/* Copyright (C) 1995-2011, 2016 Mark Adler * Copyright (C) 2017 ARM Holdings Inc. * Authors: * Adenilson Cavalcanti * Adam Stylinski * For conditions of distribution and use, see copyright notice in zlib.h */ #ifdef ARM_NEON #include "neon_intrins.h" #include "../../zbuild.h" #include "../../adler32_p.h" static void NEON_accum32(uint32_t *s, const uint8_t *buf, size_t len) { static const uint16_t ALIGNED_(16) taps[64] = { 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }; uint32x4_t adacc = vdupq_n_u32(0); uint32x4_t s2acc = vdupq_n_u32(0); uint32x4_t s2acc_0 = vdupq_n_u32(0); uint32x4_t s2acc_1 = vdupq_n_u32(0); uint32x4_t s2acc_2 = vdupq_n_u32(0); adacc = vsetq_lane_u32(s[0], adacc, 0); s2acc = vsetq_lane_u32(s[1], s2acc, 0); uint32x4_t s3acc = vdupq_n_u32(0); uint32x4_t adacc_prev = adacc; uint16x8_t s2_0, s2_1, s2_2, s2_3; s2_0 = s2_1 = s2_2 = s2_3 = vdupq_n_u16(0); uint16x8_t s2_4, s2_5, s2_6, s2_7; s2_4 = s2_5 = s2_6 = s2_7 = vdupq_n_u16(0); size_t num_iter = len >> 2; int rem = len & 3; for (size_t i = 0; i < num_iter; ++i) { uint8x16x4_t d0_d3 = vld1q_u8_x4(buf); /* Unfortunately it doesn't look like there's a direct sum 8 bit to 32 * bit instruction, we'll have to make due summing to 16 bits first */ uint16x8x2_t hsum, hsum_fold; hsum.val[0] = vpaddlq_u8(d0_d3.val[0]); hsum.val[1] = vpaddlq_u8(d0_d3.val[1]); hsum_fold.val[0] = vpadalq_u8(hsum.val[0], d0_d3.val[2]); hsum_fold.val[1] = vpadalq_u8(hsum.val[1], d0_d3.val[3]); adacc = vpadalq_u16(adacc, hsum_fold.val[0]); s3acc = vaddq_u32(s3acc, adacc_prev); adacc = vpadalq_u16(adacc, hsum_fold.val[1]); /* If we do straight widening additions to the 16 bit values, we don't incur * the usual penalties of a pairwise add. We can defer the multiplications * until the very end. These will not overflow because we are incurring at * most 408 loop iterations (NMAX / 64), and a given lane is only going to be * summed into once. This means for the maximum input size, the largest value * we will see is 255 * 102 = 26010, safely under uint16 max */ s2_0 = vaddw_u8(s2_0, vget_low_u8(d0_d3.val[0])); s2_1 = vaddw_high_u8(s2_1, d0_d3.val[0]); s2_2 = vaddw_u8(s2_2, vget_low_u8(d0_d3.val[1])); s2_3 = vaddw_high_u8(s2_3, d0_d3.val[1]); s2_4 = vaddw_u8(s2_4, vget_low_u8(d0_d3.val[2])); s2_5 = vaddw_high_u8(s2_5, d0_d3.val[2]); s2_6 = vaddw_u8(s2_6, vget_low_u8(d0_d3.val[3])); s2_7 = vaddw_high_u8(s2_7, d0_d3.val[3]); adacc_prev = adacc; buf += 64; } s3acc = vshlq_n_u32(s3acc, 6); if (rem) { uint32x4_t s3acc_0 = vdupq_n_u32(0); while (rem--) { uint8x16_t d0 = vld1q_u8(buf); uint16x8_t adler; adler = vpaddlq_u8(d0); s2_6 = vaddw_u8(s2_6, vget_low_u8(d0)); s2_7 = vaddw_high_u8(s2_7, d0); adacc = vpadalq_u16(adacc, adler); s3acc_0 = vaddq_u32(s3acc_0, adacc_prev); adacc_prev = adacc; buf += 16; } s3acc_0 = vshlq_n_u32(s3acc_0, 4); s3acc = vaddq_u32(s3acc_0, s3acc); } uint16x8x4_t t0_t3 = vld1q_u16_x4(taps); uint16x8x4_t t4_t7 = vld1q_u16_x4(taps + 32); s2acc = vmlal_high_u16(s2acc, t0_t3.val[0], s2_0); s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t0_t3.val[0]), vget_low_u16(s2_0)); s2acc_1 = vmlal_high_u16(s2acc_1, t0_t3.val[1], s2_1); s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t0_t3.val[1]), vget_low_u16(s2_1)); s2acc = vmlal_high_u16(s2acc, t0_t3.val[2], s2_2); s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t0_t3.val[2]), vget_low_u16(s2_2)); s2acc_1 = vmlal_high_u16(s2acc_1, t0_t3.val[3], s2_3); s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t0_t3.val[3]), vget_low_u16(s2_3)); s2acc = vmlal_high_u16(s2acc, t4_t7.val[0], s2_4); s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t4_t7.val[0]), vget_low_u16(s2_4)); s2acc_1 = vmlal_high_u16(s2acc_1, t4_t7.val[1], s2_5); s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t4_t7.val[1]), vget_low_u16(s2_5)); s2acc = vmlal_high_u16(s2acc, t4_t7.val[2], s2_6); s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t4_t7.val[2]), vget_low_u16(s2_6)); s2acc_1 = vmlal_high_u16(s2acc_1, t4_t7.val[3], s2_7); s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t4_t7.val[3]), vget_low_u16(s2_7)); s2acc = vaddq_u32(s2acc_0, s2acc); s2acc_2 = vaddq_u32(s2acc_1, s2acc_2); s2acc = vaddq_u32(s2acc, s2acc_2); uint32x2_t adacc2, s2acc2, as; s2acc = vaddq_u32(s2acc, s3acc); adacc2 = vpadd_u32(vget_low_u32(adacc), vget_high_u32(adacc)); s2acc2 = vpadd_u32(vget_low_u32(s2acc), vget_high_u32(s2acc)); as = vpadd_u32(adacc2, s2acc2); s[0] = vget_lane_u32(as, 0); s[1] = vget_lane_u32(as, 1); } static void NEON_handle_tail(uint32_t *pair, const uint8_t *buf, size_t len) { unsigned int i; for (i = 0; i < len; ++i) { pair[0] += buf[i]; pair[1] += pair[0]; } } Z_INTERNAL uint32_t adler32_neon(uint32_t adler, const uint8_t *buf, size_t len) { /* split Adler-32 into component sums */ uint32_t sum2 = (adler >> 16) & 0xffff; adler &= 0xffff; /* in case user likes doing a byte at a time, keep it fast */ if (len == 1) return adler32_len_1(adler, buf, sum2); /* initial Adler-32 value (deferred check for len == 1 speed) */ if (buf == NULL) return 1L; /* in case short lengths are provided, keep it somewhat fast */ if (len < 16) return adler32_len_16(adler, buf, len, sum2); uint32_t pair[2]; int n = NMAX; unsigned int done = 0; /* Split Adler-32 into component sums, it can be supplied by * the caller sites (e.g. in a PNG file). */ pair[0] = adler; pair[1] = sum2; /* If memory is not SIMD aligned, do scalar sums to an aligned * offset, provided that doing so doesn't completely eliminate * SIMD operation. Aligned loads are still faster on ARM, even * though there's no explicit aligned load instruction */ unsigned int align_offset = ((uintptr_t)buf & 15); unsigned int align_adj = (align_offset) ? 16 - align_offset : 0; if (align_offset && len >= (16 + align_adj)) { NEON_handle_tail(pair, buf, align_adj); n -= align_adj; done += align_adj; } else { /* If here, we failed the len criteria test, it wouldn't be * worthwhile to do scalar aligning sums */ align_adj = 0; } while (done < len) { int remaining = (int)(len - done); n = MIN(remaining, (done == align_adj) ? n : NMAX); if (n < 16) break; NEON_accum32(pair, buf + done, n >> 4); pair[0] %= BASE; pair[1] %= BASE; int actual_nsums = (n >> 4) << 4; done += actual_nsums; } /* Handle the tail elements. */ if (done < len) { NEON_handle_tail(pair, (buf + done), len - done); pair[0] %= BASE; pair[1] %= BASE; } /* D = B * 65536 + A, see: https://en.wikipedia.org/wiki/Adler-32. */ return (pair[1] << 16) | pair[0]; } #endif