/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include using namespace cv; static const float ord_nan = FLT_MAX*0.5f; static const int min_block_size = 1 << 16; static const int block_size_delta = 1 << 10; CvDTreeTrainData::CvDTreeTrainData() { var_idx = var_type = cat_count = cat_ofs = cat_map = priors = priors_mult = counts = buf = direction = split_buf = responses_copy = 0; tree_storage = temp_storage = 0; clear(); } CvDTreeTrainData::CvDTreeTrainData( const CvMat* _train_data, int _tflag, const CvMat* _responses, const CvMat* _var_idx, const CvMat* _sample_idx, const CvMat* _var_type, const CvMat* _missing_mask, const CvDTreeParams& _params, bool _shared, bool _add_labels ) { var_idx = var_type = cat_count = cat_ofs = cat_map = priors = priors_mult = counts = buf = direction = split_buf = responses_copy = 0; tree_storage = temp_storage = 0; set_data( _train_data, _tflag, _responses, _var_idx, _sample_idx, _var_type, _missing_mask, _params, _shared, _add_labels ); } CvDTreeTrainData::~CvDTreeTrainData() { clear(); } bool CvDTreeTrainData::set_params( const CvDTreeParams& _params ) { bool ok = false; CV_FUNCNAME( "CvDTreeTrainData::set_params" ); __BEGIN__; // set parameters params = _params; if( params.max_categories < 2 ) CV_ERROR( CV_StsOutOfRange, "params.max_categories should be >= 2" ); params.max_categories = MIN( params.max_categories, 15 ); if( params.max_depth < 0 ) CV_ERROR( CV_StsOutOfRange, "params.max_depth should be >= 0" ); params.max_depth = MIN( params.max_depth, 25 ); params.min_sample_count = MAX(params.min_sample_count,1); if( params.cv_folds < 0 ) CV_ERROR( CV_StsOutOfRange, "params.cv_folds should be =0 (the tree is not pruned) " "or n>0 (tree is pruned using n-fold cross-validation)" ); if( params.cv_folds == 1 ) params.cv_folds = 0; if( params.regression_accuracy < 0 ) CV_ERROR( CV_StsOutOfRange, "params.regression_accuracy should be >= 0" ); ok = true; __END__; return ok; } #define CV_CMP_NUM_PTR(a,b) (*(a) < *(b)) static CV_IMPLEMENT_QSORT_EX( icvSortIntPtr, int*, CV_CMP_NUM_PTR, int ) static CV_IMPLEMENT_QSORT_EX( icvSortDblPtr, double*, CV_CMP_NUM_PTR, int ) #define CV_CMP_NUM_IDX(i,j) (aux[i] < aux[j]) static CV_IMPLEMENT_QSORT_EX( icvSortIntAux, int, CV_CMP_NUM_IDX, const float* ) static CV_IMPLEMENT_QSORT_EX( icvSortUShAux, unsigned short, CV_CMP_NUM_IDX, const float* ) #define CV_CMP_PAIRS(a,b) (*((a).i) < *((b).i)) static CV_IMPLEMENT_QSORT_EX( icvSortPairs, CvPair16u32s, CV_CMP_PAIRS, int ) void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag, const CvMat* _responses, const CvMat* _var_idx, const CvMat* _sample_idx, const CvMat* _var_type, const CvMat* _missing_mask, const CvDTreeParams& _params, bool _shared, bool _add_labels, bool _update_data ) { CvMat* sample_indices = 0; CvMat* var_type0 = 0; CvMat* tmp_map = 0; int** int_ptr = 0; CvPair16u32s* pair16u32s_ptr = 0; CvDTreeTrainData* data = 0; float *_fdst = 0; int *_idst = 0; unsigned short* udst = 0; int* idst = 0; CV_FUNCNAME( "CvDTreeTrainData::set_data" ); __BEGIN__; int sample_all = 0, r_type, cv_n; int total_c_count = 0; int tree_block_size, temp_block_size, max_split_size, nv_size, cv_size = 0; int ds_step, dv_step, ms_step = 0, mv_step = 0; // {data|mask}{sample|var}_step int vi, i, size; char err[100]; const int *sidx = 0, *vidx = 0; if( _update_data && data_root ) { data = new CvDTreeTrainData( _train_data, _tflag, _responses, _var_idx, _sample_idx, _var_type, _missing_mask, _params, _shared, _add_labels ); // compare new and old train data if( !(data->var_count == var_count && cvNorm( data->var_type, var_type, CV_C ) < FLT_EPSILON && cvNorm( data->cat_count, cat_count, CV_C ) < FLT_EPSILON && cvNorm( data->cat_map, cat_map, CV_C ) < FLT_EPSILON) ) CV_ERROR( CV_StsBadArg, "The new training data must have the same types and the input and output variables " "and the same categories for categorical variables" ); cvReleaseMat( &priors ); cvReleaseMat( &priors_mult ); cvReleaseMat( &buf ); cvReleaseMat( &direction ); cvReleaseMat( &split_buf ); cvReleaseMemStorage( &temp_storage ); priors = data->priors; data->priors = 0; priors_mult = data->priors_mult; data->priors_mult = 0; buf = data->buf; data->buf = 0; buf_count = data->buf_count; buf_size = data->buf_size; sample_count = data->sample_count; direction = data->direction; data->direction = 0; split_buf = data->split_buf; data->split_buf = 0; temp_storage = data->temp_storage; data->temp_storage = 0; nv_heap = data->nv_heap; cv_heap = data->cv_heap; data_root = new_node( 0, sample_count, 0, 0 ); EXIT; } clear(); var_all = 0; rng = &cv::theRNG(); CV_CALL( set_params( _params )); // check parameter types and sizes CV_CALL( cvCheckTrainData( _train_data, _tflag, _missing_mask, &var_all, &sample_all )); train_data = _train_data; responses = _responses; if( _tflag == CV_ROW_SAMPLE ) { ds_step = _train_data->step/CV_ELEM_SIZE(_train_data->type); dv_step = 1; if( _missing_mask ) ms_step = _missing_mask->step, mv_step = 1; } else { dv_step = _train_data->step/CV_ELEM_SIZE(_train_data->type); ds_step = 1; if( _missing_mask ) mv_step = _missing_mask->step, ms_step = 1; } tflag = _tflag; sample_count = sample_all; var_count = var_all; if( _sample_idx ) { CV_CALL( sample_indices = cvPreprocessIndexArray( _sample_idx, sample_all )); sidx = sample_indices->data.i; sample_count = sample_indices->rows + sample_indices->cols - 1; } if( _var_idx ) { CV_CALL( var_idx = cvPreprocessIndexArray( _var_idx, var_all )); vidx = var_idx->data.i; var_count = var_idx->rows + var_idx->cols - 1; } is_buf_16u = false; if ( sample_count < 65536 ) is_buf_16u = true; if( !CV_IS_MAT(_responses) || (CV_MAT_TYPE(_responses->type) != CV_32SC1 && CV_MAT_TYPE(_responses->type) != CV_32FC1) || (_responses->rows != 1 && _responses->cols != 1) || _responses->rows + _responses->cols - 1 != sample_all ) CV_ERROR( CV_StsBadArg, "The array of _responses must be an integer or " "floating-point vector containing as many elements as " "the total number of samples in the training data matrix" ); r_type = CV_VAR_CATEGORICAL; if( _var_type ) CV_CALL( var_type0 = cvPreprocessVarType( _var_type, var_idx, var_count, &r_type )); CV_CALL( var_type = cvCreateMat( 1, var_count+2, CV_32SC1 )); cat_var_count = 0; ord_var_count = -1; is_classifier = r_type == CV_VAR_CATEGORICAL; // step 0. calc the number of categorical vars for( vi = 0; vi < var_count; vi++ ) { char vt = var_type0 ? var_type0->data.ptr[vi] : CV_VAR_ORDERED; var_type->data.i[vi] = vt == CV_VAR_CATEGORICAL ? cat_var_count++ : ord_var_count--; } ord_var_count = ~ord_var_count; cv_n = params.cv_folds; // set the two last elements of var_type array to be able // to locate responses and cross-validation labels using // the corresponding get_* functions. var_type->data.i[var_count] = cat_var_count; var_type->data.i[var_count+1] = cat_var_count+1; // in case of single ordered predictor we need dummy cv_labels // for safe split_node_data() operation have_labels = cv_n > 0 || (ord_var_count == 1 && cat_var_count == 0) || _add_labels; work_var_count = var_count + (is_classifier ? 1 : 0) // for responses class_labels + (have_labels ? 1 : 0); // for cv_labels buf_size = (work_var_count + 1 /*for sample_indices*/) * sample_count; shared = _shared; buf_count = shared ? 2 : 1; if ( is_buf_16u ) { CV_CALL( buf = cvCreateMat( buf_count, buf_size, CV_16UC1 )); CV_CALL( pair16u32s_ptr = (CvPair16u32s*)cvAlloc( sample_count*sizeof(pair16u32s_ptr[0]) )); } else { CV_CALL( buf = cvCreateMat( buf_count, buf_size, CV_32SC1 )); CV_CALL( int_ptr = (int**)cvAlloc( sample_count*sizeof(int_ptr[0]) )); } size = is_classifier ? (cat_var_count+1) : cat_var_count; size = !size ? 1 : size; CV_CALL( cat_count = cvCreateMat( 1, size, CV_32SC1 )); CV_CALL( cat_ofs = cvCreateMat( 1, size, CV_32SC1 )); size = is_classifier ? (cat_var_count + 1)*params.max_categories : cat_var_count*params.max_categories; size = !size ? 1 : size; CV_CALL( cat_map = cvCreateMat( 1, size, CV_32SC1 )); // now calculate the maximum size of split, // create memory storage that will keep nodes and splits of the decision tree // allocate root node and the buffer for the whole training data max_split_size = cvAlign(sizeof(CvDTreeSplit) + (MAX(0,sample_count - 33)/32)*sizeof(int),sizeof(void*)); tree_block_size = MAX((int)sizeof(CvDTreeNode)*8, max_split_size); tree_block_size = MAX(tree_block_size + block_size_delta, min_block_size); CV_CALL( tree_storage = cvCreateMemStorage( tree_block_size )); CV_CALL( node_heap = cvCreateSet( 0, sizeof(*node_heap), sizeof(CvDTreeNode), tree_storage )); nv_size = var_count*sizeof(int); nv_size = cvAlign(MAX( nv_size, (int)sizeof(CvSetElem) ), sizeof(void*)); temp_block_size = nv_size; if( cv_n ) { if( sample_count < cv_n*MAX(params.min_sample_count,10) ) CV_ERROR( CV_StsOutOfRange, "The many folds in cross-validation for such a small dataset" ); cv_size = cvAlign( cv_n*(sizeof(int) + sizeof(double)*2), sizeof(double) ); temp_block_size = MAX(temp_block_size, cv_size); } temp_block_size = MAX( temp_block_size + block_size_delta, min_block_size ); CV_CALL( temp_storage = cvCreateMemStorage( temp_block_size )); CV_CALL( nv_heap = cvCreateSet( 0, sizeof(*nv_heap), nv_size, temp_storage )); if( cv_size ) CV_CALL( cv_heap = cvCreateSet( 0, sizeof(*cv_heap), cv_size, temp_storage )); CV_CALL( data_root = new_node( 0, sample_count, 0, 0 )); max_c_count = 1; _fdst = 0; _idst = 0; if (ord_var_count) _fdst = (float*)cvAlloc(sample_count*sizeof(_fdst[0])); if (is_buf_16u && (cat_var_count || is_classifier)) _idst = (int*)cvAlloc(sample_count*sizeof(_idst[0])); // transform the training data to convenient representation for( vi = 0; vi <= var_count; vi++ ) { int ci; const uchar* mask = 0; int m_step = 0, step; const int* idata = 0; const float* fdata = 0; int num_valid = 0; if( vi < var_count ) // analyze i-th input variable { int vi0 = vidx ? vidx[vi] : vi; ci = get_var_type(vi); step = ds_step; m_step = ms_step; if( CV_MAT_TYPE(_train_data->type) == CV_32SC1 ) idata = _train_data->data.i + vi0*dv_step; else fdata = _train_data->data.fl + vi0*dv_step; if( _missing_mask ) mask = _missing_mask->data.ptr + vi0*mv_step; } else // analyze _responses { ci = cat_var_count; step = CV_IS_MAT_CONT(_responses->type) ? 