/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace std; namespace cv { /* * FeatureDetector */ struct MaskPredicate { MaskPredicate( const Mat& _mask ) : mask(_mask) {} MaskPredicate& operator=(const MaskPredicate&) { return *this; } bool operator() (const KeyPoint& key_pt) const { return mask.at( (int)(key_pt.pt.y + 0.5f), (int)(key_pt.pt.x + 0.5f) ) == 0; } const Mat& mask; }; void FeatureDetector::detect(const vector& imageCollection, vector >& pointCollection, const vector& masks ) const { pointCollection.resize( imageCollection.size() ); for( size_t i = 0; i < imageCollection.size(); i++ ) detect( imageCollection[i], pointCollection[i], masks.empty() ? Mat() : masks[i] ); } void FeatureDetector::removeInvalidPoints( const Mat& mask, vector& keypoints ) { if( mask.empty() ) return; keypoints.erase(remove_if(keypoints.begin(), keypoints.end(), MaskPredicate(mask)), keypoints.end()); }; /* * FastFeatureDetector */ FastFeatureDetector::FastFeatureDetector( int _threshold, bool _nonmaxSuppression ) : threshold(_threshold), nonmaxSuppression(_nonmaxSuppression) {} void FastFeatureDetector::read (const FileNode& fn) { threshold = fn["threshold"]; nonmaxSuppression = (int)fn["nonmaxSuppression"] ? true : false; } void FastFeatureDetector::write (FileStorage& fs) const { fs << "threshold" << threshold; fs << "nonmaxSuppression" << nonmaxSuppression; } void FastFeatureDetector::detect( const Mat& image, vector& keypoints, const Mat& mask ) const { Mat grayImage = image; if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY ); FAST( grayImage, keypoints, threshold, nonmaxSuppression ); removeInvalidPoints( mask, keypoints ); } /* * GoodFeaturesToTrackDetector */ GoodFeaturesToTrackDetector::GoodFeaturesToTrackDetector( int _maxCorners, double _qualityLevel, \ double _minDistance, int _blockSize, bool _useHarrisDetector, double _k ) : maxCorners(_maxCorners), qualityLevel(_qualityLevel), minDistance(_minDistance), blockSize(_blockSize), useHarrisDetector(_useHarrisDetector), k(_k) {} void GoodFeaturesToTrackDetector::read (const FileNode& fn) { maxCorners = fn["maxCorners"]; qualityLevel = fn["qualityLevel"]; minDistance = fn["minDistance"]; blockSize = fn["blockSize"]; useHarrisDetector = (int)fn["useHarrisDetector"] != 0; k = fn["k"]; } void GoodFeaturesToTrackDetector::write (FileStorage& fs) const { fs << "maxCorners" << maxCorners; fs << "qualityLevel" << qualityLevel; fs << "minDistance" << minDistance; fs << "blockSize" << blockSize; fs << "useHarrisDetector" << useHarrisDetector; fs << "k" << k; } void GoodFeaturesToTrackDetector::detect( const Mat& image, vector& keypoints, const Mat& mask) const { Mat grayImage = image; if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY ); vector corners; goodFeaturesToTrack( grayImage, corners, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k ); keypoints.resize(corners.size()); vector::const_iterator corner_it = corners.begin(); vector::iterator keypoint_it = keypoints.begin(); for( ; corner_it != corners.end(); ++corner_it, ++keypoint_it ) { *keypoint_it = KeyPoint( *corner_it, (float)blockSize ); } } /* * MserFeatureDetector */ MserFeatureDetector::MserFeatureDetector( int delta, int minArea, int maxArea, double maxVariation, double minDiversity, int maxEvolution, double areaThreshold, double minMargin, int edgeBlurSize ) : mser( delta, minArea, maxArea, maxVariation, minDiversity, maxEvolution, areaThreshold, minMargin, edgeBlurSize ) {} MserFeatureDetector::MserFeatureDetector( CvMSERParams params ) : mser( params.delta, params.minArea, params.maxArea, params.maxVariation, params.minDiversity, params.maxEvolution, params.areaThreshold, params.minMargin, params.edgeBlurSize ) {} void MserFeatureDetector::read (const FileNode& fn) { int delta = fn["delta"]; int minArea = fn["minArea"]; int maxArea = fn["maxArea"]; float maxVariation = fn["maxVariation"]; float minDiversity = fn["minDiversity"]; int maxEvolution = fn["maxEvolution"]; double areaThreshold = fn["areaThreshold"]; double minMargin = fn["minMargin"]; int edgeBlurSize = fn["edgeBlurSize"]; mser = MSER( delta, minArea, maxArea, maxVariation, minDiversity, maxEvolution, areaThreshold, minMargin, edgeBlurSize ); } void MserFeatureDetector::write (FileStorage& fs) const { //fs << "algorithm" << getAlgorithmName (); fs << "delta" << mser.delta; fs << "minArea" << mser.minArea; fs << "maxArea" << mser.maxArea; fs << "maxVariation" << mser.maxVariation; fs << "minDiversity" << mser.minDiversity; fs << "maxEvolution" << mser.maxEvolution; fs << "areaThreshold" << mser.areaThreshold; fs << "minMargin" << mser.minMargin; fs << "edgeBlurSize" << mser.edgeBlurSize; } void MserFeatureDetector::detect( const Mat& image, vector& keypoints, const Mat& mask ) const { vector > msers; Mat grayImage = image; if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY ); mser(grayImage, msers, mask); keypoints.resize( msers.size() ); vector >::const_iterator contour_it = msers.begin(); vector::iterator keypoint_it = keypoints.begin(); for( ; contour_it != msers.end(); ++contour_it, ++keypoint_it ) { // TODO check transformation from MSER region to KeyPoint RotatedRect rect = fitEllipse(Mat(*contour_it)); *keypoint_it = KeyPoint( rect.center, sqrt(rect.size.height*rect.size.width), rect.angle); } } /* * StarFeatureDetector */ StarFeatureDetector::StarFeatureDetector(int maxSize, int responseThreshold, int lineThresholdProjected, int lineThresholdBinarized, int suppressNonmaxSize) : star( maxSize, responseThreshold, lineThresholdProjected, lineThresholdBinarized, suppressNonmaxSize) {} void StarFeatureDetector::read (const FileNode& fn) { int maxSize = fn["maxSize"]; int responseThreshold = fn["responseThreshold"]; int lineThresholdProjected = fn["lineThresholdProjected"]; int lineThresholdBinarized = fn["lineThresholdBinarized"]; int suppressNonmaxSize = fn["suppressNonmaxSize"]; star = StarDetector( maxSize, responseThreshold, lineThresholdProjected, lineThresholdBinarized, suppressNonmaxSize); } void StarFeatureDetector::write (FileStorage& fs) const { //fs << "algorithm" << getAlgorithmName (); fs << "maxSize" << star.maxSize; fs << "responseThreshold" << star.responseThreshold; fs << "lineThresholdProjected" << star.lineThresholdProjected; fs << "lineThresholdBinarized" << star.lineThresholdBinarized; fs << "suppressNonmaxSize" << star.suppressNonmaxSize; } void StarFeatureDetector::detect( const Mat& image, vector& keypoints, const Mat& mask ) const { Mat grayImage = image; if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY ); star(grayImage, keypoints); removeInvalidPoints(mask, keypoints); } /* * SiftFeatureDetector */ SiftFeatureDetector::SiftFeatureDetector(double threshold, double