit more ILP here if we sum to a second register in the loop */ __m512i vs2_1 = _mm512_setzero_si512(); __m512i vbuf0, vbuf1; /* Remainder peeling */ if (k % 128) { vbuf1 = _mm512_loadu_si512((__m512i*)src); src += 64; k -= 64; __m512i vs1_sad = _mm512_sad_epu8(vbuf1, zero); vs1 = _mm512_add_epi32(vs1, vs1_sad); vs3 = _mm512_add_epi32(vs3, vs1_0); vs2 = _mm512_dpbusd_epi32(vs2, vbuf1, dot2v); vs1_0 = vs1; } /* Manually unrolled this loop by 2 for an decent amount of ILP */ while (k >= 128) { /* vs1 = adler + sum(c[i]) vs2 = sum2 + 64 vs1 + sum( (64-i+1) c[i] ) */ vbuf0 = _mm512_loadu_si512((__m512i*)src); vbuf1 = _mm512_loadu_si512((__m512i*)(src + 64)); src += 128; k -= 128; __m512i vs1_sad = _mm512_sad_epu8(vbuf0, zero); vs1 = _mm512_add_epi32(vs1, vs1_sad); vs3 = _mm512_add_epi32(vs3, vs1_0); /* multiply-add, resulting in 16 ints. Fuse with sum stage from prior versions, as we now have the dp * instructions to eliminate them */ vs2 = _mm512_dpbusd_epi32(vs2, vbuf0, dot2v); vs3 = _mm512_add_epi32(vs3, vs1); vs1_sad = _mm512_sad_epu8(vbuf1, zero); vs1 = _mm512_add_epi32(vs1, vs1_sad); vs2_1 = _mm512_dpbusd_epi32(vs2_1, vbuf1, dot2v); vs1_0 = vs1; } vs3 = _mm512_slli_epi32(vs3, 6); vs2 = _mm512_add_epi32(vs2, vs3); vs2 = _mm512_add_epi32(vs2, vs2_1); adler0 = partial_hsum(vs1) % BASE; adler1 = _mm512_reduce_add_epu32(vs2) % BASE; } adler = adler0 | (adler1 << 16); /* Process tail (len < 64). */ if (len) { goto rem_peel; } return adler; } Z_INTERNAL uint32_t adler32_fold_copy_avx512_vnni(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len) { if (src == NULL) return 1L; if (len == 0) return adler; uint32_t adler0, adler1; adler1 = (adler >> 16) & 0xffff; adler0 = adler & 0xffff; rem_peel_copy: if (len < 32) { /* This handles the remaining copies, just call normal adler checksum after this */ __mmask32 storemask = (0xFFFFFFFFUL >> (32 - len)); __m256i copy_vec = _mm256_maskz_loadu_epi8(storemask, src); _mm256_mask_storeu_epi8(dst, storemask, copy_vec); return adler32_ssse3(adler, src, len); } const __m256i dot2v = _mm256_set_epi8(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32); const __m256i zero = _mm256_setzero_si256(); __m256i vs1, vs2; while (len >= 32) { vs1 = _mm256_zextsi128_si256(_mm_cvtsi32_si128(adler0)); vs2 = _mm256_zextsi128_si256(_mm_cvtsi32_si128(adler1)); size_t k = MIN(len, NMAX); k -= k % 32; len -= k; __m256i vs1_0 = vs1; __m256i vs3 = _mm256_setzero_si256(); /* We might get a tad bit more ILP here if we sum to a second register in the loop */ __m256i vs2_1 = _mm256_setzero_si256(); __m256i vbuf0, vbuf1; /* Remainder peeling */ if (k % 64) { vbuf1 = _mm256_loadu_si256((__m256i*)src); _mm256_storeu_si256((__m256i*)dst, vbuf1); dst += 32; src += 32; k -= 32; __m256i vs1_sad = _mm256_sad_epu8(vbuf1, zero); vs1 = _mm256_add_epi32(vs1, vs1_sad); vs3 = _mm256_add_epi32(vs3, vs1_0); vs2 = _mm256_dpbusd_epi32(vs2, vbuf1, dot2v); vs1_0 = vs1; } /* Manually unrolled this loop by 2 for an decent amount of ILP */ while (k >= 64) { /* vs1 = adler + sum(c[i]) vs2 = sum2 + 64 vs1 + sum( (64-i+1) c[i] ) */ vbuf0 = _mm256_loadu_si256((__m256i*)src); vbuf1 = _mm256_loadu_si256((__m256i*)(src + 32)); _mm256_storeu_si256((__m256i*)dst, vbuf0); _mm256_storeu_si256((__m256i*)(dst + 32), vbuf1); dst += 64; src += 64; k -= 64; __m256i vs1_sad = _mm256_sad_epu8(vbuf0, zero); vs1 = _mm256_add_epi32(vs1, vs1_sad); vs3 = _mm256_add_epi32(vs3, vs1_0); /* multiply-add, resulting in 16 ints. Fuse with sum stage from prior versions, as we now have the dp * instructions to eliminate them */ vs2 = _mm256_dpbusd_epi32(vs2, vbuf0, dot2v); vs3 = _mm256_add_epi32(vs3, vs1); vs1_sad = _mm256_sad_epu8(vbuf1, zero); vs1 = _mm256_add_epi32(vs1, vs1_sad); vs2_1 = _mm256_dpbusd_epi32(vs2_1, vbuf1, dot2v); vs1_0 = vs1; } vs3 = _mm256_slli_epi32(vs3, 5); vs2 = _mm256_add_epi32(vs2, vs3); vs2 = _mm256_add_epi32(vs2, vs2_1); adler0 = partial_hsum256(vs1) % BASE; adler1 = hsum256(vs2) % BASE; } adler = adler0 | (adler1 << 16); /* Process tail (len < 64). */ if (len) { goto rem_peel_copy; } return adler; } #endif