// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "../precomp.hpp" #include "../usac.hpp" #include namespace cv { namespace usac { int mergePoints (InputArray pts1_, InputArray pts2_, Mat &pts, bool ispnp); void setParameters (int flag, Ptr ¶ms, EstimationMethod estimator, double thr, int max_iters, double conf, bool mask_needed); class RansacOutputImpl : public RansacOutput { private: Mat model; // vector of number_inliers size std::vector inliers; // vector of points size, true if inlier, false-outlier std::vector inliers_mask; // vector of points size, value of i-th index corresponds to error of i-th point if i is inlier. std::vector errors; // the best found score of RANSAC double score; int seconds, milliseconds, microseconds; int time_mcs, number_inliers, number_estimated_models, number_good_models; int number_iterations; // number of iterations of main RANSAC public: RansacOutputImpl (const Mat &model_, const std::vector &inliers_mask_, int time_mcs_, double score_, int number_inliers_, int number_iterations_, int number_estimated_models_, int number_good_models_) { model_.copyTo(model); inliers_mask = inliers_mask_; time_mcs = time_mcs_; score = score_; number_inliers = number_inliers_; number_iterations = number_iterations_; number_estimated_models = number_estimated_models_; number_good_models = number_good_models_; microseconds = time_mcs % 1000; milliseconds = ((time_mcs - microseconds)/1000) % 1000; seconds = ((time_mcs - 1000*milliseconds - microseconds)/(1000*1000)) % 60; } /* * Return inliers' indices. * size of vector = number of inliers */ const std::vector &getInliers() override { if (inliers.empty()) { inliers.reserve(inliers_mask.size()); int pt_cnt = 0; for (bool is_inlier : inliers_mask) { if (is_inlier) inliers.emplace_back(pt_cnt); pt_cnt++; } } return inliers; } // Return inliers mask. Vector of points size. 1-inlier, 0-outlier. const std::vector &getInliersMask() const override { return inliers_mask; } int getTimeMicroSeconds() const override {return time_mcs; } int getTimeMicroSeconds1() const override {return microseconds; } int getTimeMilliSeconds2() const override {return milliseconds; } int getTimeSeconds3() const override {return seconds; } int getNumberOfInliers() const override { return number_inliers; } int getNumberOfMainIterations() const override { return number_iterations; } int getNumberOfGoodModels () const override { return number_good_models; } int getNumberOfEstimatedModels () const override { return number_estimated_models; } const Mat &getModel() const override { return model; } }; Ptr RansacOutput::create(const Mat &model_, const std::vector &inliers_mask_, int time_mcs_, double score_, int number_inliers_, int number_iterations_, int number_estimated_models_, int number_good_models_) { return makePtr(model_, inliers_mask_, time_mcs_, score_, number_inliers_, number_iterations_, number_estimated_models_, number_good_models_); } class Ransac { protected: const Ptr params; const Ptr _estimator; const Ptr _quality; const Ptr _sampler; const Ptr _termination_criteria; const Ptr _model_verifier; const Ptr _degeneracy; const Ptr _local_optimization; const Ptr model_polisher; const int points_size, state; const bool parallel; public: Ransac (const Ptr ¶ms_, int points_size_, const Ptr &estimator_, const Ptr &quality_, const Ptr &sampler_, const Ptr &termination_criteria_, const Ptr &model_verifier_, const Ptr °eneracy_, const Ptr &local_optimization_, const Ptr &model_polisher_, bool parallel_=false, int state_ = 0) : params (params_), _estimator (estimator_), _quality (quality_), _sampler (sampler_), _termination_criteria (termination_criteria_), _model_verifier (model_verifier_), _degeneracy (degeneracy_), _local_optimization (local_optimization_), model_polisher (model_polisher_), points_size (points_size_), state(state_), parallel(parallel_) {} bool run(Ptr &ransac_output) { if (points_size < params->getSampleSize()) return false; const auto begin_time = std::chrono::steady_clock::now(); // check if LO const bool LO = params->getLO() != LocalOptimMethod::LOCAL_OPTIM_NULL; const bool is_magsac = params->getLO() == LocalOptimMethod::LOCAL_OPTIM_SIGMA; const int max_hyp_test_before_ver = params->getMaxNumHypothesisToTestBeforeRejection(); const int repeat_magsac = 10, max_iters_before_LO = params->getMaxItersBeforeLO(); Score best_score; Mat best_model; int final_iters; if (! parallel) { auto update_best = [&] (const Mat &new_model, const Score &new_score) { best_score = new_score; // remember best model new_model.copyTo(best_model); // update quality and verifier to save evaluation time of a model _quality->setBestScore(best_score.score); // update verifier _model_verifier->update(best_score.inlier_number); // update upper bound of iterations return _termination_criteria->update(best_model, best_score.inlier_number); }; bool was_LO_run = false; Mat non_degenerate_model, lo_model; Score current_score, lo_score, non_denegenerate_model_score; // reallocate memory for models std::vector models(_estimator->getMaxNumSolutions()); // allocate memory for sample std::vector sample(_estimator->getMinimalSampleSize()); int iters = 0, max_iters = params->getMaxIters(); for (; iters < max_iters; iters++) { _sampler->generateSample(sample); const int number_of_models = _estimator->estimateModels(sample, models); for (int i = 0; i < number_of_models; i++) { if (iters < max_hyp_test_before_ver) { current_score = _quality->getScore(models[i]); } else { if (is_magsac && iters % repeat_magsac == 0) { if (!