edgeThreshold, int nOctaves, int nOctaveLayers, int firstOctave, int angleMode) : sift(threshold, edgeThreshold, nOctaves, nOctaveLayers, firstOctave, angleMode) { } void SiftFeatureDetector::read (const FileNode& fn) { double threshold = fn["threshold"]; double edgeThreshold = fn["edgeThreshold"]; int nOctaves = fn["nOctaves"]; int nOctaveLayers = fn["nOctaveLayers"]; int firstOctave = fn["firstOctave"]; int angleMode = fn["angleMode"]; sift = SIFT(threshold, edgeThreshold, nOctaves, nOctaveLayers, firstOctave, angleMode); } void SiftFeatureDetector::write (FileStorage& fs) const { //fs << "algorithm" << getAlgorithmName (); SIFT::CommonParams commParams = sift.getCommonParams (); SIFT::DetectorParams detectorParams = sift.getDetectorParams (); fs << "threshold" << detectorParams.threshold; fs << "edgeThreshold" << detectorParams.edgeThreshold; fs << "nOctaves" << commParams.nOctaves; fs << "nOctaveLayers" << commParams.nOctaveLayers; fs << "firstOctave" << commParams.firstOctave; fs << "angleMode" << commParams.angleMode; } void SiftFeatureDetector::detect( const Mat& image, vector& keypoints, const Mat& mask ) const { Mat grayImage = image; if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY ); sift(grayImage, mask, keypoints); } /* * SurfFeatureDetector */ SurfFeatureDetector::SurfFeatureDetector( double hessianThreshold, int octaves, int octaveLayers) : surf(hessianThreshold, octaves, octaveLayers) {} void SurfFeatureDetector::read (const FileNode& fn) { double hessianThreshold = fn["hessianThreshold"]; int octaves = fn["octaves"]; int octaveLayers = fn["octaveLayers"]; surf = SURF( hessianThreshold, octaves, octaveLayers ); } void SurfFeatureDetector::write (FileStorage& fs) const { //fs << "algorithm" << getAlgorithmName (); fs << "hessianThreshold" << surf.hessianThreshold; fs << "octaves" << surf.nOctaves; fs << "octaveLayers" << surf.nOctaveLayers; } void SurfFeatureDetector::detect( const Mat& image, vector& keypoints, const Mat& mask ) const { Mat grayImage = image; if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY ); surf(grayImage, mask, keypoints); } /* * DenseFeatureDetector */ void DenseFeatureDetector::detect( const Mat& image, vector& keypoints, const Mat& mask ) const { keypoints.clear(); float curScale = initFeatureScale; int curStep = initXyStep; int curBound = initImgBound; for( int curLevel = 0; curLevel < featureScaleLevels; curLevel++ ) { for( int x = curBound; x < image.cols - curBound; x += curStep ) { for( int y = curBound; y < image.rows - curBound; y += curStep ) { keypoints.push_back( KeyPoint(static_cast(x), static_cast(y), curScale) ); } } curScale = curScale * featureScaleMul; if( varyXyStepWithScale ) curStep = static_cast( curStep * featureScaleMul + 0.5f ); if( varyImgBoundWithScale ) curBound = static_cast( curBound * featureScaleMul + 0.5f ); } removeInvalidPoints( mask, keypoints ); } /* * GridAdaptedFeatureDetector */ GridAdaptedFeatureDetector::GridAdaptedFeatureDetector( const Ptr& _detector, int _maxTotalKeypoints, int _gridRows, int _gridCols ) : detector(_detector), maxTotalKeypoints(_maxTotalKeypoints), gridRows(_gridRows), gridCols(_gridCols) {} struct ResponseComparator { bool operator() (const KeyPoint& a, const KeyPoint& b) { return std::abs(a.response) > std::abs(b.response); } }; void keepStrongest( int N, vector& keypoints ) { if( (int)keypoints.size() > N ) { vector::iterator nth = keypoints.begin() + N; std::nth_element( keypoints.begin(), nth, keypoints.end(), ResponseComparator() ); keypoints.erase( nth, keypoints.end() ); } } void GridAdaptedFeatureDetector::detect( const Mat& image, vector& keypoints, const Mat& mask ) const { keypoints.clear(); keypoints.reserve(maxTotalKeypoints); int maxPerCell = maxTotalKeypoints / (gridRows * gridCols); for( int i = 0; i < gridRows; ++i ) { Range row_range((i*image.rows)/gridRows, ((i+1)*image.rows)/gridRows); for( int j = 0; j < gridCols; ++j ) { Range col_range((j*image.cols)/gridCols, ((j+1)*image.cols)/gridCols); Mat sub_image = image(row_range, col_range); Mat sub_mask; if( !mask.empty() ) sub_mask = mask(row_range, col_range); vector sub_keypoints; detector->detect( sub_image, sub_keypoints, sub_mask ); keepStrongest( maxPerCell, sub_keypoints ); for( std::vector::iterator it = sub_keypoints.begin(), end = sub_keypoints.end(); it != end; ++it ) { it->pt.x += col_range.start; it->pt.y += row_range.start; } keypoints.insert( keypoints.end(), sub_keypoints.begin(), sub_keypoints.end() ); } } } /* * GridAdaptedFeatureDetector */ PyramidAdaptedFeatureDetector::PyramidAdaptedFeatureDetector( const Ptr& _detector, int _levels ) : detector(_detector), levels(_levels) {} void PyramidAdaptedFeatureDetector::detect( const Mat& image, vector& keypoints, const Mat& mask ) const { Mat src = image; for( int l = 0, multiplier = 1; l <= levels; ++l, multiplier *= 2 ) { // Detect on current level of the pyramid vector new_pts; detector->detect(src, new_pts); for( vector::iterator it = new_pts.begin(), end = new_pts.end(); it != end; ++it) { it->pt.x *= multiplier; it->pt.y *= multiplier; it->size *= multiplier; it->octave = l; } removeInvalidPoints( mask, new_pts ); keypoints.insert( keypoints.end(), new_pts.begin(), new_pts.end() ); // Downsample if( l < levels ) { Mat dst; pyrDown(src, dst); src = dst; } } } Ptr createFeatureDetector( const string& detectorType ) { FeatureDetector* fd = 0; if( !detectorType.compare( "FAST" ) ) { fd = new FastFeatureDetector( 10/*threshold*/, true/*nonmax_suppression*/ ); } else if( !detectorType.compare( "STAR" ) ) { fd = new StarFeatureDetector( 16/*max_size*/, 5/*response_threshold*/, 10/*line_threshold_projected*/, 8/*line_threshold_binarized*/, 5/*suppress_nonmax_size*/ ); } else if( !detectorType.compare( "SIFT" ) ) { fd = new SiftFeatureDetector(SIFT::DetectorParams::GET_DEFAULT_THRESHOLD(), SIFT::DetectorParams::GET_DEFAULT_EDGE_THRESHOLD()); } else if( !detectorType.compare( "SURF" ) ) { fd = new SurfFeatureDetector( 400./*hessian_threshold*/, 3 /*octaves*/, 4/*octave_layers*/ ); } else if( !detectorType.compare( "MSER" ) ) { fd = new MserFeatureDetector( 5/*delta*/, 60/*min_area*/, 14400/*_max_area*/, 0.25f/*max_variation*/, 0.2/*min_diversity*/, 200/*max_evolution*/, 1.01/*area_threshold*/, 0.003/*min_margin*/, 5/*edge_blur_size*/ ); } else if( !detectorType.compare( "GFTT" ) ) { fd = new GoodFeaturesToTrackDetector( 1000/*maxCorners*/, 0.01/*qualityLevel*/, 1./*minDistance*/, 3/*int _blockSize*/, false/*useHarrisDetector*/, 0.04/*k*/ ); } else if( !detectorType.compare( "HARRIS" ) ) { fd = new GoodFeaturesToTrackDetector( 1000/*maxCorners*/, 0.01/*qualityLevel*/, 1./*minDistance*/, 3/*int _blockSize*/, true/*useHarrisDetector*/, 0.04/*k*/ ); } return fd; } }