// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "opencv2/core/mat.hpp" #include "opencv2/core/types_c.h" // glue CvMatND cvMatND(const cv::Mat& m) { CvMatND self; cvInitMatNDHeader(&self, m.dims, m.size, m.type(), m.data ); int i, d = m.dims; for( i = 0; i < d; i++ ) self.dim[i].step = (int)m.step[i]; self.type |= m.flags & cv::Mat::CONTINUOUS_FLAG; return self; } _IplImage cvIplImage(const cv::Mat& m) { _IplImage self; CV_Assert( m.dims <= 2 ); cvInitImageHeader(&self, cvSize(m.size()), cvIplDepth(m.flags), m.channels()); cvSetData(&self, m.data, (int)m.step[0]); return self; } namespace cv { static Mat cvMatToMat(const CvMat* m, bool copyData) { Mat thiz; if( !m ) return thiz; if( !copyData ) { thiz.flags = Mat::MAGIC_VAL + (m->type & (CV_MAT_TYPE_MASK|CV_MAT_CONT_FLAG)); thiz.dims = 2; thiz.rows = m->rows; thiz.cols = m->cols; thiz.datastart = thiz.data = m->data.ptr; size_t esz = CV_ELEM_SIZE(m->type), minstep = thiz.cols*esz, _step = m->step; if( _step == 0 ) _step = minstep; thiz.datalimit = thiz.datastart + _step*thiz.rows; thiz.dataend = thiz.datalimit - _step + minstep; thiz.step[0] = _step; thiz.step[1] = esz; } else { thiz.datastart = thiz.dataend = thiz.data = 0; Mat(m->rows, m->cols, m->type, m->data.ptr, m->step).copyTo(thiz); } return thiz; } static Mat cvMatNDToMat(const CvMatND* m, bool copyData) { Mat thiz; if( !m ) return thiz; thiz.datastart = thiz.data = m->data.ptr; thiz.flags |= CV_MAT_TYPE(m->type); int _sizes[CV_MAX_DIM]; size_t _steps[CV_MAX_DIM]; int d = m->dims; for( int i = 0; i < d; i++ ) { _sizes[i] = m->dim[i].size; _steps[i] = m->dim[i].step; } setSize(thiz, d, _sizes, _steps); finalizeHdr(thiz); if( copyData ) { Mat temp(thiz); thiz.release(); temp.copyTo(thiz); } return thiz; } static Mat iplImageToMat(const IplImage* img, bool copyData) { Mat m; if( !img ) return m; m.dims = 2; CV_DbgAssert(CV_IS_IMAGE(img) && img->imageData != 0); int imgdepth = IPL2CV_DEPTH(img->depth); size_t esz; m.step[0] = img->widthStep; if(!img->roi) { CV_Assert(img->dataOrder == IPL_DATA_ORDER_PIXEL); m.flags = Mat::MAGIC_VAL + CV_MAKETYPE(imgdepth, img->nChannels); m.rows = img->height; m.cols = img->width; m.datastart = m.data = (uchar*)img->imageData; esz = CV_ELEM_SIZE(m.flags); } else { CV_Assert(img->dataOrder == IPL_DATA_ORDER_PIXEL || img->roi->coi != 0); bool selectedPlane = img->roi->coi && img->dataOrder == IPL_DATA_ORDER_PLANE; m.flags = Mat::MAGIC_VAL + CV_MAKETYPE(imgdepth, selectedPlane ? 1 : img->nChannels); m.rows = img->roi->height; m.cols = img->roi->width; esz = CV_ELEM_SIZE(m.flags); m.datastart = m.data = (uchar*)img->imageData + (selectedPlane ? (img->roi->coi - 1)*m.step*img->height : 0) + img->roi->yOffset*m.step[0] + img->roi->xOffset*esz; } m.datalimit = m.datastart + m.step.p[0]*m.rows; m.dataend = m.datastart + m.step.p[0]*(m.rows-1) + esz*m.cols; m.step[1] = esz; m.updateContinuityFlag(); if( copyData ) { Mat m2 = m; m.release(); if( !img->roi || !img->roi->coi || img->dataOrder == IPL_DATA_ORDER_PLANE) m2.copyTo(m); else { int ch[] = {img->roi->coi - 1, 