_local_optimization->refineModel (models[i], best_score, models[i], current_score)) continue; } else if (_model_verifier->isModelGood(models[i])) { if (!_model_verifier->getScore(current_score)) { if (_model_verifier->hasErrors()) current_score = _quality->getScore(_model_verifier->getErrors()); else current_score = _quality->getScore(models[i]); } } else continue; } if (current_score.isBetter(best_score)) { if (_degeneracy->recoverIfDegenerate(sample, models[i], non_degenerate_model, non_denegenerate_model_score)) { // check if best non degenerate model is better than so far the best model if (non_denegenerate_model_score.isBetter(best_score)) max_iters = update_best(non_degenerate_model, non_denegenerate_model_score); else continue; } else max_iters = update_best(models[i], current_score); if (LO && iters >= max_iters_before_LO) { // do magsac if it wasn't already run if (is_magsac && iters % repeat_magsac == 0 && iters >= max_hyp_test_before_ver) continue; // magsac has already run was_LO_run = true; // update model by Local optimization if (_local_optimization->refineModel (best_model, best_score, lo_model, lo_score)) { if (lo_score.isBetter(best_score)){ max_iters = update_best(lo_model, lo_score); } } } if (iters > max_iters) break; } // end of if so far the best score } // end loop of number of models if (LO && !was_LO_run && iters >= max_iters_before_LO) { was_LO_run = true; if (_local_optimization->refineModel(best_model, best_score, lo_model, lo_score)) if (lo_score.isBetter(best_score)){ max_iters = update_best(lo_model, lo_score); } } } // end main while loop final_iters = iters; } else { const int MAX_THREADS = getNumThreads(); const bool is_prosac = params->getSampler() == SamplingMethod::SAMPLING_PROSAC; std::atomic_bool success(false); std::atomic_int num_hypothesis_tested(0); std::atomic_int thread_cnt(0); std::vector best_scores(MAX_THREADS); std::vector best_models(MAX_THREADS); Mutex mutex; // only for prosac /////////////////////////////////////////////////////////////////////////////////////////////////////// parallel_for_(Range(0, MAX_THREADS), [&](const Range & /*range*/) { if (!success) { // cover all if not success to avoid thread creating new variables const int thread_rng_id = thread_cnt++; int thread_state = state + 10*thread_rng_id; Ptr estimator = _estimator->clone(); Ptr degeneracy = _degeneracy->clone(thread_state++); Ptr quality = _quality->clone(); Ptr model_verifier = _model_verifier->clone(thread_state++); // update verifier Ptr local_optimization; if (LO) local_optimization = _local_optimization->clone(thread_state++); Ptr termination_criteria = _termination_criteria->clone(); Ptr sampler; if (!is_prosac) sampler = _sampler->clone(thread_state); Mat best_model_thread, non_degenerate_model, lo_model; Score best_score_thread, current_score, non_denegenerate_model_score, lo_score, best_score_all_threads; std::vector sample(estimator->getMinimalSampleSize()); std::vector models(estimator->getMaxNumSolutions()); int iters, max_iters = params->getMaxIters(); auto update_best = [&] (const Score &new_score, const Mat &new_model) { // copy new score to best score best_score_thread = new_score; best_scores[thread_rng_id] = best_score_thread; // remember best model new_model.copyTo(best_model_thread); best_model_thread.copyTo(best_models[thread_rng_id]); best_score_all_threads = best_score_thread; // update upper bound of iterations return termination_criteria->update (best_model_thread, best_score_thread.inlier_number); }; bool was_LO_run = false; for (iters = 0; iters < max_iters && !success; iters++) { success = num_hypothesis_tested++ > max_iters; if (iters % 10) { // Synchronize threads. just to speed verification of model. int best_thread_idx = thread_rng_id; bool updated = false; for (int t = 0; t < MAX_THREADS; t++) { if (best_scores[t].isBetter(best_score_all_threads)) { best_score_all_threads = best_scores[t]; updated = true; best_thread_idx = t; } } if (updated && best_thread_idx != thread_rng_id) { quality->setBestScore(best_score_all_threads.score); model_verifier->update(best_score_all_threads.inlier_number); } } if (is_prosac) { // use global sampler mutex.lock(); _sampler->generateSample(sample); mutex.unlock(); } else sampler->generateSample(sample); // use local sampler const int number_of_models = estimator->estimateModels(sample, models); for (int i = 0; i < number_of_models; i++) { if (iters < max_hyp_test_before_ver) { current_score = quality->getScore(models[i]); } else { if (is_magsac && iters % repeat_magsac == 0) { if (local_optimization && !local_optimization->refineModel (models[i], best_score_thread, models[i], current_score)) continue; } else if (model_verifier->isModelGood(models[i])) { if (!model_verifier->getScore(current_score)) { if (model_verifier->hasErrors()) current_score = quality->getScore(model_verifier->getErrors()); else