/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "layers_common.hpp" #include #include #include "opencl_kernels_dnn.hpp" namespace cv { namespace dnn { class PermuteLayerImpl : public PermuteLayer { public: void checkCurrentOrder(int currentOrder) { if(currentOrder < 0 || currentOrder > 3) { CV_Error( Error::StsBadArg, "Orders of dimensions in Permute layer parameter" "must be in [0...3] interval"); } if(std::find(_order.begin(), _order.end(), currentOrder) != _order.end()) { CV_Error(Error::StsBadArg, "Permute layer parameter contains duplicated orders."); } } void checkNeedForPermutation() { _needsPermute = false; for (size_t i = 0; i < _numAxes; ++i) { if (_order[i] != i) { _needsPermute = true; break; } } } PermuteLayerImpl(const LayerParams ¶ms) : _count(0), _needsPermute(false), _numAxes(0) { if (!params.has("order")) { return; } DictValue paramOrder = params.get("order"); if(paramOrder.size() > 4) { CV_Error( Error::StsBadArg, "Too many (> 4) orders of dimensions in Permute layer"); } _numAxes = paramOrder.size(); for (size_t i = 0; i < _numAxes; i++) { int currentOrder = paramOrder.get(i); checkCurrentOrder(currentOrder); _order.push_back(currentOrder); } setParamsFrom(params); checkNeedForPermutation(); } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const { if(!_needsPermute) { Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals); return true; } CV_Assert(inputs.size() > 0); CV_Assert((int)_numAxes == inputs[0].size()); MatShape shapeBefore = inputs[0], shapeAfter; for (size_t i = 0; i < _numAxes; i++) { shapeAfter.push_back(shapeBefore[_order[i]]); } outputs.clear(); for (size_t i = 0; i < inputs.size(); i++) { CV_Assert(inputs[i].size() == 4); CV_Assert(inputs[i][2] == shapeBefore[2] && inputs[i][3] == shapeBefore[3]); CV_Assert(total(inputs[i]) == total(shapeAfter)); outputs.push_back(shapeAfter); } return false; } void computeStrides(const MatShape &shapeBefore, const MatShape &shapeAfter) { _oldStride.resize(_numAxes); _newStride.resize(_numAxes); _oldStride[_numAxes - 1] = 1; _newStride[_numAxes - 1] = 1; for(int i = _numAxes - 2; i >= 0; i--) { _oldStride[i] = _oldStride[i + 1] * shapeBefore[i + 1]; _newStride[i] = _newStride[i + 1] * shapeAfter[i + 1]; } _count = _oldStride[0] * shapeBefore[0]; } void finalize(const std::vector &inputs, std::vector &outputs) { if(!_needsPermute) { return; } CV_Assert(inputs.size() > 0); const Mat& inp0 = *inputs[0]; CV_Assert((int)_numAxes == inp0.dims); computeStrides(shape(*inputs[0]), shape(outputs[0])); #ifdef HAVE_OPENCL if (uorder.empty()) { std::vector orderVec(_order.begin(), _order.end());; Mat morder(1, orderVec.size(), CV_32SC1, &orderVec[0]); std::vector oldStrideVec(_oldStride.begin(), _oldStride.end()); Mat mold_stride(1, _oldStride.size(), CV_32SC1, &oldStrideVec[0]); std::vector newStrideVec(_newStride.begin(), _newStride.end()); Mat mnew_stride(1, newStrideVec.size(), CV_32SC1, &newStrideVec[0]); morder.copyTo(uorder); mold_stride.copyTo(uold_stride); mnew_stride.copyTo(unew_stride); } #endif } class PermuteInvoker : public ParallelLoopBody { public: const Mat* inp; Mat* out; const std::vector* order; int nstripes; static void run(const Mat& inp, Mat& out, const std::vector& order, int nstripes) { PermuteInvoker p; p.inp = &inp; p.out = &out; p.order = ℴ p.nstripes = nstripes; CV_Assert( out.size[0] == inp.size[order[0]] && out.size[1] == inp.size[order[1]] && out.size[2] == inp.size[order[2]] && out.size[3] == inp.size[order[3]]); parallel_for_(Range(0, nstripes), p, nstripes); } PermuteInvoker() : inp(0), out(0), order(0), nstripes(0) {} void operator()(const Range& r) const { int n0 = out->size[0], n1 = out->size[1], n2 = out->size[2], n3 = out->size[3]; size_t orows = (size_t)n0*n1*n2; size_t stripeSize = (orows + nstripes - 1)/nstripes; size_t stripeStart = r.start*stripeSize; size_t stripeEnd = std::min(r.end*stripeSize, orows); const size_t esz = sizeof(float); size_t ostep0 = out->step[0]/esz, ostep1 = out->step[1]/esz, ostep2 = out->step[2]/esz; const size_t* ord = &order->at(0); size_t istep0 = inp->step[ord[0]]/esz, istep1 = inp->step[ord[1]]/esz, istep2 = inp->step[ord[2]]/esz, istep3 = inp->step[ord[3]]/esz; size_t val = stripeStart; int i2 = (int)(val % n2); val /= n2; int i1 = (int)(val % n1); int i0 = (int)(val / n1); const float* inptr_orig = inp->ptr(); float* outptr_orig = out->ptr(); for( size_t ofs = stripeStart; ofs < stripeEnd; ofs++ ) { const float* inptr = inptr_orig + i0*istep0 + i1*istep1 + i2*istep2; float* outptr = outptr_orig + i0*ostep0 + i1*ostep1 + i2*ostep2; for( int i3 = 0; i3 < n3; i3++ ) outptr[i3] = inptr[i3*istep3]; if( ++i2 >= n2 ) { i2 = 0; if( ++i1 >= n1 ) { i1 = 0; if( ++i0 >= n0 ) break; } } } } }; #ifdef HAVE_OPENCL bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals) { std::vector inputs; std::vector outputs; inps.getUMatVector(inputs); outs.getUMatVector(outputs); if (!_needsPermute) return false; for (size_t i = 0; i < inputs.size(); i++) { ocl::Kernel kernel("permute", ocl::dnn::permute_oclsrc); kernel.set(0, (int)_count); kernel.set(1, ocl::KernelArg::PtrReadOnly(inputs[i])); kernel.set(2, ocl::KernelArg::PtrReadOnly(uorder)); kernel.set(3, ocl::KernelArg::PtrReadOnly(uold_stride)); kernel.set(4, ocl::KernelArg::PtrReadOnly(unew_stride)); kernel.set(5, (int)_numAxes); kernel.set(6, ocl::KernelArg::PtrWriteOnly(outputs[i])); if (!kernel.run(1, &_count, NULL, false)) return false; } return true; } #endif void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) && OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()), forward_ocl(inputs_arr, outputs_arr, internals_arr)) Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); } void forward(std::vector &inputs, std::vector &outputs, std::vector &internals) { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); size_t k, ninputs = inputs.size(); if(!_needsPermute) { for (k = 0; k < ninputs; k++) { CV_Assert(outputs[k].total() == inputs[k]->total()); if (outputs[k].data != inputs[k]->data) inputs[k]->copyTo(outputs[k]); } } else { size_t i, j, count = _count, numAxes = _numAxes; const size_t* newStride = &_newStride[0]; const size_t* oldStride = &_oldStride[0]; const size_t* order = &_order[0]; for (k = 0; k < ninputs; k++) { const Mat& inp = *inputs[k]; Mat& out = outputs[k]; CV_Assert(inp.dims == numAxes && inp.size == inputs[0]->size); CV_Assert(out.dims == numAxes && out.size == outputs[0].size); CV_Assert(inp.isContinuous() && out.isContinuous()); CV_Assert(inp.type() == CV_32F && out.type() == CV_32F); if( numAxes == 4 ) { int nstripes = getNumThreads(); PermuteInvoker::run(inp, out, _order, nstripes); } else { const float *srcData = inp.ptr(); float *dstData = out.ptr(); for (i = 0; i < count; ++i) { size_t oldPosition = 0; size_t newPosition = i; for (j = 0; j < numAxes; ++j) { oldPosition += (newPosition / newStride[j]) * oldStride[order[j]]; newPosition %= newStride[j]; } dstData[i] = srcData[oldPosition]; } } } } } size_t _count; std::vector _order; std::vector _oldDimensionSize; std::vector _newDimensionSize; std::vector _oldStride; std::vector _newStride; bool _needsPermute; #ifdef HAVE_OPENCL UMat uorder, uold_stride, unew_stride; #endif size_t _numAxes; }; Ptr PermuteLayer::create(const LayerParams ¶ms) { return Ptr(new PermuteLayerImpl(params)); } } }