/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include #include using namespace cv; using namespace std; CV_SLMLTest::CV_SLMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName ) { validationFN = "slvalidation.xml"; } int CV_SLMLTest::run_test_case( int testCaseIdx ) { int code = cvtest::TS::OK; code = prepare_test_case( testCaseIdx ); if( code == cvtest::TS::OK ) { data.mix_train_and_test_idx(); code = train( testCaseIdx ); if( code == cvtest::TS::OK ) { get_error( testCaseIdx, CV_TEST_ERROR, &test_resps1 ); fname1 = tempfile(); save( fname1.c_str() ); load( fname1.c_str() ); get_error( testCaseIdx, CV_TEST_ERROR, &test_resps2 ); fname2 = tempfile(); save( fname2.c_str() ); } else ts->printf( cvtest::TS::LOG, "model can not be trained" ); } return code; } int CV_SLMLTest::validate_test_results( int testCaseIdx ) { int code = cvtest::TS::OK; // 1. compare files ifstream f1( fname1.c_str() ), f2( fname2.c_str() ); string s1, s2; int lineIdx = 0; CV_Assert( f1.is_open() && f2.is_open() ); for( ; !f1.eof() && !f2.eof(); lineIdx++ ) { getline( f1, s1 ); getline( f2, s2 ); if( s1.compare(s2) ) { ts->printf( cvtest::TS::LOG, "first and second saved files differ in %n-line; first %n line: %s; second %n-line: %s", lineIdx, lineIdx, s1.c_str(), lineIdx, s2.c_str() ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } } if( !f1.eof() || !f2.eof() ) { ts->printf( cvtest::TS::LOG, "in test case %d first and second saved files differ in %n-line; first %n line: %s; second %n-line: %s", testCaseIdx, lineIdx, lineIdx, s1.c_str(), lineIdx, s2.c_str() ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } f1.close(); f2.close(); // delete temporary files remove( fname1.c_str() ); remove( fname2.c_str() ); // 2. compare responses CV_Assert( test_resps1.size() == test_resps2.size() ); vector::const_iterator it1 = test_resps1.begin(), it2 = test_resps2.begin(); for( ; it1 != test_resps1.end(); ++it1, ++it2 ) { if( fabs(*it1 - *it2) > FLT_EPSILON ) { ts->printf( cvtest::TS::LOG, "in test case %d responses predicted before saving and after loading is different", testCaseIdx ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } } return code; } TEST(ML_NaiveBayes, save_load) { CV_SLMLTest test( CV_NBAYES ); test.safe_run(); } //CV_SLMLTest lsmlknearest( CV_KNEAREST, "slknearest" ); // does not support save! TEST(ML_SVM, save_load) { CV_SLMLTest test( CV_SVM ); test.safe_run(); } //CV_SLMLTest lsmlem( CV_EM, "slem" ); // does not support save! TEST(ML_ANN, save_load) { CV_SLMLTest test( CV_ANN ); test.safe_run(); } TEST(ML_DTree, save_load) { CV_SLMLTest test( CV_DTREE ); test.safe_run(); } TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); } TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); } TEST(ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); } /* End of file. */