1 : _responses->step / CV_ELEM_SIZE(_responses->type); if( CV_MAT_TYPE(_responses->type) == CV_32SC1 ) idata = _responses->data.i; else fdata = _responses->data.fl; } if( (vi < var_count && ci>=0) || (vi == var_count && is_classifier) ) // process categorical variable or response { int c_count, prev_label; int* c_map; if (is_buf_16u) udst = (unsigned short*)(buf->data.s + vi*sample_count); else idst = buf->data.i + vi*sample_count; // copy data for( i = 0; i < sample_count; i++ ) { int val = INT_MAX, si = sidx ? sidx[i] : i; if( !mask || !mask[si*m_step] ) { if( idata ) val = idata[si*step]; else { float t = fdata[si*step]; val = cvRound(t); if( fabs(t - val) > FLT_EPSILON ) { sprintf( err, "%d-th value of %d-th (categorical) " "variable is not an integer", i, vi ); CV_ERROR( CV_StsBadArg, err ); } } if( val == INT_MAX ) { sprintf( err, "%d-th value of %d-th (categorical) " "variable is too large", i, vi ); CV_ERROR( CV_StsBadArg, err ); } num_valid++; } if (is_buf_16u) { _idst[i] = val; pair16u32s_ptr[i].u = udst + i; pair16u32s_ptr[i].i = _idst + i; } else { idst[i] = val; int_ptr[i] = idst + i; } } c_count = num_valid > 0; if (is_buf_16u) { icvSortPairs( pair16u32s_ptr, sample_count, 0 ); // count the categories for( i = 1; i < num_valid; i++ ) if (*pair16u32s_ptr[i].i != *pair16u32s_ptr[i-1].i) c_count ++ ; } else { icvSortIntPtr( int_ptr, sample_count, 0 ); // count the categories for( i = 1; i < num_valid; i++ ) c_count += *int_ptr[i] != *int_ptr[i-1]; } if( vi > 0 ) max_c_count = MAX( max_c_count, c_count ); cat_count->data.i[ci] = c_count; cat_ofs->data.i[ci] = total_c_count; // resize cat_map, if need if( cat_map->cols < total_c_count + c_count ) { tmp_map = cat_map; CV_CALL( cat_map = cvCreateMat( 1, MAX(cat_map->cols*3/2,total_c_count+c_count), CV_32SC1 )); for( i = 0; i < total_c_count; i++ ) cat_map->data.i[i] = tmp_map->data.i[i]; cvReleaseMat( &tmp_map ); } c_map = cat_map->data.i + total_c_count; total_c_count += c_count; c_count = -1; if (is_buf_16u) { // compact the class indices and build the map prev_label = ~*pair16u32s_ptr[0].i; for( i = 0; i < num_valid; i++ ) { int cur_label = *pair16u32s_ptr[i].i; if( cur_label != prev_label ) c_map[++c_count] = prev_label = cur_label; *pair16u32s_ptr[i].u = (unsigned short)c_count; } // replace labels for missing values with -1 for( ; i < sample_count; i++ ) *pair16u32s_ptr[i].u = 65535; } else { // compact the class indices and build the map prev_label = ~*int_ptr[0]; for( i = 0; i < num_valid; i++ ) { int cur_label = *int_ptr[i]; if( cur_label != prev_label ) c_map[++c_count] = prev_label = cur_label; *int_ptr[i] = c_count; } // replace labels for missing values with -1 for( ; i < sample_count; i++ ) *int_ptr[i] = -1; } } else if( ci < 0 ) // process ordered variable { if (is_buf_16u) udst = (unsigned short*)(buf->data.s + vi*sample_count); else idst = buf->data.i + vi*sample_count; for( i = 0; i < sample_count; i++ ) { float val = ord_nan; int si = sidx ? sidx[i] : i; if( !mask || !mask[si*m_step] ) { if( idata ) val = (float)idata[si*step]; else val = fdata[si*step]; if( fabs(val) >= ord_nan ) { sprintf( err, "%d-th value of %d-th (ordered) " "variable (=%g) is too large", i, vi, val ); CV_ERROR( CV_StsBadArg, err ); } num_valid++; } if (is_buf_16u) udst[i] = (unsigned short)i; else idst[i] = i; _fdst[i] = val; } if (is_buf_16u) icvSortUShAux( udst, sample_count, _fdst); else icvSortIntAux( idst, sample_count, _fdst ); } if( vi < var_count ) data_root->set_num_valid(vi, num_valid); } // set sample labels if (is_buf_16u) udst = (unsigned short*)(buf->data.s + work_var_count*sample_count); else idst = buf->data.i + work_var_count*sample_count; for (i = 0; i < sample_count; i++) { if (udst) udst[i] = sidx ? (unsigned short)sidx[i] : (unsigned short)i; else idst[i] = sidx ? sidx[i] : i; } if( cv_n ) { unsigned short* udst = 0; int* idst = 0; if (is_buf_16u) { udst = (unsigned short*)(buf->data.s + (get_work_var_count()-1)*sample_count); for( i = vi = 0; i < sample_count; i++ ) { udst[i] = (unsigned short)vi++; vi &= vi < cv_n ? -1 : 0; } for( i = 0; i < sample_count; i++ ) { int a = (*rng)(sample_count); int b = (*rng)(sample_count); unsigned short unsh = (unsigned short)vi; CV_SWAP( udst[a], udst[b], unsh ); } } else { idst = buf->data.i + (get_work_var_count()-1)*sample_count; for( i = vi = 0; i < sample_count; i++ ) { idst[i] = vi++; vi &= vi < cv_n ? -1 : 0; } for( i = 0; i < sample_count; i++ ) { int a = (*rng)(sample_count); int b = (*rng)(sample_count); CV_SWAP( idst[a], idst[b], vi ); } } } if ( cat_map ) cat_map->cols = MAX( total_c_count, 1 ); max_split_size = cvAlign(sizeof(CvDTreeSplit) + (MAX(0,max_c_count - 33)/32)*sizeof(int),sizeof(void*)); CV_CALL( split_heap = cvCreateSet( 0, sizeof(*split_heap), max_split_size, tree_storage )); have_priors = is_classifier && params.priors; if( is_classifier ) { int m = get_num_classes(); double sum = 0; CV_CALL( priors = cvCreateMat( 1, m, CV_64F )); for( i = 0; i < m; i++ ) { double val = have_priors ? params.priors[i] : 1.; if( val <= 0 ) CV_ERROR( CV_StsOutOfRange, "Every class weight should be positive" ); priors->data.db[i] = val; sum += val; } // normalize weights if( have_priors ) cvScale( priors, priors, 1./sum ); CV_CALL( priors_mult = cvCloneMat( priors )); CV_CALL( counts = cvCreateMat( 1, m, CV_32SC1 )); } CV_CALL( direction = cvCreateMat( 1, sample_count, CV_8UC1 )); CV_CALL( split_buf = cvCreateMat( 1, sample_count, CV_32SC1 )); __END__; if( data ) delete data; if (_fdst) cvFree( &_fdst ); if (_idst) cvFree( &_idst ); cvFree( &int_ptr ); cvFree( &pair16u32s_ptr); cvReleaseMat( &var_type0 ); cvReleaseMat( &sample_indices ); cvReleaseMat( &tmp_map ); } void CvDTreeTrainData::do_responses_copy() { responses_copy = cvCreateMat( responses->rows, responses->cols, responses->type ); cvCopy( responses, responses_copy); responses = responses_copy; } CvDTreeNode* CvDTreeTrainData::subsample_data( const CvMat* _subsample_idx ) { CvDTreeNode* root = 0; CvMat* isubsample_idx = 0; CvMat* subsample_co = 0; bool isMakeRootCopy = true; CV_FUNCNAME( "CvDTreeTrainData::subsample_data" ); __BEGIN__; if( !data_root ) CV_ERROR( CV_StsError, "No training data has been set" ); if( _subsample_idx ) { CV_CALL( isubsample_idx = cvPreprocessIndexArray( _subsample_idx, sample_count )); if( isubsample_idx->cols + isubsample_idx->rows - 1 == sample_count ) { const int* sidx = isubsample_idx->data.i; for( int i = 0; i < sample_count; i++ ) { if( sidx[i] != i ) { isMakeRootCopy = false; break; } } } else isMakeRootCopy = false; } if( isMakeRootCopy ) { // make a copy of the root node CvDTreeNode temp; int i; root = new_node( 0, 1, 0, 0 ); temp = *root; *root = *data_root; root->num_valid = temp.num_valid; if( root->num_valid ) { for( i = 0; i < var_count; i++ ) root->num_valid[i] = data_root->num_valid[i]; } root->cv_Tn = temp.cv_Tn; root->cv_node_risk = temp.cv_node_risk; root->cv_node_error = temp.cv_node_error; } else { int* sidx = isubsample_idx->data.i; // co - array of count/offset pairs (to handle duplicated values in _subsample_idx) int* co, cur_ofs = 0; int vi, i; int work_var_count = get_work_var_count(); int count = isubsample_idx->rows + isubsample_idx->cols - 1; root = new_node( 0, count, 1, 0 ); CV_CALL( subsample_co = cvCreateMat( 1, sample_count*2, CV_32SC1 )); cvZero( subsample_co ); co = subsample_co->data.i; for( i = 0; i < count; i++ ) co[sidx[i]*2]++; for( i = 0; i < sample_count; i++ ) { if( co[i*2] ) { co[i*2+1] = cur_ofs; cur_ofs += co[i*2]; } else co[i*2+1] = -1; } cv::AutoBuffer inn_buf(sample_count*(2*sizeof(int) + sizeof(float))); for( vi = 0; vi < work_var_count; vi++ ) { int ci = get_var_type(vi); if( ci >= 0 || vi >= var_count ) { int num_valid = 0; const int* src = get_cat_var_data( data_root, vi, (int*)(uchar*)inn_buf ); if (is_buf_16u) { unsigned short* udst = (unsigned short*)(buf->data.s + root->buf_idx*buf->cols + vi*sample_count + root->offset); for( i = 0; i < count; i++ ) { int val = src[sidx[i]]; udst[i] = (unsigned short)val; num_valid += val >= 0; } } else { int* idst = buf->data.i + root->buf_idx*buf->cols + vi*sample_count + root->offset; for( i = 0; i < count; i++ ) { int val = src[sidx[i]]; idst[i] = val; num_valid += val >= 0; } } if( vi < var_count ) root->set_num_valid(vi, num_valid); } else { int *src_idx_buf = (int*)(uchar*)inn_buf; float *src_val_buf = (float*)(src_idx_buf + sample_count); int* sample_indices_buf = (int*)(src_val_buf + sample_count); const int* src_idx = 0; const float* src_val = 0; get_ord_var_data( data_root, vi, src_val_buf, src_idx_buf, &src_val, &src_idx, sample_indices_buf ); int j = 0, idx, count_i; int num_valid = data_root->get_num_valid(vi); if (is_buf_16u) { unsigned short* udst_idx = (unsigned short*)(buf->data.s + root->buf_idx*buf->cols + vi*sample_count + data_root->offset); for( i = 0; i < num_valid; i++ ) { idx = src_idx[i]; count_i = co[idx*2]; if( count_i ) for( cur_ofs = co[idx*2+1]; count_i > 0; count_i--, j++, cur_ofs++ ) udst_idx[j] = (unsigned short)cur_ofs; } root->set_num_valid(vi, j); for( ; i < sample_count; i++ ) { idx = src_idx[i]; count_i = co[idx*2]; if( count_i ) for( cur_ofs = co[idx*2+1]; count_i > 0; count_i--, j++, cur_ofs++ ) udst_idx[j] = (unsigned short)cur_ofs; } } else { int* idst_idx = buf->data.i + root->buf_idx*buf->cols + vi*sample_count + root->offset; for( i = 0; i < num_valid; i++ ) { idx = src_idx[i]; count_i = co[idx*2]; if( count_i ) for( cur_ofs = co[idx*2+1]; count_i > 0; count_i--, j++, cur_ofs++ ) idst_idx[j] = cur_ofs; } root->set_num_valid(vi, j); for( ; i < sample_count; i++ ) { idx = src_idx[i]; count_i = co[idx*2]; if( count_i ) for( cur_ofs = co[idx*2+1]; count_i > 0; count_i--, j++, cur_ofs++ ) idst_idx[j] = cur_ofs; } } } } // sample indices subsampling const int* sample_idx_src = get_sample_indices(data_root, (int*)(uchar*)inn_buf); if (is_buf_16u) { unsigned short* sample_idx_dst = (unsigned short*)(buf->data.s + root->buf_idx*buf->cols + get_work_var_count()*sample_count + root->offset); for (i = 0; i < count; i++) sample_idx_dst[i] = (unsigned short)sample_idx_src[sidx[i]]; } else { int* sample_idx_dst = buf->data.i + root->buf_idx*buf->cols + get_work_var_count()*sample_count + root->offset; for (i = 0; i < count; i++) sample_idx_dst[i] = sample_idx_src[sidx[i]]; } } __END__; cvReleaseMat( &isubsample_idx ); cvReleaseMat( &subsample_co ); return root; } void CvDTreeTrainData::get_vectors( const CvMat* _subsample_idx, float* values, uchar* missing, float* responses, bool get_class_idx ) { CvMat* subsample_idx = 0; CvMat* subsample_co = 0; CV_FUNCNAME( "CvDTreeTrainData::get_vectors" ); __BEGIN__; int i, vi, total = sample_count, count = total, cur_ofs = 0; int* sidx = 0; int* co = 0; cv::AutoBuffer inn_buf(sample_count*(2*sizeof(int) + sizeof(float))); if( _subsample_idx ) { CV_CALL( subsample_idx = cvPreprocessIndexArray( _subsample_idx, sample_count )); sidx = subsample_idx->data.i; CV_CALL( subsample_co = cvCreateMat( 1, sample_count*2, CV_32SC1 )); co = subsample_co->data.i; cvZero( subsample_co ); count = subsample_idx->cols + subsample_idx->rows - 1; for( i = 0; i < count; i++ ) co[sidx[i]*2]++; for( i = 0; i < total; i++ ) { int count_i = co[i*2]; if( count_i ) { co[i*2+1] = cur_ofs*var_count; cur_ofs += count_i; } } } if( missing ) memset( missing, 1, count*var_count ); for( vi = 0; vi < var_count; vi++ ) { int ci = get_var_type(vi); if( ci >= 0 ) // categorical { float* dst = values + vi; uchar* m = missing ? missing + vi : 0; const int* src = get_cat_var_data(data_root, vi, (int*)(uchar*)inn_buf); for( i = 0; i < count; i++, dst += var_count ) { int idx = sidx ? sidx[i] : i; int val = src[idx]; *dst = (float)val; if( m ) { *m = (!is_buf_16u && val < 0) || (is_buf_16u && (val == 65535)); m += var_count; } } } else // ordered { float* dst = values + vi; uchar* m = missing ? missing + vi : 0; int count1 = data_root->get_num_valid(vi); float *src_val_buf = (float*)(uchar*)inn_buf; int* src_idx_buf = (int*)(src_val_buf + sample_count); int* sample_indices_buf = src_idx_buf + sample_count; const float *src_val = 0; const int* src_idx = 0; get_ord_var_data(data_root, vi, src_val_buf, src_idx_buf, &src_val, &src_idx, sample_indices_buf); for( i = 0; i < count1; i++ ) { int idx = src_idx[i]; int count_i = 1; if( co ) { count_i = co[idx*2]; cur_ofs = co[idx*2+1]; } else cur_ofs = idx*var_count; if( count_i ) { float val = src_val[i]; for( ; count_i > 0; count_i--, cur_ofs += var_count ) { dst[cur_ofs] = val; if( m ) m[cur_ofs] = 0; } } } } } // copy responses if( responses ) { if( is_classifier ) { const int* src = get_class_labels(data_root, (int*)(uchar*)inn_buf); for( i = 0; i < count; i++ ) { int idx = sidx ? sidx[i] : i; int val = get_class_idx ? src[idx] : cat_map->data.i[cat_ofs->data.i[cat_var_count]+src[idx]]; responses[i] = (float)val; } } else { float* val_buf = (float*)(uchar*)inn_buf; int* sample_idx_buf = (int*)(val_buf + sample_count); const float* _values = get_ord_responses(data_root, val_buf, sample_idx_buf); for( i = 0; i < count; i++ ) { int idx = sidx ? sidx[i] : i; responses[i] = _values[idx]; } } } __END__; cvReleaseMat( &subsample_idx ); cvReleaseMat( &subsample_co ); } CvDTreeNode* CvDTreeTrainData::new_node( CvDTreeNode* parent, int count, int storage_idx, int offset ) { CvDTreeNode* node = (CvDTreeNode*)cvSetNew( node_heap ); node->sample_count = count; node->depth = parent ? parent->depth + 1 : 0; node->parent = parent; node->left = node->right = 0; node->split = 0; node->value = 0; node->class_idx = 0; node->maxlr = 0.; node->buf_idx = storage_idx; node->offset = offset; if( nv_heap ) node->num_valid = (int*)cvSetNew( nv_heap ); else node->num_valid = 0; node->alpha = node->node_risk = node->tree_risk = node->tree_error = 0.; node->complexity = 0; if( params.cv_folds > 0 && cv_heap ) { int cv_n = params.cv_folds; node->Tn = INT_MAX; node->cv_Tn = (int*)cvSetNew( cv_heap ); node->cv_node_risk = (double*)cvAlignPtr(node->cv_Tn + cv_n, sizeof(double)); node->cv_node_error = node->cv_node_risk + cv_n; } else { node->Tn = 0; node->cv_Tn = 0; node->cv_node_risk = 0; node->cv_node_error = 0; } return node; } CvDTreeSplit* CvDTreeTrainData::new_split_ord( int vi, float cmp_val, int split_point, int inversed, float quality ) { CvDTreeSplit* split = (CvDTreeSplit*)cvSetNew( split_heap ); split->var_idx = vi; split->condensed_idx = INT_MIN; split->ord.c = cmp_val; split->ord.split_point = split_point; split->inversed = inversed; split->quality = quality; split->next = 0; return split; } CvDTreeSplit* CvDTreeTrainData::new_split_cat( int vi, float quality ) { CvDTreeSplit* split = (CvDTreeSplit*)cvSetNew( split_heap ); int i, n = (max_c_count + 31)/32; split->var_idx = vi; split->condensed_idx = INT_MIN; split->inversed = 0; split->quality = quality; for( i = 0; i < n; i++ ) split->subset[i] = 0; split->next = 0; return split; } void CvDTreeTrainData::free_node( CvDTreeNode* node ) { CvDTreeSplit* split = node->split; free_node_data( node ); while( split ) { CvDTreeSplit* next = split->next; cvSetRemoveByPtr( split_heap, split ); split = next; } node->split = 0; cvSetRemoveByPtr( node_heap, node ); } void CvDTreeTrainData::free_node_data( CvDTreeNode* node ) { if( node->num_valid ) { cvSetRemoveByPtr( nv_heap, node->num_valid ); node->num_valid = 0; } // do not free cv_* fields, as all the cross-validation related data is released at once. } void CvDTreeTrainData::free_train_data() { cvReleaseMat( &counts ); cvReleaseMat( &buf ); cvReleaseMat( &direction ); cvReleaseMat( &split_buf ); cvReleaseMemStorage( &temp_storage ); cvReleaseMat( &responses_copy ); cv_heap = nv_heap = 0; } void CvDTreeTrainData::clear() { free_train_data(); cvReleaseMemStorage( &tree_storage ); cvReleaseMat( &var_idx ); cvReleaseMat( &var_type ); cvReleaseMat( &cat_count ); cvReleaseMat( &cat_ofs ); cvReleaseMat( &cat_map ); cvReleaseMat( &priors ); cvReleaseMat( &priors_mult ); node_heap = split_heap = 0; sample_count = var_all = var_count = max_c_count = ord_var_count = cat_var_count = 0; have_labels = have_priors = is_classifier = false; buf_count = buf_size = 0; shared = false; data_root = 0; rng = &cv::theRNG(); } int CvDTreeTrainData::get_num_classes() const { return is_classifier ? cat_count->data.i[cat_var_count] : 0; } int CvDTreeTrainData::get_var_type(int vi) const { return var_type->data.i[vi]; } void CvDTreeTrainData::get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* sorted_indices_buf, const float** ord_values, const int** sorted_indices, int* sample_indices_buf ) { int vidx = var_idx ? var_idx->data.i[vi] : vi; int node_sample_count = n->sample_count; int td_step = train_data->step/CV_ELEM_SIZE(train_data->type); const int* sample_indices = get_sample_indices(n, sample_indices_buf); if( !is_buf_16u ) *sorted_indices = buf->data.i + n->buf_idx*buf->cols + vi*sample_count + n->offset; else { const unsigned short* short_indices = (const unsigned short*)(buf->data.s + n->buf_idx*buf->cols + vi*sample_count + n->offset ); for( int i = 0; i < node_sample_count; i++ ) sorted_indices_buf[i] = short_indices[i]; *sorted_indices = sorted_indices_buf; } if( tflag == CV_ROW_SAMPLE ) { for( int i = 0; i < node_sample_count && ((((*sorted_indices)[i] >= 0) && !is_buf_16u) || (((*sorted_indices)[i] != 65535) && is_buf_16u)); i++ ) { int idx = (*sorted_indices)[i]; idx = sample_indices[idx]; ord_values_buf[i] = *(train_data->data.fl + idx * td_step + vidx); } } else for( int i = 0; i < node_sample_count && ((((*sorted_indices)[i] >= 0) && !is_buf_16u) || (((*sorted_indices)[i] != 65535) && is_buf_16u)); i++ ) { int idx = (*sorted_indices)[i]; idx = sample_indices[idx]; ord_values_buf[i] = *(train_data->data.fl + vidx* td_step + idx); } *ord_values = ord_values_buf; } const int* CvDTreeTrainData::get_class_labels( CvDTreeNode* n, int* labels_buf ) { if (is_classifier) return get_cat_var_data( n, var_count, labels_buf); return 0; } const int* CvDTreeTrainData::get_sample_indices( CvDTreeNode* n, int* indices_buf ) { return get_cat_var_data( n, get_work_var_count(), indices_buf ); } const float* CvDTreeTrainData::get_ord_responses( CvDTreeNode* n, float* values_buf, int*sample_indices_buf ) { int sample_count = n->sample_count; int r_step = CV_IS_MAT_CONT(responses->type) ? 1 : responses->step/CV_ELEM_SIZE(responses->type); const int* indices = get_sample_indices(n, sample_indices_buf); for( int i = 0; i < sample_count && (((indices[i] >= 0) && !is_buf_16u) || ((indices[i] != 65535) && is_buf_16u)); i++ ) { int idx = indices[i]; values_buf[i] = *(responses->data.fl + idx * r_step); } return values_buf; } const int* CvDTreeTrainData::get_cv_labels( CvDTreeNode* n, int* labels_buf ) { if (have_labels) return get_cat_var_data( n, get_work_var_count()- 1, labels_buf); return 0; } const int* CvDTreeTrainData::get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf) { const int* cat_values = 0; if( !is_buf_16u ) cat_values = buf->data.i + n->buf_idx*buf->cols + vi*sample_count + n->offset; else { const unsigned short* short_values = (const unsigned short*)(buf->data.s + n->buf_idx*buf->cols + vi*sample_count + n->offset); for( int i = 0; i < n->sample_count; i++ ) cat_values_buf[i] = short_values[i]; cat_values = cat_values_buf; } return cat_values; } int CvDTreeTrainData::get_child_buf_idx( CvDTreeNode* n ) { int idx = n->buf_idx + 1; if( idx >= buf_count ) idx = shared ? 1 : 0; return idx; } void CvDTreeTrainData::write_params( CvFileStorage* fs ) const { CV_FUNCNAME( "CvDTreeTrainData::write_params" ); __BEGIN__; int vi, vcount = var_count; cvWriteInt( fs, "is_classifier", is_classifier ? 1 : 0 ); cvWriteInt( fs, "var_all", var_all ); cvWriteInt( fs, "var_count", var_count ); cvWriteInt( fs, "ord_var_count", ord_var_count ); cvWriteInt( fs, "cat_var_count", cat_var_count ); cvStartWriteStruct( fs, "training_params", CV_NODE_MAP ); cvWriteInt( fs, "use_surrogates", params.use_surrogates ? 1 : 0 ); if( is_classifier ) { cvWriteInt( fs, "max_categories", params.max_categories ); } else { cvWriteReal( fs, "regression_accuracy", params.regression_accuracy ); } cvWriteInt( fs, "max_depth", params.max_depth ); cvWriteInt( fs, "min_sample_count", params.min_sample_count ); cvWriteInt( fs, "cross_validation_folds", params.cv_folds ); if( params.cv_folds > 1 ) { cvWriteInt( fs, "use_1se_rule", params.use_1se_rule ? 1 : 0 ); cvWriteInt( fs, "truncate_pruned_tree", params.truncate_pruned_tree ? 1 : 0 ); } if( priors ) cvWrite( fs, "priors", priors ); cvEndWriteStruct( fs ); if( var_idx ) cvWrite( fs, "var_idx", var_idx ); cvStartWriteStruct( fs, "var_type", CV_NODE_SEQ+CV_NODE_FLOW ); for( vi = 0; vi < vcount; vi++ ) cvWriteInt( fs, 0, var_type->data.i[vi] >= 0 ); cvEndWriteStruct( fs ); if( cat_count && (cat_var_count > 0 || is_classifier) ) { CV_ASSERT( cat_count != 0 ); cvWrite( fs, "cat_count", cat_count ); cvWrite( fs, "cat_map", cat_map ); } __END__; } void CvDTreeTrainData::read_params( CvFileStorage* fs, CvFileNode* node ) { CV_FUNCNAME( "CvDTreeTrainData::read_params" ); __BEGIN__; CvFileNode *tparams_node, *vartype_node; CvSeqReader reader; int vi, max_split_size, tree_block_size; is_classifier = (cvReadIntByName( fs, node, "is_classifier" ) != 0); var_all = cvReadIntByName( fs, node, "var_all" ); var_count = cvReadIntByName( fs, node, "var_count", var_all ); cat_var_count = cvReadIntByName( fs, node, "cat_var_count" ); ord_var_count = cvReadIntByName( fs, node, "ord_var_count" ); tparams_node = cvGetFileNodeByName( fs, node, "training_params" ); if( tparams_node ) // training parameters are not necessary { params.use_surrogates = cvReadIntByName( fs, tparams_node, "use_surrogates", 1 ) != 0; if( is_classifier ) { params.max_categories = cvReadIntByName( fs, tparams_node, "max_categories" ); } else { params.regression_accuracy = (float)cvReadRealByName( fs, tparams_node, "regression_accuracy" ); } params.max_depth = cvReadIntByName( fs, tparams_node, "max_depth" ); params.min_sample_count = cvReadIntByName( fs, tparams_node, "min_sample_count" ); params.cv_folds = cvReadIntByName( fs, tparams_node, "cross_validation_folds" ); if( params.cv_folds > 1 ) { params.use_1se_rule = cvReadIntByName( fs, tparams_node, "use_1se_rule" ) != 0; params.truncate_pruned_tree = cvReadIntByName( fs, tparams_node, "truncate_pruned_tree" ) != 0; } priors = (CvMat*)cvReadByName( fs, tparams_node, "priors" ); if( priors ) { if( !CV_IS_MAT(priors) ) CV_ERROR( CV_StsParseError, "priors must stored as a matrix" ); priors_mult = cvCloneMat( priors ); } } CV_CALL( var_idx = (CvMat*)cvReadByName( fs, node, "var_idx" )); if( var_idx ) { if( !CV_IS_MAT(var_idx) || (var_idx->cols != 1 && var_idx->rows != 1) || var_idx->cols + var_idx->rows - 1 != var_count || CV_MAT_TYPE(var_idx->type) != CV_32SC1 ) CV_ERROR( CV_StsParseError, "var_idx (if exist) must be valid 1d integer vector containing elements" ); for( vi = 0; vi < var_count; vi++ ) if( (unsigned)var_idx->data.i[vi] >= (unsigned)var_all ) CV_ERROR( CV_StsOutOfRange, "some of var_idx elements are out of range" ); } ////// read var type CV_CALL( var_type = cvCreateMat( 1, var_count + 2, CV_32SC1 )); cat_var_count = 0; ord_var_count = -1; vartype_node = cvGetFileNodeByName( fs, node, "var_type" ); if( vartype_node && CV_NODE_TYPE(vartype_node->tag) == CV_NODE_INT && var_count == 1 ) var_type->data.i[0] = vartype_node->data.i ? cat_var_count++ : ord_var_count--; else { if( !vartype_node || CV_NODE_TYPE(vartype_node->tag) != CV_NODE_SEQ || vartype_node->data.seq->total != var_count ) CV_ERROR( CV_StsParseError, "var_type must exist and be a sequence of 0's and 1's" ); cvStartReadSeq( vartype_node->data.seq, &reader ); for( vi = 0; vi < var_count; vi++ ) { CvFileNode* n = (CvFileNode*)reader.ptr; if( CV_NODE_TYPE(n->tag) != CV_NODE_INT || (n->data.i & ~1) ) CV_ERROR( CV_StsParseError, "var_type must exist and be a sequence of 0's and 1's" ); var_type->data.i[vi] = n->data.i ? cat_var_count++ : ord_var_count--; CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); } } var_type->data.i[var_count] = cat_var_count; ord_var_count = ~ord_var_count; if( cat_var_count != cat_var_count || ord_var_count != ord_var_count ) CV_ERROR( CV_StsParseError, "var_type is inconsistent with cat_var_count and ord_var_count" ); ////// if( cat_var_count > 0 || is_classifier ) { int ccount, total_c_count = 0; CV_CALL( cat_count = (CvMat*)cvReadByName( fs, node, "cat_count" )); CV_CALL( cat_map = (CvMat*)cvReadByName( fs, node, "cat_map" )); if( !CV_IS_MAT(cat_count) || !CV_IS_MAT(cat_map) || (cat_count->cols != 1 && cat_count->rows != 1) || CV_MAT_TYPE(cat_count->type) != CV_32SC1 || cat_count->cols + cat_count->rows - 1 != cat_var_count + is_classifier || (cat_map->cols != 1 && cat_map->rows != 1) || CV_MAT_TYPE(cat_map->type) != CV_32SC1 ) CV_ERROR( CV_StsParseError, "Both cat_count and cat_map must exist and be valid 1d integer vectors of an appropriate size" ); ccount = cat_var_count + is_classifier; CV_CALL( cat_ofs = cvCreateMat( 1, ccount + 1, CV_32SC1 )); cat_ofs->data.i[0] = 0; max_c_count = 1; for( vi = 0; vi < ccount; vi++ ) { int val = cat_count->data.i[vi]; if( val <= 0 ) CV_ERROR( CV_StsOutOfRange, "some of cat_count elements are out of range" ); max_c_count = MAX( max_c_count, val ); cat_ofs->data.i[vi+1] = total_c_count += val; } if( cat_map->cols + cat_map->rows - 1 != total_c_count ) CV_ERROR( CV_StsBadSize, "cat_map vector length is not equal to the total number of categories in all categorical vars" ); } max_split_size = cvAlign(sizeof(CvDTreeSplit) + (MAX(0,max_c_count - 33)/32)*sizeof(int),sizeof(void*)); tree_block_size = MAX((int)sizeof(CvDTreeNode)*8, max_split_size); tree_block_size = MAX(tree_block_size + block_size_delta, min_block_size); CV_CALL( tree_storage = cvCreateMemStorage( tree_block_size )); CV_CALL( node_heap = cvCreateSet( 0, sizeof(node_heap[0]), sizeof(CvDTreeNode), tree_storage )); CV_CALL( split_heap = cvCreateSet( 0, sizeof(split_heap[0]), max_split_size, tree_storage )); __END__; } /////////////////////// Decision Tree ///////////////////////// CvDTree::CvDTree() { data = 0; var_importance = 0; default_model_name = "my_tree"; clear(); } void CvDTree::clear() { cvReleaseMat( &var_importance ); if( data ) { if( !data->shared ) delete data; else free_tree(); data = 0; } root = 0; pruned_tree_idx = -1; } CvDTree::~CvDTree() { clear(); } const CvDTreeNode* CvDTree::get_root() const { return root; } int CvDTree::get_pruned_tree_idx() const { return pruned_tree_idx; } CvDTreeTrainData* CvDTree::get_data() { return data; } bool CvDTree::train( const CvMat* _train_data, int _tflag, const CvMat* _responses, const CvMat* _var_idx, const CvMat* _sample_idx, const CvMat* _var_type, const CvMat* _missing_mask, CvDTreeParams _params ) { bool result = false; CV_FUNCNAME( "CvDTree::train" ); __BEGIN__; clear(); data = new CvDTreeTrainData( _train_data, _tflag, _responses, _var_idx, _sample_idx, _var_type, _missing_mask, _params, false ); CV_CALL( result = do_train(0) ); __END__; return result; } bool CvDTree::train( const Mat& _train_data, int _tflag, const Mat& _responses, const Mat& _var_idx, const Mat& _sample_idx, const Mat& _var_type, const Mat& _missing_mask, CvDTreeParams _params ) { CvMat tdata = _train_data, responses = _responses, vidx=_var_idx, sidx=_sample_idx, vtype=_var_type, mmask=_missing_mask; return train(&tdata, _tflag, &responses, vidx.data.ptr ? &vidx : 0, sidx.data.ptr ? &sidx : 0, vtype.data.ptr ? &vtype : 0, mmask.data.ptr ? &mmask : 0, _params); } bool CvDTree::train( CvMLData* _data, CvDTreeParams _params ) { bool result = false; CV_FUNCNAME( "CvDTree::train" ); __BEGIN__; const CvMat* values = _data->get_values(); const CvMat* response = _data->get_responses(); const CvMat* missing = _data->get_missing(); const CvMat* var_types = _data->get_var_types(); const CvMat* train_sidx = _data->get_train_sample_idx(); const CvMat* var_idx = _data->get_var_idx(); CV_CALL( result = train( values, CV_ROW_SAMPLE, response, var_idx, train_sidx, var_types, missing, _params ) ); __END__; return result; } bool CvDTree::train( CvDTreeTrainData* _data, const CvMat* _subsample_idx ) { bool result = false; CV_FUNCNAME( "CvDTree::train" ); __BEGIN__; clear(); data = _data; data->shared = true; CV_CALL( result = do_train(_subsample_idx)); __END__; return result; } bool CvDTree::do_train( const CvMat* _subsample_idx ) { bool result = false; CV_FUNCNAME( "CvDTree::do_train" ); __BEGIN__; root = data->subsample_data( _subsample_idx ); CV_CALL( try_split_node(root)); if( data->params.cv_folds > 0 ) CV_CALL( prune_cv() ); if( !data->shared ) data->free_train_data(); result = true; __END__; return result; } void CvDTree::try_split_node( CvDTreeNode* node ) { CvDTreeSplit* best_split = 0; int i, n = node->sample_count, vi; bool can_split = true; double quality_scale; calc_node_value( node ); if( node->sample_count <= data->params.min_sample_count || node->depth >= data->params.max_depth ) can_split = false; if( can_split && data->is_classifier ) { // check if we have a "pure" node, // we assume that cls_count is filled by calc_node_value() int* cls_count = data->counts->data.i; int nz = 0, m = data->get_num_classes(); for( i = 0; i < m; i++ ) nz += cls_count[i] != 0; if( nz == 1 ) // there is only one class can_split = false; } else if( can_split ) { if( sqrt(node->node_risk)/n < data->params.regression_accuracy ) can_split = false; } if( can_split ) { best_split = find_best_split(node); // TODO: check the split quality ... node->split = best_split; } if( !can_split || !best_split ) { data->free_node_data(node); return; } quality_scale = calc_node_dir( node ); if( data->params.use_surrogates ) { // find all the surrogate splits // and sort them by their similarity to the primary one for( vi = 0; vi < data->var_count; vi++ ) { CvDTreeSplit* split; int ci = data->get_var_type(vi); if( vi == best_split->var_idx ) continue; if( ci >= 0 ) split = find_surrogate_split_cat( node, vi ); else split = find_surrogate_split_ord( node, vi ); if( split ) { // insert the split CvDTreeSplit* prev_split = node->split; split->quality = (float)(split->quality*quality_scale); while( prev_split->next && prev_split->next->quality > split->quality ) prev_split = prev_split->next; split->next = prev_split->next; prev_split->next = split; } } } split_node_data( node ); try_split_node( node->left ); try_split_node( node->right ); } // calculate direction (left(-1),right(1),missing(0)) // for each sample using the best split // the function returns scale coefficients for surrogate split quality factors. // the scale is applied to normalize surrogate split quality relatively to the // best (primary) split quality. That is, if a surrogate split is absolutely // identical to the primary split, its quality will be set to the maximum value = // quality of the primary split; otherwise, it will be lower. // besides, the function compute node->maxlr, // minimum possible quality (w/o considering the above mentioned scale) // for a surrogate split. Surrogate splits with quality less than node->maxlr // are not discarded. double CvDTree::calc_node_dir( CvDTreeNode* node ) { char* dir = (char*)data->direction->data.ptr; int i, n = node->sample_count, vi = node->split->var_idx; double L, R; assert( !node->split->inversed ); if( data->get_var_type(vi) >= 0 ) // split on categorical var { cv::AutoBuffer inn_buf(n*(!data->have_priors ? 1 : 2)); int* labels_buf = (int*)inn_buf; const int* labels = data->get_cat_var_data( node, vi, labels_buf ); const int* subset = node->split->subset; if( !data->have_priors ) { int sum = 0, sum_abs = 0; for( i = 0; i < n; i++ ) { int idx = labels[i]; int d = ( ((idx >= 0)&&(!data->is_buf_16u)) || ((idx != 65535)&&(data->is_buf_16u)) ) ? CV_DTREE_CAT_DIR(idx,subset) : 0; sum += d; sum_abs += d & 1; dir[i] = (char)d; } R = (sum_abs + sum) >> 1; L = (sum_abs - sum) >> 1; } else { const double* priors = data->priors_mult->data.db; double sum = 0, sum_abs = 0; int* responses_buf = labels_buf + n; const int* responses = data->get_class_labels(node, responses_buf); for( i = 0; i < n; i++ ) { int idx = labels[i]; double w = priors[responses[i]]; int d = idx >= 0 ? CV_DTREE_CAT_DIR(idx,subset) : 0; sum += d*w; sum_abs += (d & 1)*w; dir[i] = (char)d; } R = (sum_abs + sum) * 0.5; L = (sum_abs - sum) * 0.5; } } else // split on ordered var { int split_point = node->split->ord.split_point; int n1 = node->get_num_valid(vi); cv::AutoBuffer inn_buf(n*(sizeof(int)*(data->have_priors ? 3 : 2) + sizeof(float))); float* val_buf = (float*)(uchar*)inn_buf; int* sorted_buf = (int*)(val_buf + n); int* sample_idx_buf = sorted_buf + n; const float* val = 0; const int* sorted = 0; data->get_ord_var_data( node, vi, val_buf, sorted_buf, &val, &sorted, sample_idx_buf); assert( 0 <= split_point && split_point < n1-1 ); if( !data->have_priors ) { for( i = 0; i <= split_point; i++ ) dir[sorted[i]] = (char)-1; for( ; i < n1; i++ ) dir[sorted[i]] = (char)1; for( ; i < n; i++ ) dir[sorted[i]] = (char)0; L = split_point-1; R = n1 - split_point + 1; } else { const double* priors = data->priors_mult->data.db; int* responses_buf = sample_idx_buf + n; const int* responses = data->get_class_labels(node, responses_buf); L = R = 0; for( i = 0; i <= split_point; i++ ) { int idx = sorted[i]; double w = priors[responses[idx]]; dir[idx] = (char)-1; L += w; } for( ; i < n1; i++ ) { int idx = sorted[i]; double w = priors[responses[idx]]; dir[idx] = (char)1; R += w; } for( ; i < n; i++ ) dir[sorted[i]] = (char)0; } } node->maxlr = MAX( L, R ); return node->split->quality/(L + R); } namespace cv { template<> CV_EXPORTS void Ptr::delete_obj() { fastFree(obj); } DTreeBestSplitFinder::DTreeBestSplitFinder( CvDTree* _tree, CvDTreeNode* _node) { tree = _tree; node = _node; splitSize = tree->get_data()->split_heap->elem_size; bestSplit = (CvDTreeSplit*)fastMalloc(splitSize); memset((CvDTreeSplit*)bestSplit, 0, splitSize); bestSplit->quality = -1; bestSplit->condensed_idx = INT_MIN; split = (CvDTreeSplit*)fastMalloc(splitSize); memset((CvDTreeSplit*)split, 0, splitSize); //haveSplit = false; } DTreeBestSplitFinder::DTreeBestSplitFinder( const DTreeBestSplitFinder& finder, Split ) { tree = finder.tree; node = finder.node; splitSize = tree->get_data()->split_heap->elem_size; bestSplit = (CvDTreeSplit*)fastMalloc(splitSize); memcpy((CvDTreeSplit*)(bestSplit), (const CvDTreeSplit*)finder.bestSplit, splitSize); split = (CvDTreeSplit*)fastMalloc(splitSize); memset((CvDTreeSplit*)split, 0, splitSize); } void DTreeBestSplitFinder::operator()(const BlockedRange& range) { int vi, vi1 = range.begin(), vi2 = range.end(); int n = node->sample_count; CvDTreeTrainData* data = tree->get_data(); AutoBuffer inn_buf(2*n*(sizeof(int) + sizeof(float))); for( vi = vi1; vi < vi2; vi++ ) { CvDTreeSplit *res; int ci = data->get_var_type(vi); if( node->get_num_valid(vi) <= 1 ) continue; if( data->is_classifier ) { if( ci >= 0 ) res = tree->find_split_cat_class( node, vi, bestSplit->quality, split, (uchar*)inn_buf ); else res = tree->find_split_ord_class( node, vi, bestSplit->quality, split, (uchar*)inn_buf ); } else { if( ci >= 0 ) res = tree->find_split_cat_reg( node, vi, bestSplit->quality, split, (uchar*)inn_buf ); else res = tree->find_split_ord_reg( node, vi, bestSplit->quality, split, (uchar*)inn_buf ); } if( res && bestSplit->quality < split->quality ) memcpy( (CvDTreeSplit*)bestSplit, (CvDTreeSplit*)split, splitSize ); } } void DTreeBestSplitFinder::join( DTreeBestSplitFinder& rhs ) { if( bestSplit->quality < rhs.bestSplit->quality ) memcpy( (CvDTreeSplit*)bestSplit, (CvDTreeSplit*)rhs.bestSplit, splitSize ); } } CvDTreeSplit* CvDTree::find_best_split( CvDTreeNode* node ) { DTreeBestSplitFinder finder( this, node ); cv::parallel_reduce(cv::BlockedRange(0, data->var_count), finder); CvDTreeSplit *bestSplit = 0; if( finder.bestSplit->quality > 0 ) { bestSplit = data->new_split_cat( 0, -1.0f ); memcpy( bestSplit, finder.bestSplit, finder.splitSize ); } return bestSplit; } CvDTreeSplit* CvDTree::find_split_ord_class( CvDTreeNode* node, int vi, float init_quality, CvDTreeSplit* _split, uchar* _ext_buf ) { const float epsilon = FLT_EPSILON*2; int n = node->sample_count; int n1 = node->get_num_valid(vi); int m = data->get_num_classes(); int base_size = 2*m*sizeof(int); cv::AutoBuffer inn_buf(base_size); if( !