current_score = quality->getScore(models[i]); } } else continue; } if (current_score.isBetter(best_score_all_threads)) { if (degeneracy->recoverIfDegenerate(sample, models[i], non_degenerate_model, non_denegenerate_model_score)) { // check if best non degenerate model is better than so far the best model if (non_denegenerate_model_score.isBetter(best_score_thread)) max_iters = update_best(non_denegenerate_model_score, non_degenerate_model); else continue; } else max_iters = update_best(current_score, models[i]); if (LO && iters >= max_iters_before_LO) { // do magsac if it wasn't already run if (is_magsac && iters % repeat_magsac == 0 && iters >= max_hyp_test_before_ver) continue; was_LO_run = true; // update model by Local optimizaion if (local_optimization->refineModel (best_model_thread, best_score_thread, lo_model, lo_score)) if (lo_score.isBetter(best_score_thread)) { max_iters = update_best(lo_score, lo_model); } } if (num_hypothesis_tested > max_iters) { success = true; break; } } // end of if so far the best score } // end loop of number of models if (LO && !was_LO_run && iters >= max_iters_before_LO) { was_LO_run = true; if (_local_optimization->refineModel(best_model, best_score, lo_model, lo_score)) if (lo_score.isBetter(best_score)){ max_iters = update_best(lo_score, lo_model); } } } // end of loop over iters }}); // end parallel /////////////////////////////////////////////////////////////////////////////////////////////////////// // find best model from all threads' models best_score = best_scores[0]; int best_thread_idx = 0; for (int i = 1; i < MAX_THREADS; i++) { if (best_scores[i].isBetter(best_score)) { best_score = best_scores[i]; best_thread_idx = i; } } best_model = best_models[best_thread_idx]; final_iters = num_hypothesis_tested; } if (best_model.empty()) return false; // polish final model if (params->getFinalPolisher() != PolishingMethod::NonePolisher) { Mat polished_model; Score polisher_score; if (model_polisher->polishSoFarTheBestModel(best_model, best_score, polished_model, polisher_score)) if (polisher_score.isBetter(best_score)) { best_score = polisher_score; polished_model.copyTo(best_model); } } // ================= here is ending ransac main implementation =========================== std::vector inliers_mask; if (params->isMaskRequired()) { inliers_mask = std::vector(points_size); // get final inliers from the best model _quality->getInliers(best_model, inliers_mask); } // Store results ransac_output = RansacOutput::create(best_model, inliers_mask, static_cast(std::chrono::duration_cast (std::chrono::steady_clock::now() - begin_time).count()), best_score.score, best_score.inlier_number, final_iters, -1, -1); return true; } }; /* * pts1, pts2 are matrices either N x a, N x b or a x N or b x N, where N > a and N > b * pts1 are image points, if pnp pts2 are object points otherwise - image points as well. * output is matrix of size N x (a + b) * return points_size = N */ int mergePoints (InputArray pts1_, InputArray pts2_, Mat &pts, bool ispnp) { Mat pts1 = pts1_.getMat(), pts2 = pts2_.getMat(); auto convertPoints = [] (Mat &points, int pt_dim) { points.convertTo(points, CV_32F); // convert points to have float precision if (points.channels() > 1) points = points.reshape(1, (int)points.total()); // convert point to have 1 channel if (points.rows < points.cols) transpose(points, points); // transpose so points will be in rows CV_CheckGE(points.cols, pt_dim, "Invalid dimension of point"); if (points.cols != pt_dim) // in case when image points are 3D convert them to 2D points = points.colRange(0, pt_dim); }; convertPoints(pts1, 2); // pts1 are always image points convertPoints(pts2, ispnp ? 3 : 2); // for PnP points are 3D // points are of size [Nx2 Nx2] = Nx4 for H, F, E // points are of size [Nx2 Nx3] = Nx5 for PnP hconcat(pts1, pts2, pts); return pts.rows; } void saveMask (OutputArray mask, const std::vector &inliers_mask) { if (mask.needed()) { const int points_size = (int) inliers_mask.size(); Mat tmp_mask(points_size, 1, CV_8U); auto * maskptr = tmp_mask.ptr(); for (int i = 0; i < points_size; i++) maskptr[i] = (uchar) inliers_mask[i]; tmp_mask.copyTo(mask); } } void setParameters (Ptr ¶ms, EstimationMethod estimator, const UsacParams &usac_params, bool mask_needed) { params = Model::create(usac_params.threshold, estimator, usac_params.sampler, usac_params.confidence, usac_params.maxIterations, usac_params.score); params->setLocalOptimization(usac_params.loMethod); params->setLOSampleSize(usac_params.loSampleSize); params->setLOIterations(usac_params.loIterations); params->setParallel(usac_params.isParallel); params->setNeighborsType(usac_params.neighborsSearch); params->setRandomGeneratorState(usac_params.randomGeneratorState); params->maskRequired(mask_needed); } void setParameters (int flag, Ptr ¶ms, EstimationMethod estimator, double thr, int max_iters, double conf, bool mask_needed) { switch (flag) { case USAC_DEFAULT: params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters, ScoreMethod::SCORE_METHOD_MSAC); params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_AND_ITER_LO); break; case USAC_MAGSAC: params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters, ScoreMethod::SCORE_METHOD_MAGSAC); params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_SIGMA); params->setLOSampleSize(params->isHomography() ? 