0}; m.create(m2.rows, m2.cols, m2.type()); mixChannels(&m2, 1, &m, 1, ch, 1); } } return m; } Mat cvarrToMat(const CvArr* arr, bool copyData, bool /*allowND*/, int coiMode, AutoBuffer* abuf ) { if( !arr ) return Mat(); if( CV_IS_MAT_HDR_Z(arr) ) return cvMatToMat((const CvMat*)arr, copyData); if( CV_IS_MATND(arr) ) return cvMatNDToMat((const CvMatND*)arr, copyData ); if( CV_IS_IMAGE(arr) ) { const IplImage* iplimg = (const IplImage*)arr; if( coiMode == 0 && iplimg->roi && iplimg->roi->coi > 0 ) CV_Error(CV_BadCOI, "COI is not supported by the function"); return iplImageToMat(iplimg, copyData); } if( CV_IS_SEQ(arr) ) { CvSeq* seq = (CvSeq*)arr; int total = seq->total, type = CV_MAT_TYPE(seq->flags), esz = seq->elem_size; if( total == 0 ) return Mat(); CV_Assert(total > 0 && CV_ELEM_SIZE(seq->flags) == esz); if(!copyData && seq->first->next == seq->first) return Mat(total, 1, type, seq->first->data); if( abuf ) { abuf->allocate(((size_t)total*esz + sizeof(double)-1)/sizeof(double)); double* bufdata = abuf->data(); cvCvtSeqToArray(seq, bufdata, CV_WHOLE_SEQ); return Mat(total, 1, type, bufdata); } Mat buf(total, 1, type); cvCvtSeqToArray(seq, buf.ptr(), CV_WHOLE_SEQ); return buf; } CV_Error(CV_StsBadArg, "Unknown array type"); } void extractImageCOI(const CvArr* arr, OutputArray _ch, int coi) { Mat mat = cvarrToMat(arr, false, true, 1); _ch.create(mat.dims, mat.size, mat.depth()); Mat ch = _ch.getMat(); if(coi < 0) { CV_Assert( CV_IS_IMAGE(arr) ); coi = cvGetImageCOI((const IplImage*)arr)-1; } CV_Assert(0 <= coi && coi < mat.channels()); int _pairs[] = { coi, 0 }; mixChannels( &mat, 1, &ch, 1, _pairs, 1 ); } void insertImageCOI(InputArray _ch, CvArr* arr, int coi) { Mat ch = _ch.getMat(), mat = cvarrToMat(arr, false, true, 1); if(coi < 0) { CV_Assert( CV_IS_IMAGE(arr) ); coi = cvGetImageCOI((const IplImage*)arr)-1; } CV_Assert(ch.size == mat.size && ch.depth() == mat.depth() && 0 <= coi && coi < mat.channels()); int _pairs[] = { 0, coi }; mixChannels( &ch, 1, &mat, 1, _pairs, 1 ); } } // cv:: // operations CV_IMPL void cvSetIdentity( CvArr* arr, CvScalar value ) { cv::Mat m = cv::cvarrToMat(arr); cv::setIdentity(m, value); } CV_IMPL CvScalar cvTrace( const CvArr* arr ) { return cvScalar(cv::trace(cv::cvarrToMat(arr))); } CV_IMPL void cvTranspose( const CvArr* srcarr, CvArr* dstarr ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); CV_Assert( src.rows == dst.cols && src.cols == dst.rows && src.type() == dst.type() ); transpose( src, dst ); } CV_IMPL void cvCompleteSymm( CvMat* matrix, int LtoR ) { cv::Mat m = cv::cvarrToMat(matrix); cv::completeSymm( m, LtoR != 0 ); } CV_IMPL void cvCrossProduct( const CvArr* srcAarr, const CvArr* srcBarr, CvArr* dstarr ) { cv::Mat srcA = cv::cvarrToMat(srcAarr), dst = cv::cvarrToMat(dstarr); CV_Assert( srcA.size() == dst.size() && srcA.type() == dst.type() ); srcA.cross(cv::cvarrToMat(srcBarr)).copyTo(dst); } CV_IMPL void cvReduce( const CvArr* srcarr, CvArr* dstarr, int dim, int op ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); if( dim < 0 ) dim = src.rows > dst.rows ? 