_ext_buf ) inn_buf.allocate(base_size + n*(3*sizeof(int)+sizeof(float))); uchar* base_buf = (uchar*)inn_buf; uchar* ext_buf = _ext_buf ? _ext_buf : base_buf + base_size; float* values_buf = (float*)ext_buf; int* sorted_indices_buf = (int*)(values_buf + n); int* sample_indices_buf = sorted_indices_buf + n; const float* values = 0; const int* sorted_indices = 0; data->get_ord_var_data( node, vi, values_buf, sorted_indices_buf, &values, &sorted_indices, sample_indices_buf ); int* responses_buf = sample_indices_buf + n; const int* responses = data->get_class_labels( node, responses_buf ); const int* rc0 = data->counts->data.i; int* lc = (int*)base_buf; int* rc = lc + m; int i, best_i = -1; double lsum2 = 0, rsum2 = 0, best_val = init_quality; const double* priors = data->have_priors ? data->priors_mult->data.db : 0; // init arrays of class instance counters on both sides of the split for( i = 0; i < m; i++ ) { lc[i] = 0; rc[i] = rc0[i]; } // compensate for missing values for( i = n1; i < n; i++ ) { rc[responses[sorted_indices[i]]]--; } if( !priors ) { int L = 0, R = n1; for( i = 0; i < m; i++ ) rsum2 += (double)rc[i]*rc[i]; for( i = 0; i < n1 - 1; i++ ) { int idx = responses[sorted_indices[i]]; int lv, rv; L++; R--; lv = lc[idx]; rv = rc[idx]; lsum2 += lv*2 + 1; rsum2 -= rv*2 - 1; lc[idx] = lv + 1; rc[idx] = rv - 1; if( values[i] + epsilon < values[i+1] ) { double val = (lsum2*R + rsum2*L)/((double)L*R); if( best_val < val ) { best_val = val; best_i = i; } } } } else { double L = 0, R = 0; for( i = 0; i < m; i++ ) { double wv = rc[i]*priors[i]; R += wv; rsum2 += wv*wv; } for( i = 0; i < n1 - 1; i++ ) { int idx = responses[sorted_indices[i]]; int lv, rv; double p = priors[idx], p2 = p*p; L += p; R -= p; lv = lc[idx]; rv = rc[idx]; lsum2 += p2*(lv*2 + 1); rsum2 -= p2*(rv*2 - 1); lc[idx] = lv + 1; rc[idx] = rv - 1; if( values[i] + epsilon < values[i+1] ) { double val = (lsum2*R + rsum2*L)/((double)L*R); if( best_val < val ) { best_val = val; best_i = i; } } } } CvDTreeSplit* split = 0; if( best_i >= 0 ) { split = _split ? _split : data->new_split_ord( 0, 0.0f, 0, 0, 0.0f ); split->var_idx = vi; split->ord.c = (values[best_i] + values[best_i+1])*0.5f; split->ord.split_point = best_i; split->inversed = 0; split->quality = (float)best_val; } return split; } void CvDTree::cluster_categories( const int* vectors, int n, int m, int* csums, int k, int* labels ) { // TODO: consider adding priors (class weights) and sample weights to the clustering algorithm int iters = 0, max_iters = 100; int i, j, idx; double* buf = (double*)cvStackAlloc( (n + k)*sizeof(buf[0]) ); double *v_weights = buf, *c_weights = buf + n; bool modified = true; RNG* r = data->rng; // assign labels randomly for( i = 0; i < n; i++ ) { int sum = 0; const int* v = vectors + i*m; labels[i] = i < k ? i : (*r)(k); // compute weight of each vector for( j = 0; j < m; j++ ) sum += v[j]; v_weights[i] = sum ? 1./sum : 0.; } for( i = 0; i < n; i++ ) { int i1 = (*r)(n); int i2 = (*r)(n); CV_SWAP( labels[i1], labels[i2], j ); } for( iters = 0; iters <= max_iters; iters++ ) { // calculate csums for( i = 0; i < k; i++ ) { for( j = 0; j < m; j++ ) csums[i*m + j] = 0; } for( i = 0; i < n; i++ ) { const int* v = vectors + i*m; int* s = csums + labels[i]*m; for( j = 0; j < m; j++ ) s[j] += v[j]; } // exit the loop here, when we have up-to-date csums if( iters == max_iters || !modified ) break; modified = false; // calculate weight of each cluster for( i = 0; i < k; i++ ) { const int* s = csums + i*m; int sum = 0; for( j = 0; j < m; j++ ) sum += s[j]; c_weights[i] = sum ? 1./sum : 0; } // now for each vector determine the closest cluster for( i = 0; i < n; i++ ) { const int* v = vectors + i*m; double alpha = v_weights[i]; double min_dist2 = DBL_MAX; int min_idx = -1; for( idx = 0; idx < k; idx++ ) { const int* s = csums + idx*m; double dist2 = 0., beta = c_weights[idx]; for( j = 0; j < m; j++ ) { double t = v[j]*alpha - s[j]*beta; dist2 += t*t; } if( min_dist2 > dist2 ) { min_dist2 = dist2; min_idx = idx; } } if( min_idx != labels[i] ) modified = true; labels[i] = min_idx; } } } CvDTreeSplit* CvDTree::find_split_cat_class( CvDTreeNode* node, int vi, float init_quality, CvDTreeSplit* _split, uchar* _ext_buf ) { int ci = data->get_var_type(vi); int n = node->sample_count; int m = data->get_num_classes(); int _mi = data->cat_count->data.i[ci], mi = _mi; int base_size = m*(3 + mi)*sizeof(int) + (mi+1)*sizeof(double); if( m > 2 && mi > data->params.max_categories ) base_size += (m*min(data->params.max_categories, n) + mi)*sizeof(int); else base_size += mi*sizeof(int*); cv::AutoBuffer inn_buf(base_size); if( !_ext_buf ) inn_buf.allocate(base_size + 2*n*sizeof(int)); uchar* base_buf = (uchar*)inn_buf; uchar* ext_buf = _ext_buf ? _ext_buf : base_buf + base_size; int* lc = (int*)base_buf; int* rc = lc + m; int* _cjk = rc + m*2, *cjk = _cjk; double* c_weights = (double*)alignPtr(cjk + m*mi, sizeof(double)); int* labels_buf = (int*)ext_buf; const int* labels = data->get_cat_var_data(node, vi, labels_buf); int* responses_buf = labels_buf + n; const int* responses = data->get_class_labels(node, responses_buf); int* cluster_labels = 0; int** int_ptr = 0; int i, j, k, idx; double L = 0, R = 0; double best_val = init_quality; int prevcode = 0, best_subset = -1, subset_i, subset_n, subtract = 0; const double* priors = data->priors_mult->data.db; // init array of counters: // c_{jk} - number of samples that have vi-th input variable = j and response = k. for( j = -1; j < mi; j++ ) for( k = 0; k < m; k++ ) cjk[j*m + k] = 0; for( i = 0; i < n; i++ ) { j = ( labels[i] == 65535 && data->is_buf_16u) ? -1 : labels[i]; k = responses[i]; cjk[j*m + k]++; } if( m > 2 ) { if( mi > data->params.max_categories ) { mi = MIN(data->params.max_categories, n); cjk = (int*)(c_weights + _mi); cluster_labels = cjk + m*mi; cluster_categories( _cjk, _mi, m, cjk, mi, cluster_labels ); } subset_i = 1; subset_n = 1 << mi; } else { assert( m == 2 ); int_ptr = (int**)(c_weights + _mi); for( j = 0; j < mi; j++ ) int_ptr[j] = cjk + j*2 + 1; icvSortIntPtr( int_ptr, mi, 0 ); subset_i = 0; subset_n = mi; } for( k = 0; k < m; k++ ) { int sum = 0; for( j = 0; j < mi; j++ ) sum += cjk[j*m + k]; rc[k] = sum; lc[k] = 0; } for( j = 0; j < mi; j++ ) { double sum = 0; for( k = 0; k < m; k++ ) sum += cjk[j*m + k]*priors[k]; c_weights[j] = sum; R += c_weights[j]; } for( ; subset_i < subset_n; subset_i++ ) { double weight; int* crow; double lsum2 = 0, rsum2 = 0; if( m == 2 ) idx = (int)(int_ptr[subset_i] - cjk)/2; else { int graycode = (subset_i>>1)^subset_i; int diff = graycode ^ prevcode; // determine index of the changed bit. Cv32suf u; idx = diff >= (1 << 16) ? 16 : 0; u.f = (float)(((diff >> 16) | diff) & 65535); idx += (u.i >> 23) - 127; subtract = graycode < prevcode; prevcode = graycode; } crow = cjk + idx*m; weight = c_weights[idx]; if( weight < FLT_EPSILON ) continue; if( !subtract ) { for( k = 0; k < m; k++ ) { int t = crow[k]; int lval = lc[k] + t; int rval = rc[k] - t; double p = priors[k], p2 = p*p; lsum2 += p2*lval*lval; rsum2 += p2*rval*rval; lc[k] = lval; rc[k] = rval; } L += weight; R -= weight; } else { for( k = 0; k < m; k++ ) { int t = crow[k]; int lval = lc[k] - t; int rval = rc[k] + t; double p = priors[k], p2 = p*p; lsum2 += p2*lval*lval; rsum2 += p2*rval*rval; lc[k] = lval; rc[k] = rval; } L -= weight; R += weight; } if( L > FLT_EPSILON && R > FLT_EPSILON ) { double val = (lsum2*R + rsum2*L)/((double)L*R); if( best_val < val ) { best_val = val; best_subset = subset_i; } } } CvDTreeSplit* split = 0; if( best_subset >= 0 ) { split = _split ? _split : data->new_split_cat( 0, -1.0f ); split->var_idx = vi; split->quality = (float)best_val; memset( split->subset, 0, (data->max_c_count + 31)/32 * sizeof(int)); if( m == 2 ) { for( i = 0; i <= best_subset; i++ ) { idx = (int)(int_ptr[i] - cjk) >> 1; split->subset[idx >> 5] |= 1 << (idx & 31); } } else { for( i = 0; i < _mi; i++ ) { idx = cluster_labels ? cluster_labels[i] : i; if( best_subset & (1 << idx) ) split->subset[i >> 5] |= 1 << (i & 31); } } } return split; } CvDTreeSplit* CvDTree::find_split_ord_reg( CvDTreeNode* node, int vi, float init_quality, CvDTreeSplit* _split, uchar* _ext_buf ) { const float epsilon = FLT_EPSILON*2; int n = node->sample_count; int n1 = node->get_num_valid(vi); cv::AutoBuffer inn_buf; if( !_ext_buf ) inn_buf.allocate(2*n*(sizeof(int) + sizeof(float))); uchar* ext_buf = _ext_buf ? _ext_buf : (uchar*)inn_buf; float* values_buf = (float*)ext_buf; int* sorted_indices_buf = (int*)(values_buf + n); int* sample_indices_buf = sorted_indices_buf + n; const float* values = 0; const int* sorted_indices = 0; data->get_ord_var_data( node, vi, values_buf, sorted_indices_buf, &values, &sorted_indices, sample_indices_buf ); float* responses_buf = (float*)(sample_indices_buf + n); const float* responses = data->get_ord_responses( node, responses_buf, sample_indices_buf ); int i, best_i = -1; double best_val = init_quality, lsum = 0, rsum = node->value*n; int L = 0, R = n1; // compensate for missing values for( i = n1; i < n; i++ ) rsum -= responses[sorted_indices[i]]; // find the optimal split for( i = 0; i < n1 - 1; i++ ) { float t = responses[sorted_indices[i]]; L++; R--; lsum += t; rsum -= t; if( values[i] + epsilon < values[i+1] ) { double val = (lsum*lsum*R + rsum*rsum*L)/((double)L*R); if( best_val < val ) { best_val = val; best_i = i; } } } CvDTreeSplit* split = 0; if( best_i >= 0 ) { split = _split ? _split : data->new_split_ord( 0, 0.0f, 0, 0, 0.0f ); split->var_idx = vi; split->ord.c = (values[best_i] + values[best_i+1])*0.5f; split->ord.split_point = best_i; split->inversed = 0; split->quality = (float)best_val; } return split; } CvDTreeSplit* CvDTree::find_split_cat_reg( CvDTreeNode* node, int vi, float init_quality, CvDTreeSplit* _split, uchar* _ext_buf ) { int ci = data->get_var_type(vi); int n = node->sample_count; int mi = data->cat_count->data.i[ci]; int base_size = (mi+2)*sizeof(double) + (mi+1)*(sizeof(int) + sizeof(double*)); cv::AutoBuffer inn_buf(base_size); if( !_ext_buf ) inn_buf.allocate(base_size + n*(2*sizeof(int) + sizeof(float))); uchar* base_buf = (uchar*)inn_buf; uchar* ext_buf = _ext_buf ? _ext_buf : base_buf + base_size; int* labels_buf = (int*)ext_buf; const int* labels = data->get_cat_var_data(node, vi, labels_buf); float* responses_buf = (float*)(labels_buf + n); int* sample_indices_buf = (int*)(responses_buf + n); const float* responses = data->get_ord_responses(node, responses_buf, sample_indices_buf); double* sum = (double*)cv::alignPtr(base_buf,sizeof(double)) + 1; int* counts = (int*)(sum + mi) + 1; double** sum_ptr = (double**)(counts + mi); int i, L = 0, R = 0; double best_val = init_quality, lsum = 0, rsum = 0; int best_subset = -1, subset_i; for( i = -1; i < mi; i++ ) sum[i] = counts[i] = 0; // calculate sum response and weight of each category of the input var for( i = 0; i < n; i++ ) { int idx = ( (labels[i] == 65535) && data->is_buf_16u ) ? -1 : labels[i]; double s = sum[idx] + responses[i]; int nc = counts[idx] + 1; sum[idx] = s; counts[idx] = nc; } // calculate average response in each category for( i = 0; i < mi; i++ ) { R += counts[i]; rsum += sum[i]; sum[i] /= MAX(counts[i],1); sum_ptr[i] = sum + i; } icvSortDblPtr( sum_ptr, mi, 0 ); // revert back to unnormalized sums // (there should be a very little loss of accuracy) for( i = 0; i < mi; i++ ) sum[i] *= counts[i]; for( subset_i = 0; subset_i < mi-1; subset_i++ ) { int idx = (int)(sum_ptr[subset_i] - sum); int ni = counts[idx]; if( ni ) { double s = sum[idx]; lsum += s; L += ni; rsum -= s; R -= ni; if( L && R ) { double val = (lsum*lsum*R + rsum*rsum*L)/((double)L*R); if( best_val < val ) { best_val = val; best_subset = subset_i; } } } } CvDTreeSplit* split = 0; if( best_subset >= 0 ) { split = _split ? _split : data->new_split_cat( 0, -1.0f); split->var_idx = vi; split->quality = (float)best_val; memset( split->subset, 0, (data->max_c_count + 31)/32 * sizeof(int)); for( i = 0; i <= best_subset; i++ ) { int idx = (int)(sum_ptr[i] - sum); split->subset[idx >> 5] |= 1 << (idx & 31); } } return split; } CvDTreeSplit* CvDTree::find_surrogate_split_ord( CvDTreeNode* node, int vi, uchar* _ext_buf ) { const float epsilon = FLT_EPSILON*2; const char* dir = (char*)data->direction->data.ptr; int n = node->sample_count, n1 = node->get_num_valid(vi); cv::AutoBuffer inn_buf; if( !_ext_buf ) inn_buf.allocate( n*(sizeof(int)*(data->have_priors ? 