75 : 50); params->setLOIterations(params->isHomography() ? 15 : 10); break; case USAC_PARALLEL: params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters, ScoreMethod::SCORE_METHOD_MSAC); params->setParallel(true); params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO); break; case USAC_ACCURATE: params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters, ScoreMethod::SCORE_METHOD_MSAC); params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_GC); params->setLOSampleSize(20); params->setLOIterations(25); break; case USAC_FAST: params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters, ScoreMethod::SCORE_METHOD_MSAC); params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_AND_ITER_LO); params->setLOIterations(5); params->setLOIterativeIters(3); break; case USAC_PROSAC: params = Model::create(thr, estimator, SamplingMethod::SAMPLING_PROSAC, conf, max_iters, ScoreMethod::SCORE_METHOD_MSAC); params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO); break; case USAC_FM_8PTS: params = Model::create(thr, EstimationMethod::Fundamental8,SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,ScoreMethod::SCORE_METHOD_MSAC); params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO); break; default: CV_Error(cv::Error::StsBadFlag, "Incorrect flag for USAC!"); } // do not do too many iterations for PnP if (estimator == EstimationMethod::P3P) { if (params->getLOInnerMaxIters() > 15) params->setLOIterations(15); params->setLOIterativeIters(0); } params->maskRequired(mask_needed); } Mat findHomography (InputArray srcPoints, InputArray dstPoints, int method, double thr, OutputArray mask, const int max_iters, const double confidence) { Ptr params; setParameters(method, params, EstimationMethod::Homography, thr, max_iters, confidence, mask.needed()); Ptr ransac_output; if (run(params, srcPoints, dstPoints, params->getRandomGeneratorState(), ransac_output, noArray(), noArray(), noArray(), noArray())) { saveMask(mask, ransac_output->getInliersMask()); return ransac_output->getModel() / ransac_output->getModel().at(2,2); } if (mask.needed()){ mask.create(std::max(srcPoints.getMat().rows, srcPoints.getMat().cols), 1, CV_8U); mask.setTo(Scalar::all(0)); } return Mat(); } Mat findFundamentalMat( InputArray points1, InputArray points2, int method, double thr, double confidence, int max_iters, OutputArray mask ) { Ptr params; setParameters(method, params, EstimationMethod::Fundamental, thr, max_iters, confidence, mask.needed()); Ptr ransac_output; if (run(params, points1, points2, params->getRandomGeneratorState(), ransac_output, noArray(), noArray(), noArray(), noArray())) { saveMask(mask, ransac_output->getInliersMask()); return ransac_output->getModel(); } if (mask.needed()){ mask.create(std::max(points1.getMat().rows, points1.getMat().cols), 1, CV_8U); mask.setTo(Scalar::all(0)); } return Mat(); } Mat findEssentialMat (InputArray points1, InputArray points2, InputArray cameraMatrix1, int method, double prob, double thr, OutputArray mask) { Ptr params; setParameters(method, params, EstimationMethod::Essential, thr, 1000, prob, mask.needed()); Ptr ransac_output; if (run(params, points1, points2, params->getRandomGeneratorState(), ransac_output, cameraMatrix1, cameraMatrix1, noArray(), noArray())) { saveMask(mask, ransac_output->getInliersMask()); return ransac_output->getModel(); } if (mask.needed()){ mask.create(std::max(points1.getMat().rows, points1.getMat().cols), 1, CV_8U); mask.setTo(Scalar::all(0)); } return Mat(); } bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool /*useExtrinsicGuess*/, int max_iters, float thr, double conf, OutputArray mask, int method) { Ptr params; setParameters(method, params, cameraMatrix.empty() ? EstimationMethod ::P6P : EstimationMethod ::P3P, thr, max_iters, conf, mask.needed()); Ptr ransac_output; if (run(params, imagePoints, objectPoints, params->getRandomGeneratorState(), ransac_output, cameraMatrix, noArray(), distCoeffs, noArray())) { saveMask(mask, ransac_output->getInliersMask()); const Mat &model = ransac_output->getModel(); model.col(0).copyTo(rvec); model.col(1).copyTo(tvec); return true; } if (mask.needed()){ mask.create(std::max(objectPoints.getMat().rows, objectPoints.getMat().cols), 1, CV_8U); mask.setTo(Scalar::all(0)); } return false; } Mat estimateAffine2D(InputArray from, InputArray to, OutputArray mask, int method, double thr, int max_iters, double conf, int /*refineIters*/) { Ptr params; setParameters(method, params, EstimationMethod ::Affine, thr, max_iters, conf, mask.needed()); Ptr ransac_output; if (run(params, from, to, params->getRandomGeneratorState(), ransac_output, noArray(), noArray(), noArray(), noArray())) { saveMask(mask, ransac_output->getInliersMask()); return ransac_output->getModel().rowRange(0,2); } if (mask.needed()){ mask.create(std::max(from.getMat().rows, from.getMat().cols), 1, CV_8U); mask.setTo(Scalar::all(0)); } return Mat(); } class ModelImpl : public Model { private: // main parameters: double threshold, confidence; int sample_size, max_iterations; EstimationMethod