0 : src.cols > dst.cols ? 1 : dst.cols == 1; if( dim > 1 ) CV_Error( CV_StsOutOfRange, "The reduced dimensionality index is out of range" ); if( (dim == 0 && (dst.cols != src.cols || dst.rows != 1)) || (dim == 1 && (dst.rows != src.rows || dst.cols != 1)) ) CV_Error( CV_StsBadSize, "The output array size is incorrect" ); if( src.channels() != dst.channels() ) CV_Error( CV_StsUnmatchedFormats, "Input and output arrays must have the same number of channels" ); cv::reduce(src, dst, dim, op, dst.type()); } CV_IMPL CvArr* cvRange( CvArr* arr, double start, double end ) { CvMat stub, *mat = (CvMat*)arr; int step; double val = start; if( !CV_IS_MAT(mat) ) mat = cvGetMat( mat, &stub); int rows = mat->rows; int cols = mat->cols; int type = CV_MAT_TYPE(mat->type); double delta = (end-start)/(rows*cols); if( CV_IS_MAT_CONT(mat->type) ) { cols *= rows; rows = 1; step = 1; } else step = mat->step / CV_ELEM_SIZE(type); if( type == CV_32SC1 ) { int* idata = mat->data.i; int ival = cvRound(val), idelta = cvRound(delta); if( fabs(val - ival) < DBL_EPSILON && fabs(delta - idelta) < DBL_EPSILON ) { for( int i = 0; i < rows; i++, idata += step ) for( int j = 0; j < cols; j++, ival += idelta ) idata[j] = ival; } else { for( int i = 0; i < rows; i++, idata += step ) for( int j = 0; j < cols; j++, val += delta ) idata[j] = cvRound(val); } } else if( type == CV_32FC1 ) { float* fdata = mat->data.fl; for( int i = 0; i < rows; i++, fdata += step ) for( int j = 0; j < cols; j++, val += delta ) fdata[j] = (float)val; } else CV_Error( CV_StsUnsupportedFormat, "The function only supports 32sC1 and 32fC1 datatypes" ); return arr; } CV_IMPL void cvSort( const CvArr* _src, CvArr* _dst, CvArr* _idx, int flags ) { cv::Mat src = cv::cvarrToMat(_src); if( _idx ) { cv::Mat idx0 = cv::cvarrToMat(_idx), idx = idx0; CV_Assert( src.size() == idx.size() && idx.type() == CV_32S && src.data != idx.data ); cv::sortIdx( src, idx, flags ); CV_Assert( idx0.data == idx.data ); } if( _dst ) { cv::Mat dst0 = cv::cvarrToMat(_dst), dst = dst0; CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); cv::sort( src, dst, flags ); CV_Assert( dst0.data == dst.data ); } } CV_IMPL int cvKMeans2( const CvArr* _samples, int cluster_count, CvArr* _labels, CvTermCriteria termcrit, int attempts, CvRNG*, int flags, CvArr* _centers, double* _compactness ) { cv::Mat data = cv::cvarrToMat(_samples), labels = cv::cvarrToMat(_labels), centers; if( _centers ) { centers = cv::cvarrToMat(_centers); centers = centers.reshape(1); data = data.reshape(1); CV_Assert( !centers.empty() ); CV_Assert( centers.rows == cluster_count ); CV_Assert( centers.cols == data.cols ); CV_Assert( centers.depth() == data.depth() ); } CV_Assert( labels.isContinuous() && labels.type() == CV_32S && (labels.cols == 1 || labels.rows == 1) && labels.cols + labels.rows - 1 == data.rows ); double compactness = cv::kmeans(data, cluster_count, labels, termcrit, attempts, flags, _centers ? cv::_OutputArray(centers) : cv::_OutputArray() ); if( _compactness ) *_compactness = compactness; return 1; }