3 : 2) + sizeof(float)) ); uchar* ext_buf = _ext_buf ? _ext_buf : (uchar*)inn_buf; float* values_buf = (float*)ext_buf; int* sorted_indices_buf = (int*)(values_buf + n); int* sample_indices_buf = sorted_indices_buf + n; const float* values = 0; const int* sorted_indices = 0; data->get_ord_var_data( node, vi, values_buf, sorted_indices_buf, &values, &sorted_indices, sample_indices_buf ); // LL - number of samples that both the primary and the surrogate splits send to the left // LR - ... primary split sends to the left and the surrogate split sends to the right // RL - ... primary split sends to the right and the surrogate split sends to the left // RR - ... both send to the right int i, best_i = -1, best_inversed = 0; double best_val; if( !data->have_priors ) { int LL = 0, RL = 0, LR, RR; int worst_val = cvFloor(node->maxlr), _best_val = worst_val; int sum = 0, sum_abs = 0; for( i = 0; i < n1; i++ ) { int d = dir[sorted_indices[i]]; sum += d; sum_abs += d & 1; } // sum_abs = R + L; sum = R - L RR = (sum_abs + sum) >> 1; LR = (sum_abs - sum) >> 1; // initially all the samples are sent to the right by the surrogate split, // LR of them are sent to the left by primary split, and RR - to the right. // now iteratively compute LL, LR, RL and RR for every possible surrogate split value. for( i = 0; i < n1 - 1; i++ ) { int d = dir[sorted_indices[i]]; if( d < 0 ) { LL++; LR--; if( LL + RR > _best_val && values[i] + epsilon < values[i+1] ) { best_val = LL + RR; best_i = i; best_inversed = 0; } } else if( d > 0 ) { RL++; RR--; if( RL + LR > _best_val && values[i] + epsilon < values[i+1] ) { best_val = RL + LR; best_i = i; best_inversed = 1; } } } best_val = _best_val; } else { double LL = 0, RL = 0, LR, RR; double worst_val = node->maxlr; double sum = 0, sum_abs = 0; const double* priors = data->priors_mult->data.db; int* responses_buf = sample_indices_buf + n; const int* responses = data->get_class_labels(node, responses_buf); best_val = worst_val; for( i = 0; i < n1; i++ ) { int idx = sorted_indices[i]; double w = priors[responses[idx]]; int d = dir[idx]; sum += d*w; sum_abs += (d & 1)*w; } // sum_abs = R + L; sum = R - L RR = (sum_abs + sum)*0.5; LR = (sum_abs - sum)*0.5; // initially all the samples are sent to the right by the surrogate split, // LR of them are sent to the left by primary split, and RR - to the right. // now iteratively compute LL, LR, RL and RR for every possible surrogate split value. for( i = 0; i < n1 - 1; i++ ) { int idx = sorted_indices[i]; double w = priors[responses[idx]]; int d = dir[idx]; if( d < 0 ) { LL += w; LR -= w; if( LL + RR > best_val && values[i] + epsilon < values[i+1] ) { best_val = LL + RR; best_i = i; best_inversed = 0; } } else if( d > 0 ) { RL += w; RR -= w; if( RL + LR > best_val && values[i] + epsilon < values[i+1] ) { best_val = RL + LR; best_i = i; best_inversed = 1; } } } } return best_i >= 0 && best_val > node->maxlr ? data->new_split_ord( vi, (values[best_i] + values[best_i+1])*0.5f, best_i, best_inversed, (float)best_val ) : 0; } CvDTreeSplit* CvDTree::find_surrogate_split_cat( CvDTreeNode* node, int vi, uchar* _ext_buf ) { const char* dir = (char*)data->direction->data.ptr; int n = node->sample_count; int i, mi = data->cat_count->data.i[data->get_var_type(vi)], l_win = 0; int base_size = (2*(mi+1)+1)*sizeof(double) + (!data->have_priors ? 2*(mi+1)*sizeof(int) : 0); cv::AutoBuffer inn_buf(base_size); if( !_ext_buf ) inn_buf.allocate(base_size + n*(sizeof(int) + (data->have_priors ? sizeof(int) : 0))); uchar* base_buf = (uchar*)inn_buf; uchar* ext_buf = _ext_buf ? _ext_buf : base_buf + base_size; int* labels_buf = (int*)ext_buf; const int* labels = data->get_cat_var_data(node, vi, labels_buf); // LL - number of samples that both the primary and the surrogate splits send to the left // LR - ... primary split sends to the left and the surrogate split sends to the right // RL - ... primary split sends to the right and the surrogate split sends to the left // RR - ... both send to the right CvDTreeSplit* split = data->new_split_cat( vi, 0 ); double best_val = 0; double* lc = (double*)cv::alignPtr(base_buf,sizeof(double)) + 1; double* rc = lc + mi + 1; for( i = -1; i < mi; i++ ) lc[i] = rc[i] = 0; // for each category calculate the weight of samples // sent to the left (lc) and to the right (rc) by the primary split if( !data->have_priors ) { int* _lc = (int*)rc + 1; int* _rc = _lc + mi + 1; for( i = -1; i < mi; i++ ) _lc[i] = _rc[i] = 0; for( i = 0; i < n; i++ ) { int idx = ( (labels[i] == 65535) && (data->is_buf_16u) ) ? -1 : labels[i]; int d = dir[i]; int sum = _lc[idx] + d; int sum_abs = _rc[idx] + (d & 1); _lc[idx] = sum; _rc[idx] = sum_abs; } for( i = 0; i < mi; i++ ) { int sum = _lc[i]; int sum_abs = _rc[i]; lc[i] = (sum_abs - sum) >> 1; rc[i] = (sum_abs + sum) >> 1; } } else { const double* priors = data->priors_mult->data.db; int* responses_buf = labels_buf + n; const int* responses = data->get_class_labels(node, responses_buf); for( i = 0; i < n; i++ ) { int idx = ( (labels[i] == 65535) && (data->is_buf_16u) ) ? -1 : labels[i]; double w = priors[responses[i]]; int d = dir[i]; double sum = lc[idx] + d*w; double sum_abs = rc[idx] + (d & 1)*w; lc[idx] = sum; rc[idx] = sum_abs; } for( i = 0; i < mi; i++ ) { double sum = lc[i]; double sum_abs = rc[i]; lc[i] = (sum_abs - sum) * 0.5; rc[i] = (sum_abs + sum) * 0.5; } } // 2. now form the split. // in each category send all the samples to the same direction as majority for( i = 0; i < mi; i++ ) { double lval = lc[i], rval = rc[i]; if( lval > rval ) { split->subset[i >> 5] |= 1 << (i & 31); best_val += lval; l_win++; } else best_val += rval; } split->quality = (float)best_val; if( split->quality <= node->maxlr || l_win == 0 || l_win == mi ) cvSetRemoveByPtr( data->split_heap, split ), split = 0; return split; } void CvDTree::calc_node_value( CvDTreeNode* node ) { int i, j, k, n = node->sample_count, cv_n = data->params.cv_folds; int m = data->get_num_classes(); int base_size = data->is_classifier ? m*cv_n*sizeof(int) : 2*cv_n*sizeof(double)+cv_n*sizeof(int); int ext_size = n*(sizeof(int) + (data->is_classifier ? sizeof(int) : sizeof(int)+sizeof(float))); cv::AutoBuffer inn_buf(base_size + ext_size); uchar* base_buf = (uchar*)inn_buf; uchar* ext_buf = base_buf + base_size; int* cv_labels_buf = (int*)ext_buf; const int* cv_labels = data->get_cv_labels(node, cv_labels_buf); if( data->is_classifier ) { // in case of classification tree: // * node value is the label of the class that has the largest weight in the node. // * node risk is the weighted number of misclassified samples, // * j-th cross-validation fold value and risk are calculated as above, // but using the samples with cv_labels(*)!=j. // * j-th cross-validation fold error is calculated as the weighted number of // misclassified samples with cv_labels(*)==j. // compute the number of instances of each class int* cls_count = data->counts->data.i; int* responses_buf = cv_labels_buf + n; const int* responses = data->get_class_labels(node, responses_buf); int* cv_cls_count = (int*)base_buf; double max_val = -1, total_weight = 0; int max_k = -1; double* priors = data->priors_mult->data.db; for( k = 0; k < m; k++ ) cls_count[k] = 0; if( cv_n == 0 ) { for( i = 0; i < n; i++ ) cls_count[responses[i]]++; } else { for( j = 0; j < cv_n; j++ ) for( k = 0; k < m; k++ ) cv_cls_count[j*m + k] = 0; for( i = 0; i < n; i++ ) { j = cv_labels[i]; k = responses[i]; cv_cls_count[j*m + k]++; } for( j = 0; j < cv_n; j++ ) for( k = 0; k < m; k++ ) cls_count[k] += cv_cls_count[j*m + k]; } if( data->have_priors && node->parent == 0 ) { // compute priors_mult from priors, take the sample ratio into account. double sum = 0; for( k = 0; k < m; k++ ) { int n_k = cls_count[k]; priors[k] = data->priors->data.db[k]*(n_k ? 1./n_k : 0.); sum += priors[k]; } sum = 1./sum; for( k = 0; k < m; k++ ) priors[k] *= sum; } for( k = 0; k < m; k++ ) { double val = cls_count[k]*priors[k]; total_weight += val; if( max_val < val ) { max_val = val; max_k = k; } } node->class_idx = max_k; node->value = data->cat_map->data.i[ data->cat_ofs->data.i[data->cat_var_count] + max_k]; node->node_risk = total_weight - max_val; for( j = 0; j < cv_n; j++ ) { double sum_k = 0, sum = 0, max_val_k = 0; max_val = -1; max_k = -1; for( k = 0; k < m; k++ ) { double w = priors[k]; double val_k = cv_cls_count[j*m + k]*w; double val = cls_count[k]*w - val_k; sum_k += val_k; sum += val; if( max_val < val ) { max_val = val; max_val_k = val_k; max_k = k; } } node->cv_Tn[j] = INT_MAX; node->cv_node_risk[j] = sum - max_val; node->cv_node_error[j] = sum_k - max_val_k; } } else { // in case of regression tree: // * node value is 1/n*sum_i(Y_i), where Y_i is i-th response, // n is the number of samples in the node. // * node risk is the sum of squared errors: sum_i((Y_i - )^2) // * j-th cross-validation fold value and risk are calculated as above, // but using the samples with cv_labels(*)!=j. // * j-th cross-validation fold error is calculated // using samples with cv_labels(*)==j as the test subset: // error_j = sum_(i,cv_labels(i)==j)((Y_i - )^2), // where node_value_j is the node value calculated // as described in the previous bullet, and summation is done // over the samples with cv_labels(*)==j. double sum = 0, sum2 = 0; float* values_buf = (float*)(cv_labels_buf + n); int* sample_indices_buf = (int*)(values_buf + n); const float* values = data->get_ord_responses(node, values_buf, sample_indices_buf); double *cv_sum = 0, *cv_sum2 = 0; int* cv_count = 0; if( cv_n == 0 ) { for( i = 0; i < n; i++ ) { double t = values[i]; sum += t; sum2 += t*t; } } else { cv_sum = (double*)base_buf; cv_sum2 = cv_sum + cv_n; cv_count = (int*)(cv_sum2 + cv_n); for( j = 0; j < cv_n; j++ ) { cv_sum[j] = cv_sum2[j] = 0.; cv_count[j] = 0; } for( i = 0; i < n; i++ ) { j = cv_labels[i]; double t = values[i]; double s = cv_sum[j] + t; double s2 = cv_sum2[j] + t*t; int nc = cv_count[j] + 1; cv_sum[j] = s; cv_sum2[j] = s2; cv_count[j] = nc; } for( j = 0; j < cv_n; j++ ) { sum += cv_sum[j]; sum2 += cv_sum2[j]; } } node->node_risk = sum2 - (sum/n)*sum; node->value = sum/n; for( j = 0; j < cv_n; j++ ) { double s = cv_sum[j], si = sum - s; double s2 = cv_sum2[j], s2i = sum2 - s2; int c = cv_count[j], ci = n - c; double r = si/MAX(ci,1); node->cv_node_risk[j] = s2i - r*r*ci; node->cv_node_error[j] = s2 - 2*r*s + c*r*r; node->cv_Tn[j] = INT_MAX; } } } void CvDTree::complete_node_dir( CvDTreeNode* node ) { int vi, i, n = node->sample_count, nl, nr, d0 = 0, d1 = -1; int nz = n - node->get_num_valid(node->split->var_idx); char* dir = (char*)data->direction->data.ptr; // try to complete direction using surrogate splits if( nz && data->params.use_surrogates ) { cv::AutoBuffer inn_buf(n*(2*sizeof(int)+sizeof(float))); CvDTreeSplit* split = node->split->next; for( ; split != 0 && nz; split = split->next ) { int inversed_mask = split->inversed ? -1 : 0; vi = split->var_idx; if( data->get_var_type(vi) >= 0 ) // split on categorical var { int* labels_buf = (int*)(uchar*)inn_buf; const int* labels = data->get_cat_var_data(node, vi, labels_buf); const int* subset = split->subset; for( i = 0; i < n; i++ ) { int idx = labels[i]; if( !dir[i] && ( ((idx >= 0)&&(!data->is_buf_16u)) || ((idx != 65535)&&(data->is_buf_16u)) )) { int d = CV_DTREE_CAT_DIR(idx,subset); dir[i] = (char)((d ^ inversed_mask) - inversed_mask); if( --nz ) break; } } } else // split on ordered var { float* values_buf = (float*)(uchar*)inn_buf; int* sorted_indices_buf = (int*)(values_buf + n); int* sample_indices_buf = sorted_indices_buf + n; const float* values = 0; const int* sorted_indices = 0; data->get_ord_var_data( node, vi, values_buf, sorted_indices_buf, &values, &sorted_indices, sample_indices_buf ); int split_point = split->ord.split_point; int n1 = node->get_num_valid(vi); assert( 0 <= split_point && split_point < n-1 ); for( i = 0; i < n1; i++ ) { int idx = sorted_indices[i]; if( !dir[idx] ) { int d = i <= split_point ? -1 : 1; dir[idx] = (char)((d ^ inversed_mask) - inversed_mask); if( --nz ) break; } } } } } // find the default direction for the rest if( nz ) { for( i = nr = 0; i < n; i++ ) nr += dir[i] > 0; nl = n - nr - nz; d0 = nl > nr ? -1 : nr > nl; } // make sure that every sample is directed either to the left or to the right for( i = 0; i < n; i++ ) { int d = dir[i]; if( !d ) { d = d0; if( !d ) d = d1, d1 = -d1; } d = d > 0; dir[i] = (char)d; // remap (-1,1) to (0,1) } } void CvDTree::split_node_data( CvDTreeNode* node ) { int vi, i, n = node->sample_count, nl, nr, scount = data->sample_count; char* dir = (char*)data->direction->data.ptr; CvDTreeNode *left = 0, *right = 0; int* new_idx = data->split_buf->data.i; int new_buf_idx = data->get_child_buf_idx( node ); int work_var_count = data->get_work_var_count(); CvMat* buf = data->buf; cv::AutoBuffer inn_buf(n*(3*sizeof(int) + sizeof(float))); int* temp_buf = (int*)(uchar*)inn_buf; complete_node_dir(node); for( i = nl = nr = 0; i < n; i++ ) { int d = dir[i]; // initialize new indices for splitting ordered variables new_idx[i] = (nl & (d-1)) | (nr & -d); // d ? ri : li nr += d; nl += d^1; } bool split_input_data; node->left = left = data->new_node( node, nl, new_buf_idx, node->offset ); node->right = right = data->new_node( node, nr, new_buf_idx, node->offset + nl ); split_input_data = node->depth + 1 < data->params.max_depth && (node->left->sample_count > data->params.min_sample_count || node->right->sample_count > data->params.min_sample_count); // split ordered variables, keep both halves sorted. for( vi = 0; vi < data->var_count; vi++ ) { int ci = data->get_var_type(vi); if( ci >= 0 || !split_input_data ) continue; int n1 = node->get_num_valid(vi); float* src_val_buf = (float*)(uchar*)(temp_buf + n); int* src_sorted_idx_buf = (int*)(src_val_buf + n); int* src_sample_idx_buf = src_sorted_idx_buf + n; const float* src_val = 0; const int* src_sorted_idx = 0; data->get_ord_var_data(node, vi, src_val_buf, src_sorted_idx_buf, &src_val, &src_sorted_idx, src_sample_idx_buf); for(i = 0; i < n; i++) temp_buf[i] = src_sorted_idx[i]; if (data->is_buf_16u) { unsigned short *ldst, *rdst, *ldst0, *rdst0; //unsigned short tl, tr; ldst0 = ldst = (unsigned short*)(buf->data.s + left->buf_idx*buf->cols + vi*scount + left->offset); rdst0 = rdst = (unsigned short*)(ldst + nl); // split sorted for( i = 0; i < n1; i++ ) { int idx = temp_buf[i]; int d = dir[idx]; idx = new_idx[idx]; if (d) { *rdst = (unsigned short)idx; rdst++; } else { *ldst = (unsigned short)idx; ldst++; } } left->set_num_valid(vi, (int)(ldst - ldst0)); right->set_num_valid(vi, (int)(rdst - rdst0)); // split missing for( ; i < n; i++ ) { int idx = temp_buf[i]; int d = dir[idx]; idx = new_idx[idx]; if (d) { *rdst = (unsigned short)idx; rdst++; } else { *ldst = (unsigned short)idx; ldst++; } } } else { int *ldst0, *ldst, *rdst0, *rdst; ldst0 = ldst = buf->data.i + left->buf_idx*buf->cols + vi*scount + left->offset; rdst0 = rdst = buf->data.i + right->buf_idx*buf->cols + vi*scount + right->offset; // split sorted for( i = 0; i < n1; i++ ) { int idx = temp_buf[i]; int d = dir[idx]; idx = new_idx[idx]; if (d) { *rdst = idx; rdst++; } else { *ldst = idx; ldst++; } } left->set_num_valid(vi, (int)(ldst - ldst0)); right->set_num_valid(vi, (int)(rdst - rdst0)); // split missing for( ; i < n; i++ ) { int idx = temp_buf[i]; int d = dir[idx]; idx = new_idx[idx]; if (d) { *rdst = idx; rdst++; } else { *ldst = idx; ldst++; } } } } // split categorical vars, responses and cv_labels using new_idx relocation table for( vi = 0; vi < work_var_count; vi++ ) { int ci = data->get_var_type(vi); int n1 = node->get_num_valid(vi), nr1 = 0; if( ci < 0 || (vi < data->var_count && !split_input_data) ) continue; int *src_lbls_buf = temp_buf + n; const int* src_lbls = data->get_cat_var_data(node, vi, src_lbls_buf); for(i = 0; i < n; i++) temp_buf[i] = src_lbls[i]; if (data->is_buf_16u) { unsigned short *ldst = (unsigned short *)(buf->data.s + left->buf_idx*buf->cols + vi*scount + left->offset); unsigned short *rdst = (unsigned short *)(buf->data.s + right->buf_idx*buf->cols + vi*scount + right->offset); for( i = 0; i < n; i++ ) { int d = dir[i]; int idx = temp_buf[i]; if (d) { *rdst = (unsigned short)idx; rdst++; nr1 += (idx != 65535 )&d; } else { *ldst = (unsigned short)idx; ldst++; } } if( vi < data->var_count ) { left->set_num_valid(vi, n1 - nr1); right->set_num_valid(vi, nr1); } } else { int *ldst = buf->data.i + left->buf_idx*buf->cols + vi*scount + left->offset; int *rdst = buf->data.i + right->buf_idx*buf->cols + vi*scount + right->offset; for( i = 0; i < n; i++ ) { int d = dir[i]; int idx = temp_buf[i]; if (d) { *rdst = idx; rdst++; nr1 += (idx >= 0)&d; } else { *ldst = idx; ldst++; } } if( vi < data->var_count ) { left->set_num_valid(vi, n1 - nr1); right->set_num_valid(vi, nr1); } } } // split sample indices int *sample_idx_src_buf = temp_buf + n; const int* sample_idx_src = data->get_sample_indices(node, sample_idx_src_buf); for(i = 0; i < n; i++) temp_buf[i] = sample_idx_src[i]; int pos = data->get_work_var_count(); if (data->is_buf_16u) { unsigned short* ldst = (unsigned short*)(buf->data.s + left->buf_idx*buf->cols + pos*scount + left->offset); unsigned short* rdst = (unsigned short*)(buf->data.s + right->buf_idx*buf->cols + pos*scount + right->offset); for (i = 0; i < n; i++) { int d = dir[i]; unsigned short idx = (unsigned short)temp_buf[i]; if (d) { *rdst = idx; rdst++; } else { *ldst = idx; ldst++; } } } else { int* ldst = buf->data.i + left->buf_idx*buf->cols + pos*scount + left->offset; int* rdst = buf->data.i + right->buf_idx*buf->cols + pos*scount + right->offset; for (i = 0; i < n; i++) { int d = dir[i]; int idx = temp_buf[i]; if (d) { *rdst = idx; rdst++; } else { *ldst = idx; ldst++; } } } // deallocate the parent node data that is not needed anymore data->free_node_data(node); } float CvDTree::calc_error( CvMLData* _data, int type, vector *resp ) { float err = 0; const CvMat* values = _data->get_values(); const CvMat* response = _data->get_responses(); const CvMat* missing = _data->get_missing(); const CvMat* sample_idx = (type == CV_TEST_ERROR) ? _data->get_test_sample_idx() : _data->get_train_sample_idx(); const CvMat* var_types = _data->get_var_types(); int* sidx = sample_idx ? sample_idx->data.i : 0; int r_step = CV_IS_MAT_CONT(response->type) ? 1 : response->step / CV_ELEM_SIZE(response->type); bool is_classifier = var_types->data.ptr[var_types->cols-1] == CV_VAR_CATEGORICAL; int sample_count = sample_idx ? sample_idx->cols : 0; sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ? values->rows : sample_count; float* pred_resp = 0; if( resp && (sample_count > 0) ) { resp->resize( sample_count ); pred_resp = &((*resp)[0]); } if ( is_classifier ) { for( int i = 0; i < sample_count; i++ ) { CvMat sample, miss; int si = sidx ? sidx[i] : i; cvGetRow( values, &sample, si ); if( missing ) cvGetRow( missing, &miss, si ); float r = (float)predict( &sample, missing ? &miss : 0 )->value; if( pred_resp ) pred_resp[i] = r; int d = fabs((double)r - response->data.fl[si*r_step]) <= FLT_EPSILON ? 0 : 1; err += d; } err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX; } else { for( int i = 0; i < sample_count; i++ ) { CvMat sample, miss; int si = sidx ? sidx[i] : i; cvGetRow( values, &sample, si ); if( missing ) cvGetRow( missing, &miss, si ); float r = (float)predict( &sample, missing ? &miss : 0 )->value; if( pred_resp ) pred_resp[i] = r; float d = r - response->data.fl[si*r_step]; err += d*d; } err = sample_count ? err / (float)sample_count : -FLT_MAX; } return err; } void CvDTree::prune_cv() { CvMat* ab = 0; CvMat* temp = 0; CvMat* err_jk = 0; // 1. build tree sequence for each cv fold, calculate error_{Tj,beta_k}. // 2. choose the best tree index (if need, apply 1SE rule). // 3. store the best index and cut the branches. CV_FUNCNAME( "CvDTree::prune_cv" ); __BEGIN__; int ti, j, tree_count = 0, cv_n = data->params.cv_folds, n = root->sample_count; // currently, 1SE for regression is not implemented bool use_1se = data->params.use_1se_rule != 0 && data->is_classifier; double* err; double min_err = 0, min_err_se = 0; int min_idx = -1; CV_CALL( ab = cvCreateMat( 1, 256, CV_64F )); // build the main tree sequence, calculate alpha's for(;;tree_count++) { double min_alpha = update_tree_rnc(tree_count, -1); if( cut_tree(tree_count, -1, min_alpha) ) break; if( ab->cols <= tree_count ) { CV_CALL( temp = cvCreateMat( 1, ab->cols*3/2, CV_64F )); for( ti = 0; ti < ab->cols; ti++ ) temp->data.db[ti] = ab->data.db[ti]; cvReleaseMat( &ab ); ab = temp; temp = 0; } ab->data.db[tree_count] = min_alpha; } ab->data.db[0] = 0.; if( tree_count > 0 ) { for( ti = 1; ti < tree_count-1; ti++ ) ab->data.db[ti] = sqrt(ab->data.db[ti]*ab->data.db[ti+1]); ab->data.db[tree_count-1] = DBL_MAX*0.5; CV_CALL( err_jk = cvCreateMat( cv_n, tree_count, CV_64F )); err = err_jk->data.db; for( j = 0; j < cv_n; j++ ) { int tj = 0, tk = 0; for( ; tk < tree_count; tj++ ) { double min_alpha = update_tree_rnc(tj, j); if( cut_tree(tj, j, min_alpha) ) min_alpha = DBL_MAX; for( ; tk < tree_count; tk++ ) { if( ab->data.db[tk] > min_alpha ) break; err[j*tree_count + tk] = root->tree_error; } } } for( ti = 0; ti < tree_count; ti++ ) { double sum_err = 0; for( j = 0; j < cv_n; j++ ) sum_err += err[j*tree_count + ti]; if( ti == 0 || sum_err < min_err ) { min_err = sum_err; min_idx = ti; if( use_1se ) min_err_se = sqrt( sum_err*(n - sum_err) ); } else if( sum_err < min_err + min_err_se ) min_idx = ti; } } pruned_tree_idx = min_idx; free_prune_data(data->params.truncate_pruned_tree != 0); __END__; cvReleaseMat( &err_jk ); cvReleaseMat( &ab ); cvReleaseMat( &temp ); } double CvDTree::update_tree_rnc( int T, int fold ) { CvDTreeNode* node = root; double min_alpha = DBL_MAX; for(;;) { CvDTreeNode* parent; for(;;) { int t = fold >= 0 ? node->cv_Tn[fold] : node->Tn; if( t <= T || !node->left ) { node->complexity = 1; node->tree_risk = node->node_risk; node->tree_error = 0.; if( fold >= 0 ) { node->tree_risk = node->cv_node_risk[fold]; node->tree_error = node->cv_node_error[fold]; } break; } node = node->left; } for( parent = node->parent; parent && parent->right == node; node = parent, parent = parent->parent ) { parent->complexity += node->complexity; parent->tree_risk += node->tree_risk; parent->tree_error += node->tree_error; parent->alpha = ((fold >= 0 ? parent->cv_node_risk[fold] : parent->node_risk) - parent->tree_risk)/(parent->complexity - 1); min_alpha = MIN( min_alpha, parent->alpha ); } if( !parent ) break; parent->complexity = node->complexity; parent->tree_risk = node->tree_risk; parent->tree_error = node->tree_error; node = parent->right; } return min_alpha; } int CvDTree::cut_tree( int T, int fold, double min_alpha ) { CvDTreeNode* node = root; if( !node->left ) return 1; for(;;) { CvDTreeNode* parent; for(;;) { int t = fold >= 0 ? node->cv_Tn[fold] : node->Tn; if( t <= T || !node->left ) break; if( node->alpha <= min_alpha + FLT_EPSILON ) { if( fold >= 0 ) node->cv_Tn[fold] = T; else node->Tn = T; if( node == root ) return 1; break; } node = node->left; } for( parent = node->parent; parent && parent->right == node; node = parent, parent = parent->parent ) ; if( !parent ) break; node = parent->right; } return 0; } void CvDTree::free_prune_data(bool cut_tree) { CvDTreeNode* node = root; for(;;) { CvDTreeNode* parent; for(;;) { // do not call cvSetRemoveByPtr( cv_heap, node->cv_Tn ) // as we will clear the whole cross-validation heap at the end node->cv_Tn = 0; node->cv_node_error = node->cv_node_risk = 0; if( !node->left ) break; node = node->left; } for( parent = node->parent; parent && parent->right == node; node = parent, parent = parent->parent ) { if( cut_tree && parent->Tn <= pruned_tree_idx ) { data->free_node( parent->left ); data->free_node( parent->right ); parent->left = parent->right = 0; } } if( !parent ) break; node = parent->right; } if( data->cv_heap ) cvClearSet( data->cv_heap ); } void CvDTree::free_tree() { if( root && data && data->shared ) { pruned_tree_idx = INT_MIN; free_prune_data(true); data->free_node(root); root = 0; } } CvDTreeNode* CvDTree::predict( const CvMat* _sample, const CvMat* _missing, bool preprocessed_input ) const { CvDTreeNode* result = 0; int* catbuf = 0; CV_FUNCNAME( "CvDTree::predict" ); __BEGIN__; int i, step, mstep = 0; const float* sample; const uchar* m = 0; CvDTreeNode* node = root; const int* vtype; const int* vidx; const int* cmap; const int* cofs; if( !node ) CV_ERROR( CV_StsError, "The tree has not been trained yet" ); if( !CV_IS_MAT(_sample) || CV_MAT_TYPE(_sample->type) != CV_32FC1 || (_sample->cols != 1 && _sample->rows != 1) || (_sample->cols + _sample->rows - 1 != data->var_all && !preprocessed_input) || (_sample->cols + _sample->rows - 1 != data->var_count && preprocessed_input) ) CV_ERROR( CV_StsBadArg, "the input sample must be 1d floating-point vector with the same " "number of elements as the total number of variables used for training" ); sample = _sample->data.fl; step = CV_IS_MAT_CONT(_sample->type) ? 