estimator; SamplingMethod sampler; ScoreMethod score; // for neighborhood graph int k_nearest_neighbors = 8;//, flann_search_params = 5, num_kd_trees = 1; // for FLANN int cell_size = 50; // pixels, for grid neighbors searching int radius = 30; // pixels, for radius-search neighborhood graph NeighborSearchMethod neighborsType = NeighborSearchMethod::NEIGH_GRID; // Local Optimization parameters LocalOptimMethod lo = LocalOptimMethod ::LOCAL_OPTIM_INNER_AND_ITER_LO; int lo_sample_size=16, lo_inner_iterations=15, lo_iterative_iterations=8, lo_thr_multiplier=15, lo_iter_sample_size = 30; // Graph cut parameters const double spatial_coherence_term = 0.975; // apply polisher for final RANSAC model PolishingMethod polisher = PolishingMethod ::LSQPolisher; // preemptive verification test VerificationMethod verifier = VerificationMethod ::SprtVerifier; const int max_hypothesis_test_before_verification = 15; // sprt parameters // lower bound estimate is 1% of inliers double sprt_eps = 0.01, sprt_delta = 0.008, avg_num_models, time_for_model_est; // estimator error ErrorMetric est_error; // progressive napsac double relax_coef = 0.1; // for building neighborhood graphs const std::vector grid_cell_number = {16, 8, 4, 2}; //for final least squares polisher int final_lsq_iters = 3; bool need_mask = true, is_parallel = false; int random_generator_state = 0; const int max_iters_before_LO = 100; // magsac parameters: int DoF = 2; double sigma_quantile = 3.04, upper_incomplete_of_sigma_quantile = 0.00419, lower_incomplete_of_sigma_quantile = 0.8629, C = 0.5, maximum_thr = 7.5; public: ModelImpl (double threshold_, EstimationMethod estimator_, SamplingMethod sampler_, double confidence_=0.95, int max_iterations_=5000, ScoreMethod score_ =ScoreMethod::SCORE_METHOD_MSAC) { estimator = estimator_; sampler = sampler_; confidence = confidence_; max_iterations = max_iterations_; score = score_; switch (estimator_) { // time for model estimation is basically a ratio of time need to estimate a model to // time needed to verify if a point is consistent with this model case (EstimationMethod::Affine): avg_num_models = 1; time_for_model_est = 50; sample_size = 3; est_error = ErrorMetric ::FORW_REPR_ERR; break; case (EstimationMethod::Homography): avg_num_models = 1; time_for_model_est = 150; sample_size = 4; est_error = ErrorMetric ::FORW_REPR_ERR; break; case (EstimationMethod::Fundamental): avg_num_models = 2.38; time_for_model_est = 180; maximum_thr = 2.5; sample_size = 7; est_error = ErrorMetric ::SAMPSON_ERR; break; case (EstimationMethod::Fundamental8): avg_num_models = 1; time_for_model_est = 100; maximum_thr = 2.5; sample_size = 8; est_error = ErrorMetric ::SAMPSON_ERR; break; case (EstimationMethod::Essential): avg_num_models = 3.93; time_for_model_est = 1000; maximum_thr = 2.5; sample_size = 5; est_error = ErrorMetric ::SGD_ERR; break; case (EstimationMethod::P3P): avg_num_models = 1.38; time_for_model_est = 800; sample_size = 3; est_error = ErrorMetric ::RERPOJ; break; case (EstimationMethod::P6P): avg_num_models = 1; time_for_model_est = 300; sample_size = 6; est_error = ErrorMetric ::RERPOJ; break; default: CV_Error(cv::Error::StsNotImplemented, "Estimator has not implemented yet!"); } if (estimator_ == EstimationMethod::P3P || estimator_ == EstimationMethod::P6P) { neighborsType = NeighborSearchMethod::NEIGH_FLANN_KNN; k_nearest_neighbors = 2; } if (estimator == EstimationMethod::Fundamental || estimator == EstimationMethod::Essential) { lo_sample_size = 21; lo_thr_multiplier = 10; } if (estimator == EstimationMethod::Homography) maximum_thr = 8.; threshold = threshold_; } void setVerifier (VerificationMethod verifier_) override { verifier = verifier_; } void setPolisher (PolishingMethod polisher_) override { polisher = polisher_; } void setParallel (bool is_parallel_) override { is_parallel = is_parallel_; } void setError (ErrorMetric error_) override { est_error = error_; } void setLocalOptimization (LocalOptimMethod lo_) override { lo = lo_; } void setKNearestNeighhbors (int knn_) override { k_nearest_neighbors = knn_; } void setNeighborsType (NeighborSearchMethod neighbors) override { neighborsType = neighbors; } void setCellSize (int cell_size_) override { cell_size = cell_size_; } void setLOIterations (int iters) override { lo_inner_iterations = iters; } void setLOIterativeIters (int iters) override {lo_iterative_iterations = iters; } void setLOSampleSize (int lo_sample_size_) override { lo_sample_size = lo_sample_size_; } void setThresholdMultiplierLO (double thr_mult) override { lo_thr_multiplier = (int) round(thr_mult); } void maskRequired (bool need_mask_) override { need_mask = need_mask_; } void setRandomGeneratorState (int state) override { random_generator_state = state; } bool isMaskRequired () const override { return need_mask; } NeighborSearchMethod getNeighborsSearch () const override { return neighborsType; } int getKNN () const override { return k_nearest_neighbors; } ErrorMetric getError () const override { return est_error; } EstimationMethod getEstimator () const override { return estimator; } int getSampleSize () const override { return sample_size; } int getFinalLSQIterations () const override { return