/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include #include #include "npy_blob.hpp" #include #include #include namespace cvtest { using namespace cv; using namespace cv::dnn; template static String _tf(TString filename) { String basetestdir = getOpenCVExtraDir(); size_t len = basetestdir.size(); if(len > 0 && basetestdir[len-1] != '/' && basetestdir[len-1] != '\\') return (basetestdir + "/dnn/layers") + filename; return (basetestdir + "dnn/layers/") + filename; } void runLayer(Ptr layer, std::vector &inpBlobs, std::vector &outBlobs) { size_t i, ninputs = inpBlobs.size(); std::vector inp_(ninputs); std::vector inp(ninputs); std::vector outp, intp; std::vector inputs, outputs, internals; for( i = 0; i < ninputs; i++ ) { inp_[i] = inpBlobs[i].clone(); inp[i] = &inp_[i]; inputs.push_back(shape(inp_[i])); } layer->getMemoryShapes(inputs, 0, outputs, internals); for(int i = 0; i < outputs.size(); i++) { outp.push_back(Mat(outputs[i], CV_32F)); } for(int i = 0; i < internals.size(); i++) { intp.push_back(Mat(internals[i], CV_32F)); } layer->finalize(inp, outp); layer->forward(inp, outp, intp); size_t noutputs = outp.size(); outBlobs.resize(noutputs); for( i = 0; i < noutputs; i++ ) outBlobs[i] = outp[i]; } void testLayerUsingCaffeModels(String basename, int targetId = DNN_TARGET_CPU, bool useCaffeModel = false, bool useCommonInputBlob = true) { String prototxt = _tf(basename + ".prototxt"); String caffemodel = _tf(basename + ".caffemodel"); String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy"); String outfile = _tf(basename + ".npy"); cv::setNumThreads(cv::getNumberOfCPUs()); Net net = readNetFromCaffe(prototxt, (useCaffeModel) ? caffemodel : String()); ASSERT_FALSE(net.empty()); net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(targetId); Mat inp = blobFromNPY(inpfile); Mat ref = blobFromNPY(outfile); net.setInput(inp, "input"); Mat out = net.forward("output"); normAssert(ref, out); } TEST(Layer_Test_Softmax, Accuracy) { testLayerUsingCaffeModels("layer_softmax"); } OCL_TEST(Layer_Test_Softmax, Accuracy) { testLayerUsingCaffeModels("layer_softmax", DNN_TARGET_OPENCL); } TEST(Layer_Test_LRN_spatial, Accuracy) { testLayerUsingCaffeModels("layer_lrn_spatial"); } OCL_TEST(Layer_Test_LRN_spatial, Accuracy) { testLayerUsingCaffeModels("layer_lrn_spatial", DNN_TARGET_OPENCL); } TEST(Layer_Test_LRN_channels, Accuracy) { testLayerUsingCaffeModels("layer_lrn_channels"); } OCL_TEST(Layer_Test_LRN_channels, Accuracy) { testLayerUsingCaffeModels("layer_lrn_channels", DNN_TARGET_OPENCL); } TEST(Layer_Test_Convolution, Accuracy) { testLayerUsingCaffeModels("layer_convolution", DNN_TARGET_CPU, true); } OCL_TEST(Layer_Test_Convolution, Accuracy) { testLayerUsingCaffeModels("layer_convolution", DNN_TARGET_OPENCL, true); } TEST(Layer_Test_DeConvolution, Accuracy) { testLayerUsingCaffeModels("layer_deconvolution", DNN_TARGET_CPU, true, false); } TEST(Layer_Test_InnerProduct, Accuracy) { testLayerUsingCaffeModels("layer_inner_product", DNN_TARGET_CPU, true); } OCL_TEST(Layer_Test_InnerProduct, Accuracy) { testLayerUsingCaffeModels("layer_inner_product", DNN_TARGET_OPENCL, true); } TEST(Layer_Test_Pooling_max, Accuracy) { testLayerUsingCaffeModels("layer_pooling_max"); } OCL_TEST(Layer_Test_Pooling_max, Accuracy) { testLayerUsingCaffeModels("layer_pooling_max", DNN_TARGET_OPENCL); } TEST(Layer_Test_Pooling_ave, Accuracy) { testLayerUsingCaffeModels("layer_pooling_ave"); } OCL_TEST(Layer_Test_Pooling_ave, Accuracy) { testLayerUsingCaffeModels("layer_pooling_ave", DNN_TARGET_OPENCL); } TEST(Layer_Test_MVN, Accuracy) { testLayerUsingCaffeModels("layer_mvn"); } void