1 : _sample->step/sizeof(sample[0]); if( data->cat_count && !preprocessed_input ) // cache for categorical variables { int n = data->cat_count->cols; catbuf = (int*)cvStackAlloc(n*sizeof(catbuf[0])); for( i = 0; i < n; i++ ) catbuf[i] = -1; } if( _missing ) { if( !CV_IS_MAT(_missing) || !CV_IS_MASK_ARR(_missing) || !CV_ARE_SIZES_EQ(_missing, _sample) ) CV_ERROR( CV_StsBadArg, "the missing data mask must be 8-bit vector of the same size as input sample" ); m = _missing->data.ptr; mstep = CV_IS_MAT_CONT(_missing->type) ? 1 : _missing->step/sizeof(m[0]); } vtype = data->var_type->data.i; vidx = data->var_idx && !preprocessed_input ? data->var_idx->data.i : 0; cmap = data->cat_map ? data->cat_map->data.i : 0; cofs = data->cat_ofs ? data->cat_ofs->data.i : 0; while( node->Tn > pruned_tree_idx && node->left ) { CvDTreeSplit* split = node->split; int dir = 0; for( ; !dir && split != 0; split = split->next ) { int vi = split->var_idx; int ci = vtype[vi]; i = vidx ? vidx[vi] : vi; float val = sample[i*step]; if( m && m[i*mstep] ) continue; if( ci < 0 ) // ordered dir = val <= split->ord.c ? -1 : 1; else // categorical { int c; if( preprocessed_input ) c = cvRound(val); else { c = catbuf[ci]; if( c < 0 ) { int a = c = cofs[ci]; int b = (ci+1 >= data->cat_ofs->cols) ? data->cat_map->cols : cofs[ci+1]; int ival = cvRound(val); if( ival != val ) CV_ERROR( CV_StsBadArg, "one of input categorical variable is not an integer" ); int sh = 0; while( a < b ) { sh++; c = (a + b) >> 1; if( ival < cmap[c] ) b = c; else if( ival > cmap[c] ) a = c+1; else break; } if( c < 0 || ival != cmap[c] ) continue; catbuf[ci] = c -= cofs[ci]; } } c = ( (c == 65535) && data->is_buf_16u ) ? -1 : c; dir = CV_DTREE_CAT_DIR(c, split->subset); } if( split->inversed ) dir = -dir; } if( !dir ) { double diff = node->right->sample_count - node->left->sample_count; dir = diff < 0 ? -1 : 1; } node = dir < 0 ? node->left : node->right; } result = node; __END__; return result; } CvDTreeNode* CvDTree::predict( const Mat& _sample, const Mat& _missing, bool preprocessed_input ) const { CvMat sample = _sample, mmask = _missing; return predict(&sample, mmask.data.ptr ? &mmask : 0, preprocessed_input); } const CvMat* CvDTree::get_var_importance() { if( !var_importance ) { CvDTreeNode* node = root; double* importance; if( !node ) return 0; var_importance = cvCreateMat( 1, data->var_count, CV_64F ); cvZero( var_importance ); importance = var_importance->data.db; for(;;) { CvDTreeNode* parent; for( ;; node = node->left ) { CvDTreeSplit* split = node->split; if( !node->left || node->Tn <= pruned_tree_idx ) break; for( ; split != 0; split = split->next ) importance[split->var_idx] += split->quality; } for( parent = node->parent; parent && parent->right == node; node = parent, parent = parent->parent ) ; if( !parent ) break; node = parent->right; } cvNormalize( var_importance, var_importance, 1., 0, CV_L1 ); } return var_importance; } void CvDTree::write_split( CvFileStorage* fs, CvDTreeSplit* split ) const { int ci; cvStartWriteStruct( fs, 0, CV_NODE_MAP + CV_NODE_FLOW ); cvWriteInt( fs, "var", split->var_idx ); cvWriteReal( fs, "quality", split->quality ); ci = data->get_var_type(split->var_idx); if( ci >= 0 ) // split on a categorical var { int i, n = data->cat_count->data.i[ci], to_right = 0, default_dir; for( i = 0; i < n; i++ ) to_right += CV_DTREE_CAT_DIR(i,split->subset) > 0; // ad-hoc rule when to use inverse categorical split notation // to achieve more compact and clear representation default_dir = to_right <= 1 || to_right <= MIN(3, n/2) || to_right <= n/3 ? -1 : 1; cvStartWriteStruct( fs, default_dir*(split->inversed ? -1 : 1) > 0 ? "in" : "not_in", CV_NODE_SEQ+CV_NODE_FLOW ); for( i = 0; i < n; i++ ) { int dir = CV_DTREE_CAT_DIR(i,split->subset); if( dir*default_dir < 0 ) cvWriteInt( fs, 0, i ); } cvEndWriteStruct( fs ); } else cvWriteReal( fs, !split->inversed ? "le" : "gt", split->ord.c ); cvEndWriteStruct( fs ); } void CvDTree::write_node( CvFileStorage* fs, CvDTreeNode* node ) const { CvDTreeSplit* split; cvStartWriteStruct( fs, 0, CV_NODE_MAP ); cvWriteInt( fs, "depth", node->depth ); cvWriteInt( fs, "sample_count", node->sample_count ); cvWriteReal( fs, "value", node->value ); if( data->is_classifier ) cvWriteInt( fs, "norm_class_idx", node->class_idx ); cvWriteInt( fs, "Tn", node->Tn ); cvWriteInt( fs, "complexity", node->complexity ); cvWriteReal( fs, "alpha", node->alpha ); cvWriteReal( fs, "node_risk", node->node_risk ); cvWriteReal( fs, "tree_risk", node->tree_risk ); cvWriteReal( fs, "tree_error", node->tree_error ); if( node->left ) { cvStartWriteStruct( fs, "splits", CV_NODE_SEQ ); for( split = node->split; split != 0; split = split->next ) write_split( fs, split ); cvEndWriteStruct( fs ); } cvEndWriteStruct( fs ); } void CvDTree::write_tree_nodes( CvFileStorage* fs ) const { //CV_FUNCNAME( "CvDTree::write_tree_nodes" ); __BEGIN__; CvDTreeNode* node = root; // traverse the tree and save all the nodes in depth-first order for(;;) { CvDTreeNode* parent; for(;;) { write_node( fs, node ); if( !node->left ) break; node = node->left; } for( parent = node->parent; parent && parent->right == node; node = parent, parent = parent->parent ) ; if( !parent ) break; node = parent->right; } __END__; } void CvDTree::write( CvFileStorage* fs, const char* name ) const { //CV_FUNCNAME( "CvDTree::write" ); __BEGIN__; cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_ML_TREE ); //get_var_importance(); data->write_params( fs ); //if( var_importance ) //cvWrite( fs, "var_importance", var_importance ); write( fs ); cvEndWriteStruct( fs ); __END__; } void CvDTree::write( CvFileStorage* fs ) const { //CV_FUNCNAME( "CvDTree::write" ); __BEGIN__; cvWriteInt( fs, "best_tree_idx", pruned_tree_idx ); cvStartWriteStruct( fs, "nodes", CV_NODE_SEQ ); write_tree_nodes( fs ); cvEndWriteStruct( fs ); __END__; } CvDTreeSplit* CvDTree::read_split( CvFileStorage* fs, CvFileNode* fnode ) { CvDTreeSplit* split = 0; CV_FUNCNAME( "CvDTree::read_split" ); __BEGIN__; int vi, ci; if( !fnode || CV_NODE_TYPE(fnode->tag) != CV_NODE_MAP ) CV_ERROR( CV_StsParseError, "some of the splits are not stored properly" ); vi = cvReadIntByName( fs, fnode, "var", -1 ); if( (unsigned)vi >= (unsigned)data->var_count ) CV_ERROR( CV_StsOutOfRange, "Split variable index is out of range" ); ci = data->get_var_type(vi); if( ci >= 0 ) // split on categorical var { int i, n = data->cat_count->data.i[ci], inversed = 0, val; CvSeqReader reader; CvFileNode* inseq; split = data->new_split_cat( vi, 0 ); inseq = cvGetFileNodeByName( fs, fnode, "in" ); if( !inseq ) { inseq = cvGetFileNodeByName( fs, fnode, "not_in" ); inversed = 1; } if( !inseq || (CV_NODE_TYPE(inseq->tag) != CV_NODE_SEQ && CV_NODE_TYPE(inseq->tag) != CV_NODE_INT)) CV_ERROR( CV_StsParseError, "Either 'in' or 'not_in' tags should be inside a categorical split data" ); if( CV_NODE_TYPE(inseq->tag) == CV_NODE_INT ) { val = inseq->data.i; if( (unsigned)val >= (unsigned)n ) CV_ERROR( CV_StsOutOfRange, "some of in/not_in elements are out of range" ); split->subset[val >> 5] |= 1 << (val & 31); } else { cvStartReadSeq( inseq->data.seq, &reader ); for( i = 0; i < reader.seq->total; i++ ) { CvFileNode* inode = (CvFileNode*)reader.ptr; val = inode->data.i; if( CV_NODE_TYPE(inode->tag) != CV_NODE_INT || (unsigned)val >= (unsigned)n ) CV_ERROR( CV_StsOutOfRange, "some of in/not_in elements are out of range" ); split->subset[val >> 5] |= 1 << (val & 31); CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); } } // for categorical splits we do not use inversed splits, // instead we inverse the variable set in the split if( inversed ) for( i = 0; i < (n + 31) >> 5; i++ ) split->subset[i] ^= -1; } else { CvFileNode* cmp_node; split = data->new_split_ord( vi, 0, 0, 0, 0 ); cmp_node = cvGetFileNodeByName( fs, fnode, "le" ); if( !cmp_node ) { cmp_node = cvGetFileNodeByName( fs, fnode, "gt" ); split->inversed = 1; } split->ord.c = (float)cvReadReal( cmp_node ); } split->quality = (float)cvReadRealByName( fs, fnode, "quality" ); __END__; return split; } CvDTreeNode* CvDTree::read_node( CvFileStorage* fs, CvFileNode* fnode, CvDTreeNode* parent ) { CvDTreeNode* node = 0; CV_FUNCNAME( "CvDTree::read_node" ); __BEGIN__; CvFileNode* splits; int i, depth; if( !fnode || CV_NODE_TYPE(fnode->tag) != CV_NODE_MAP ) CV_ERROR( CV_StsParseError, "some of the tree elements are not stored properly" ); CV_CALL( node = data->new_node( parent, 0, 0, 0 )); depth = cvReadIntByName( fs, fnode, "depth", -1 ); if( depth != node->depth ) CV_ERROR( CV_StsParseError, "incorrect node depth" ); node->sample_count = cvReadIntByName( fs, fnode, "sample_count" ); node->value = cvReadRealByName( fs, fnode, "value" ); if( data->is_classifier ) node->class_idx = cvReadIntByName( fs, fnode, "norm_class_idx" ); node->Tn = cvReadIntByName( fs, fnode, "Tn" ); node->complexity = cvReadIntByName( fs, fnode, "complexity" ); node->alpha = cvReadRealByName( fs, fnode, "alpha" ); node->node_risk = cvReadRealByName( fs, fnode, "node_risk" ); node->tree_risk = cvReadRealByName( fs, fnode, "tree_risk" ); node->tree_error = cvReadRealByName( fs, fnode, "tree_error" ); splits = cvGetFileNodeByName( fs, fnode, "splits" ); if( splits ) { CvSeqReader reader; CvDTreeSplit* last_split = 0; if( CV_NODE_TYPE(splits->tag) != CV_NODE_SEQ ) CV_ERROR( CV_StsParseError, "splits tag must stored as a sequence" ); cvStartReadSeq( splits->data.seq, &reader ); for( i = 0; i < reader.seq->total; i++ ) { CvDTreeSplit* split; CV_CALL( split = read_split( fs, (CvFileNode*)reader.ptr )); if( !last_split ) node->split = last_split = split; else last_split = last_split->next = split; CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); } } __END__; return node; } void CvDTree::read_tree_nodes( CvFileStorage* fs, CvFileNode* fnode ) { CV_FUNCNAME( "CvDTree::read_tree_nodes" ); __BEGIN__; CvSeqReader reader; CvDTreeNode _root; CvDTreeNode* parent = &_root; int i; parent->left = parent->right = parent->parent = 0; cvStartReadSeq( fnode->data.seq, &reader ); for( i = 0; i < reader.seq->total; i++ ) { CvDTreeNode* node; CV_CALL( node = read_node( fs, (CvFileNode*)reader.ptr, parent != &_root ? parent : 0 )); if( !parent->left ) parent->left = node; else parent->right = node; if( node->split ) parent = node; else { while( parent && parent->right ) parent = parent->parent; } CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); } root = _root.left; __END__; } void CvDTree::read( CvFileStorage* fs, CvFileNode* fnode ) { CvDTreeTrainData* _data = new CvDTreeTrainData(); _data->read_params( fs, fnode ); read( fs, fnode, _data ); get_var_importance(); } // a special entry point for reading weak decision trees from the tree ensembles void CvDTree::read( CvFileStorage* fs, CvFileNode* node, CvDTreeTrainData* _data ) { CV_FUNCNAME( "CvDTree::read" ); __BEGIN__; CvFileNode* tree_nodes; clear(); data = _data; tree_nodes = cvGetFileNodeByName( fs, node, "nodes" ); if( !tree_nodes || CV_NODE_TYPE(tree_nodes->tag) != CV_NODE_SEQ ) CV_ERROR( CV_StsParseError, "nodes tag is missing" ); pruned_tree_idx = cvReadIntByName( fs, node, "best_tree_idx", -1 ); read_tree_nodes( fs, tree_nodes ); __END__; } Mat CvDTree::getVarImportance() { return Mat(get_var_importance()); } /* End of file. */