final_lsq_iters; } int getDegreesOfFreedom () const override { return DoF; } double getSigmaQuantile () const override { return sigma_quantile; } double getUpperIncompleteOfSigmaQuantile () const override { return upper_incomplete_of_sigma_quantile; } double getLowerIncompleteOfSigmaQuantile () const override { return lower_incomplete_of_sigma_quantile; } double getC () const override { return C; } double getMaximumThreshold () const override { return maximum_thr; } double getGraphCutSpatialCoherenceTerm () const override { return spatial_coherence_term; } int getLOSampleSize () const override { return lo_sample_size; } int getMaxNumHypothesisToTestBeforeRejection() const override { return max_hypothesis_test_before_verification; } PolishingMethod getFinalPolisher () const override { return polisher; } int getLOThresholdMultiplier() const override { return lo_thr_multiplier; } int getLOIterativeSampleSize() const override { return lo_iter_sample_size; } int getLOIterativeMaxIters() const override { return lo_iterative_iterations; } int getLOInnerMaxIters() const override { return lo_inner_iterations; } LocalOptimMethod getLO () const override { return lo; } ScoreMethod getScore () const override { return score; } int getMaxIters () const override { return max_iterations; } double getConfidence () const override { return confidence; } double getThreshold () const override { return threshold; } VerificationMethod getVerifier () const override { return verifier; } SamplingMethod getSampler () const override { return sampler; } int getRandomGeneratorState () const override { return random_generator_state; } int getMaxItersBeforeLO () const override { return max_iters_before_LO; } double getSPRTdelta () const override { return sprt_delta; } double getSPRTepsilon () const override { return sprt_eps; } double getSPRTavgNumModels () const override { return avg_num_models; } int getCellSize () const override { return cell_size; } int getGraphRadius() const override { return radius; } double getTimeForModelEstimation () const override { return time_for_model_est; } double getRelaxCoef () const override { return relax_coef; } const std::vector &getGridCellNumber () const override { return grid_cell_number; } bool isParallel () const override { return is_parallel; } bool isFundamental () const override { return estimator == EstimationMethod ::Fundamental || estimator == EstimationMethod ::Fundamental8; } bool isHomography () const override { return estimator == EstimationMethod ::Homography; } bool isEssential () const override { return estimator == EstimationMethod ::Essential; } bool isPnP() const override { return estimator == EstimationMethod ::P3P || estimator == EstimationMethod ::P6P; } }; Ptr Model::create(double threshold_, EstimationMethod estimator_, SamplingMethod sampler_, double confidence_, int max_iterations_, ScoreMethod score_) { return makePtr(threshold_, estimator_, sampler_, confidence_, max_iterations_, score_); } bool run (const Ptr ¶ms, InputArray points1, InputArray points2, int state, Ptr &ransac_output, InputArray K1_, InputArray K2_, InputArray dist_coeff1, InputArray dist_coeff2) { Ptr error; Ptr estimator; Ptr graph; Ptr degeneracy; Ptr quality; Ptr verifier; Ptr sampler; Ptr lo_sampler; Ptr termination; Ptr lo; Ptr polisher; Ptr min_solver; Ptr non_min_solver; Mat points, K1, K2, calib_points, undist_points1, undist_points2; int points_size; double threshold = params->getThreshold(), max_thr = params->getMaximumThreshold(); const int min_sample_size = params->getSampleSize(); if (params->isPnP()) { if (! K1_.empty()) { K1 = K1_.getMat(); K1.convertTo(K1, CV_64F); if (! dist_coeff1.empty()) { // undistortPoints also calibrate points using K if (points1.isContinuous()) undistortPoints(points1, undist_points1, K1_, dist_coeff1); else undistortPoints(points1.getMat().clone(), undist_points1, K1_, dist_coeff1); points_size = mergePoints(undist_points1, points2, points, true); Utils::normalizeAndDecalibPointsPnP (K1, points, calib_points); } else { points_size = mergePoints(points1, points2, points, true); Utils::calibrateAndNormalizePointsPnP(K1, points, calib_points); } } else points_size = mergePoints(points1, points2, points, true); } else { if (params->isEssential()) { CV_CheckEQ((int)(!K1_.empty() && !K2_.empty()), 1, "Intrinsic matrix must not be empty!"); K1 = K1_.getMat(); K1.convertTo(K1, CV_64F); K2 = K2_.getMat(); K2.convertTo(K2, CV_64F); if (! dist_coeff1.empty() || ! dist_coeff2.empty()) { // undistortPoints also calibrate points using K if (points1.isContinuous()) undistortPoints(points1, undist_points1, K1_, dist_coeff1); else undistortPoints(points1.getMat().clone(), undist_points1, K1_, dist_coeff1); if (points2.isContinuous()) undistortPoints(points2, undist_points2, K2_, dist_coeff2); else undistortPoints(points2.getMat().clone(), undist_points2, K2_, dist_coeff2); points_size = mergePoints(undist_points1, undist_points2, calib_points, false); } else { points_size = mergePoints(points1, points2, points, false); Utils::calibratePoints(K1, K2, points, calib_points); } threshold = Utils::getCalibratedThreshold(threshold, K1, K2); max_thr = Utils::getCalibratedThreshold(max_thr, K1, K2); } else