testReshape(const MatShape& inputShape, const MatShape& targetShape, int axis = 0, int num_axes = -1, MatShape mask = MatShape()) { LayerParams params; params.set("axis", axis); params.set("num_axes", num_axes); if (!mask.empty()) { params.set("dim", DictValue::arrayInt(&mask[0], mask.size())); } Mat inp(inputShape.size(), &inputShape[0], CV_32F); std::vector inpVec(1, inp); std::vector outVec, intVec; Ptr rl = LayerFactory::createLayerInstance("Reshape", params); runLayer(rl, inpVec, outVec); Mat& out = outVec[0]; MatShape shape(out.size.p, out.size.p + out.dims); EXPECT_EQ(shape, targetShape); } TEST(Layer_Test_Reshape, Accuracy) { { int inp[] = {4, 3, 1, 2}; int out[] = {4, 3, 2}; testReshape(MatShape(inp, inp + 4), MatShape(out, out + 3), 2, 1); } { int inp[] = {1, 128, 4, 4}; int out[] = {1, 2048}; int mask[] = {-1, 2048}; testReshape(MatShape(inp, inp + 4), MatShape(out, out + 2), 0, -1, MatShape(mask, mask + 2)); } } TEST(Layer_Test_BatchNorm, Accuracy) { testLayerUsingCaffeModels("layer_batch_norm", DNN_TARGET_CPU, true); } TEST(Layer_Test_ReLU, Accuracy) { testLayerUsingCaffeModels("layer_relu"); } OCL_TEST(Layer_Test_ReLU, Accuracy) { testLayerUsingCaffeModels("layer_relu", DNN_TARGET_OPENCL); } TEST(Layer_Test_Dropout, Accuracy) { testLayerUsingCaffeModels("layer_dropout"); } TEST(Layer_Test_Concat, Accuracy) { testLayerUsingCaffeModels("layer_concat"); } OCL_TEST(Layer_Test_Concat, Accuracy) { testLayerUsingCaffeModels("layer_concat", DNN_TARGET_OPENCL); } TEST(Layer_Test_Eltwise, Accuracy) { testLayerUsingCaffeModels("layer_eltwise"); } TEST(Layer_Test_PReLU, Accuracy) { testLayerUsingCaffeModels("layer_prelu", DNN_TARGET_CPU, true); testLayerUsingCaffeModels("layer_prelu_fc", DNN_TARGET_CPU, true, false); } //template //static void test_Layer_Concat() //{ // Matx21f a(1.f, 1.f), b(2.f, 2.f), c(3.f, 3.f); // std::vector res(1), src = { Blob(XMat(a)), Blob(XMat(b)), Blob(XMat(c)) }; // Blob ref(XMat(Matx23f(1.f, 2.f, 3.f, 1.f, 2.f, 3.f))); // // runLayer(ConcatLayer::create(1), src, res); // normAssert(ref, res[0]); //} //TEST(Layer_Concat, Accuracy) //{ // test_Layer_Concat()); //} //OCL_TEST(Layer_Concat, Accuracy) //{ // OCL_ON(test_Layer_Concat()); // ); //} static void test_Reshape_Split_Slice_layers() { Net net = readNetFromCaffe(_tf("reshape_and_slice_routines.prototxt")); ASSERT_FALSE(net.empty()); Mat input(6, 12, CV_32F); RNG rng(0); rng.fill(input, RNG::UNIFORM, -1, 1); net.setInput(input, "input"); Mat output = net.forward("output"); normAssert(input, output); } TEST(Layer_Test_Reshape_Split_Slice, Accuracy) { test_Reshape_Split_Slice_layers(); } TEST(Layer_Conv_Elu, Accuracy) { Net net = readNetFromTensorflow(_tf("layer_elu_model.pb")); ASSERT_FALSE(net.empty()); Mat inp = blobFromNPY(_tf("layer_elu_in.npy")); Mat ref = blobFromNPY(_tf("layer_elu_out.npy")); net.setInput(inp, "input"); Mat out = net.forward(); normAssert(ref, out); } class Layer_LSTM_Test : public ::testing::Test { public: int numInp, numOut; Mat Wh, Wx, b; Ptr layer; std::vector inputs, outputs; Layer_LSTM_Test() {} void init(const MatShape &inpShape_, const MatShape &outShape_, bool produceCellOutput, bool useTimestampDim) { numInp = total(inpShape_); numOut = total(outShape_); Wh = Mat::ones(4 * numOut, numOut, CV_32F); Wx = Mat::ones(4 * numOut, numInp, CV_32F); b = Mat::ones(4 * numOut, 1, CV_32F); LayerParams lp; lp.blobs.resize(3); lp.blobs[0] = Wh; lp.blobs[1] = Wx; lp.blobs[2] = b; lp.set("produce_cell_output", produceCellOutput); lp.set("use_timestamp_dim", useTimestampDim); layer = LSTMLayer::create(lp); layer->setOutShape(outShape_); } }; TEST_F(Layer_LSTM_Test, get_set_test) { const int TN = 4; MatShape inpShape = shape(5, 3, 2); MatShape outShape = shape(3, 1, 2); MatShape inpResShape = concat(shape(TN), inpShape); MatShape outResShape = concat(shape(TN), outShape); init(inpShape, outShape, true, false); layer->setOutShape(outShape); Mat C((int)outResShape.size(), &outResShape[0], CV_32F); randu(C, -1., 1.); Mat H = C.clone(); randu(H, -1., 1.); Mat inp((int)inpResShape.size(), &inpResShape[0], CV_32F); randu(inp, -1., 1.); inputs.push_back(inp); runLayer(layer, inputs, outputs); EXPECT_EQ(2u, outputs.size()); print(outResShape, "outResShape"); print(shape(outputs[0]), "out0"); print(shape(outputs[0]), "out1"); EXPECT_EQ(outResShape, shape(outputs[0])); EXPECT_EQ(outResShape, shape(outputs[1])); EXPECT_EQ(0, layer->inputNameToIndex("x")); EXPECT_EQ(0, layer->outputNameToIndex("h")); EXPECT_EQ(1, layer->outputNameToIndex("c")); } TEST(Layer_LSTM_Test_Accuracy_with_, CaffeRecurrent) { LayerParams lp; lp.blobs.resize(3); lp.blobs[0] = blobFromNPY(_tf("lstm.prototxt.w_2.npy")); // Wh lp.blobs[1] = blobFromNPY(_tf("lstm.prototxt.w_0.npy")); // Wx lp.blobs[2] = blobFromNPY(_tf("lstm.prototxt.w_1.npy")); // bias Ptr layer = LSTMLayer::create(lp); Mat inp = blobFromNPY(_tf("recurrent.input.npy")); std::vector inputs(1, inp), outputs; runLayer(layer, inputs, outputs); Mat h_t_reference = blobFromNPY(_tf("lstm.prototxt.h_1.npy")); normAssert(h_t_reference, outputs[0]); } TEST(Layer_RNN_Test_Accuracy_with_, CaffeRecurrent) { Ptr layer = RNNLayer::create(LayerParams()); layer->setWeights( blobFromNPY(_tf("rnn.prototxt.w_0.npy")), blobFromNPY(_tf("rnn.prototxt.w_1.npy")), blobFromNPY(_tf("rnn.prototxt.w_2.npy")), blobFromNPY(_tf("rnn.prototxt.w_3.npy")), blobFromNPY(_tf("rnn.prototxt.w_4.npy")) ); std::vector output, input(1, blobFromNPY(_tf("recurrent.input.npy"))); runLayer(layer, input, output); Mat h_ref = blobFromNPY(_tf("rnn.prototxt.h_1.npy")); normAssert(h_ref, output[0]); } class Layer_RNN_Test : public ::testing::Test { public: int nX, nH, nO, nT, nS; Mat Whh, Wxh, bh, Who, bo; Ptr layer; std::vector inputs, outputs; Layer_RNN_Test() { nT = 3; nS = 5; nX = 31; nH = 64; nO = 100; Whh = Mat::ones(nH, nH, CV_32F); Wxh = Mat::ones(nH, nX, CV_32F); bh = Mat::ones(nH, 1, CV_32F); Who = Mat::ones(nO, nH, CV_32F); bo = Mat::ones(nO, 1, CV_32F); layer = RNNLayer::create(LayerParams()); layer->setProduceHiddenOutput(true); layer->setWeights(Wxh, bh, Whh, Who, bo); } }; TEST_F(Layer_RNN_Test, get_set_test) { int sz[] = { nT, nS, 1, nX }; Mat inp(4, sz, CV_32F); randu(inp, -1., 1.); inputs.push_back(inp); runLayer(layer, inputs, outputs); EXPECT_EQ(outputs.size(), 2u); EXPECT_EQ(shape(outputs[0]), shape(nT, nS, nO)); EXPECT_EQ(shape(outputs[1]), shape(nT, nS, nH)); } void testLayerUsingDarknetModels(String basename, bool useDarknetModel = false, bool useCommonInputBlob = true) { String cfg = _tf(basename + ".cfg"); String weights = _tf(basename + ".weights"); String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy"); String outfile = _tf(basename + ".npy"); cv::setNumThreads(cv::getNumberOfCPUs()); Net net = readNetFromDarknet(cfg, (useDarknetModel) ? weights : String()); ASSERT_FALSE(net.empty()); Mat inp = blobFromNPY(inpfile); Mat ref = blobFromNPY(outfile); net.setInput(inp, "data"); Mat out = net.forward(); normAssert(ref, out); } TEST(Layer_Test_Region, Accuracy) { testLayerUsingDarknetModels("region", false, false); } TEST(Layer_Test_Reorg, Accuracy) { testLayerUsingDarknetModels("reorg", false, false); } }