points_size = mergePoints(points1, points2, points, false); } // Since error function output squared error distance, so make // threshold squared as well threshold *= threshold; if (params->getSampler() == SamplingMethod::SAMPLING_NAPSAC || params->getLO() == LocalOptimMethod::LOCAL_OPTIM_GC) { if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_GRID) { graph = GridNeighborhoodGraph::create(points, points_size, params->getCellSize(), params->getCellSize(), params->getCellSize(), params->getCellSize(), 10); } else if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_FLANN_KNN) { graph = FlannNeighborhoodGraph::create(points, points_size,params->getKNN(), false, 5, 1); } else if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_FLANN_RADIUS) { graph = RadiusSearchNeighborhoodGraph::create(points, points_size, params->getGraphRadius(), 5, 1); } else CV_Error(cv::Error::StsNotImplemented, "Graph type is not implemented!"); } std::vector> layers; if (params->getSampler() == SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC) { CV_CheckEQ((int)params->isPnP(), 0, "ProgressiveNAPSAC for PnP is not implemented!"); const auto &cell_number_per_layer = params->getGridCellNumber(); layers.reserve(cell_number_per_layer.size()); const auto * const pts = (float *) points.data; float img1_width = 0, img1_height = 0, img2_width = 0, img2_height = 0; for (int i = 0; i < 4 * points_size; i += 4) { if (pts[i ] > img1_width ) img1_width = pts[i ]; if (pts[i + 1] > img1_height) img1_height = pts[i + 1]; if (pts[i + 2] > img2_width ) img2_width = pts[i + 2]; if (pts[i + 3] > img2_height) img2_height = pts[i + 3]; } // Create grid graphs (overlapping layes of given cell numbers) for (int layer_idx = 0; layer_idx < (int)cell_number_per_layer.size(); layer_idx++) { const int cell_number = cell_number_per_layer[layer_idx]; if (layer_idx > 0) if (cell_number_per_layer[layer_idx-1] <= cell_number) CV_Error(cv::Error::StsError, "Progressive NAPSAC sampler: " "Cell number in layers must be in decreasing order!"); layers.emplace_back(GridNeighborhoodGraph::create(points, points_size, (int)(img1_width / (float)cell_number), (int)(img1_height / (float)cell_number), (int)(img2_width / (float)cell_number), (int)(img2_height / (float)cell_number), 10)); } } // update points by calibrated for Essential matrix after graph is calculated if (params->isEssential()) { points = calib_points; // if maximum calibrated threshold significanlty differs threshold then set upper bound if (max_thr > 10*threshold) max_thr = sqrt(10*threshold); // max thr will be squared after } if (max_thr < threshold) max_thr = threshold; switch (params->getError()) { case ErrorMetric::SYMM_REPR_ERR: error = ReprojectionErrorSymmetric::create(points); break; case ErrorMetric::FORW_REPR_ERR: if (params->getEstimator() == EstimationMethod::Affine) error = ReprojectionErrorAffine::create(points); else error = ReprojectionErrorForward::create(points); break; case ErrorMetric::SAMPSON_ERR: error = SampsonError::create(points); break; case ErrorMetric::SGD_ERR: error = SymmetricGeometricDistance::create(points); break; case ErrorMetric::RERPOJ: error = ReprojectionErrorPmatrix::create(points); break; default: CV_Error(cv::Error::StsNotImplemented , "Error metric is not implemented!"); } switch (params->getScore()) { case ScoreMethod::SCORE_METHOD_RANSAC : quality = RansacQuality::create(points_size, threshold, error); break; case ScoreMethod::SCORE_METHOD_MSAC : quality = MsacQuality::create(points_size, threshold, error); break; case ScoreMethod::SCORE_METHOD_MAGSAC : quality = MagsacQuality::create(max_thr, points_size, error, threshold, params->getDegreesOfFreedom(), params->getSigmaQuantile(), params->getUpperIncompleteOfSigmaQuantile(), params->getLowerIncompleteOfSigmaQuantile(), params->getC()); break; case ScoreMethod::SCORE_METHOD_LMEDS : quality = LMedsQuality::create(points_size, threshold, error); break; default: CV_Error(cv::Error::StsNotImplemented, "Score is not imeplemeted!"); } if (params->isHomography()) { degeneracy = HomographyDegeneracy::create(points); min_solver = HomographyMinimalSolver4ptsGEM::create(points); non_min_solver = HomographyNonMinimalSolver::create(points); estimator = HomographyEstimator::create(min_solver, non_min_solver, degeneracy); } else if (params->isFundamental()) { degeneracy = FundamentalDegeneracy::create(state++, quality, points, min_sample_size, 5. /*sqr homogr thr*/); if(min_sample_size == 7) min_solver = FundamentalMinimalSolver7pts::create(points); else min_solver = FundamentalMinimalSolver8pts::create(points); non_min_solver = FundamentalNonMinimalSolver::create(points); estimator = FundamentalEstimator::create(min_solver, non_min_solver, degeneracy); } else if (params->isEssential()) { degeneracy = EssentialDegeneracy::create(points, min_sample_size); min_solver = EssentialMinimalSolverStewenius5pts::create(points); non_min_solver = EssentialNonMinimalSolver::create(points); estimator = EssentialEstimator::create(min_solver, non_min_solver, degeneracy); } else if (params->isPnP()) { degeneracy = makePtr(); if (min_sample_size == 3) { non_min_solver = DLSPnP::create(points, calib_points, K1); min_solver = P3PSolver::create(points, calib_points, K1); } else { min_solver = PnPMinimalSolver6Pts::create(points); non_min_solver = PnPNonMinimalSolver::create(points); } estimator = PnPEstimator::create(min_solver, non_min_solver); } else if (params->getEstimator() == EstimationMethod::Affine) { degeneracy = makePtr(); min_solver = AffineMinimalSolver::create(points); non_min_solver = AffineNonMinimalSolver::create(points); estimator = AffineEstimator::create(min_solver, non_min_solver); } else CV_Error(cv::Error::StsNotImplemented, "Estimator not implemented!"); switch (params->getSampler()) { case SamplingMethod::SAMPLING_UNIFORM: sampler = UniformSampler::create(state++, min_sample_size, points_size); break; case SamplingMethod::SAMPLING_PROSAC: sampler = ProsacSampler::create(state++, points_size, min_sample_size, 200000); break; case SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC: sampler = ProgressiveNapsac::create(state++, points_size, min_sample_size, layers, 20); break; case SamplingMethod::SAMPLING_NAPSAC: sampler = NapsacSampler::create(state++, points_size, min_sample_size, graph); break; default: CV_Error(cv::Error::StsNotImplemented, "Sampler is not implemented!"); } switch (params->getVerifier()) { case VerificationMethod::NullVerifier: verifier = ModelVerifier::create(); break; case VerificationMethod::SprtVerifier: verifier = SPRT::create(state++, error, points_size, params->getScore() == ScoreMethod ::SCORE_METHOD_MAGSAC ? max_thr : threshold, params->getSPRTepsilon(), params->getSPRTdelta(), params->getTimeForModelEstimation(), params->getSPRTavgNumModels(), params->getScore()); break; default: CV_Error(cv::Error::StsNotImplemented, "Verifier is not imeplemented!"); } if (params->getSampler() == SamplingMethod::SAMPLING_PROSAC) { termination = ProsacTerminationCriteria::create(sampler.dynamicCast(), error, points_size, min_sample_size, params->getConfidence(), params->getMaxIters(), 100, 0.05, 0.05, threshold); } else if (params->getSampler() == SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC) { if (params->getVerifier() == VerificationMethod::SprtVerifier) termination = SPRTPNapsacTermination::create(((SPRT *)verifier.get())->getSPRTvector(), params->getConfidence(), points_size, min_sample_size, params->getMaxIters(), params->getRelaxCoef()); else termination = StandardTerminationCriteria::create (params->getConfidence(), points_size, min_sample_size, params->getMaxIters()); } else if (params->getVerifier() == VerificationMethod::SprtVerifier) { termination = SPRTTermination::create(((SPRT *) verifier.get())->getSPRTvector(), params->getConfidence(), points_size, min_sample_size, params->getMaxIters()); } else termination = StandardTerminationCriteria::create (params->getConfidence(), points_size, min_sample_size, params->getMaxIters()); if (params->getLO() != LocalOptimMethod::LOCAL_OPTIM_NULL) { lo_sampler = UniformRandomGenerator::create(state++, points_size, params->getLOSampleSize()); switch (params->getLO()) { case LocalOptimMethod::LOCAL_OPTIM_INNER_LO: lo = InnerIterativeLocalOptimization::create(estimator, quality, lo_sampler, points_size, threshold, false, params->getLOIterativeSampleSize(), params->getLOInnerMaxIters(), params->getLOIterativeMaxIters(), params->getLOThresholdMultiplier()); break; case LocalOptimMethod::LOCAL_OPTIM_INNER_AND_ITER_LO: lo = InnerIterativeLocalOptimization::create(estimator, quality, lo_sampler, points_size, threshold, true, params->getLOIterativeSampleSize(), params->getLOInnerMaxIters(), params->getLOIterativeMaxIters(), params->getLOThresholdMultiplier()); break; case LocalOptimMethod::LOCAL_OPTIM_GC: lo = GraphCut::create(estimator, error, quality, graph, lo_sampler, threshold, params->getGraphCutSpatialCoherenceTerm(), params->getLOInnerMaxIters()); break; case LocalOptimMethod::LOCAL_OPTIM_SIGMA: lo = SigmaConsensus::create(estimator, error, quality, verifier, params->getLOSampleSize(), params->getLOInnerMaxIters(), params->getDegreesOfFreedom(), params->getSigmaQuantile(), params->getUpperIncompleteOfSigmaQuantile(), params->getC(), max_thr); break; default: CV_Error(cv::Error::StsNotImplemented , "Local Optimization is not implemented!"); } } if (params->getFinalPolisher() == PolishingMethod::LSQPolisher) polisher = LeastSquaresPolishing::create(estimator, quality, params->getFinalLSQIterations()); Ransac ransac (params, points_size, estimator, quality, sampler, termination, verifier, degeneracy, lo, polisher, params->isParallel(), state); if (ransac.run(ransac_output)) { if (params->isPnP()) { // convert R to rodrigues and back and recalculate inliers which due to numerical // issues can differ Mat out, R, newR, newP, t, rvec; if (K1.empty()) { usac::Utils::decomposeProjection (ransac_output->getModel(), K1, R, t); Rodrigues(R, rvec); hconcat(rvec, t, out); hconcat(out, K1, out); } else { const Mat Rt = K1.inv() * ransac_output->getModel(); t = Rt.col(3); Rodrigues(Rt.colRange(0,3), rvec); hconcat(rvec, t, out); } Rodrigues(rvec, newR); hconcat(K1 * newR, K1 * t, newP); std::vector inliers_mask(points_size); quality->getInliers(newP, inliers_mask); ransac_output = RansacOutput::create(out, inliers_mask, 0,0,0,0,0,0); } return true; } return false; } }}